Healthcare Interpretations Task Force
AGENDA
McCormick Place Convention Center
North Building, Level 2 – Room N231
Chicago, Illinois

June 23, 2015
1:00 P.M. to 6:00 P.M.

1. Call to Order 1:00 P.M.

2. Introduction of Members and Guests. [See Page 02]

 - Battery Voltage vs. Electrolyte Levels for Generator Batteries: NFPA 101. [See Page 04]
 - Smoke Compartments, Vertical Shafts and Stairs: NFPA 101. [See Page 05]
 - Non-fixed Furniture in 8’ + Corridors: NFPA 101. [See Page 06]
 - Horizontal Exiting into Adjacent Building as Exterior Exit Discharge: NFPA 101. [See Page 08]
 - Exit Access Doors in Smoke Barriers: NFPA 101. [See Page 10]

4. Old Business.
 - Bylaw Review Task Group. (Robert Solomon, Chad Beebe, Jim Merrill and George Mills)

5. New Business.

6. Date / Location for Next Meeting.

7. Adjournment by 6:00 PM.
<table>
<thead>
<tr>
<th>Address List No Phone</th>
<th>06/09/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare Interpretations Task Force</td>
<td>HCI-TFC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Position</th>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chad E. Beebe</td>
<td>6/12/2012</td>
<td>Principal</td>
<td>ASHE - AHA</td>
<td>PO Box 5756, Lacey, WA 98509-5756</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: David A. Dagenais</td>
<td></td>
</tr>
<tr>
<td>Kenneth E. Bush</td>
<td>10/4/2009</td>
<td>Principal</td>
<td>Maryland State Fire Marshals Office</td>
<td>301 Bay Street, Lower Level, Easton, MD 21601-2721</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>International Fire Marshals Association</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Kim L. Osborn</td>
<td></td>
</tr>
<tr>
<td>Philip J. Hoge</td>
<td>10/4/2009</td>
<td>Principal</td>
<td>US Army Corps of Engineers</td>
<td>Humphreys Engineer Center, Kingman Building, Suite 3MX, 7701 Telegraph Road, Alexandria, VA 22315-3813</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: G. Brian Prediger</td>
<td></td>
</tr>
<tr>
<td>David P. Klein</td>
<td>10/4/2009</td>
<td>Principal</td>
<td>US Department of Veterans Affairs</td>
<td>810 Vermont Avenue, NW, Suite 800, Mail Code: (10NA8), Washington, DC 20420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Peter A. Larrimer</td>
<td></td>
</tr>
<tr>
<td>George Mills</td>
<td>10/4/2009</td>
<td>Principal</td>
<td>The Joint Commission</td>
<td>Department of Engineering, One Renaissance Boulevard, Oakbrook Terrace, IL 60181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Anne M. Guglielmo</td>
<td></td>
</tr>
<tr>
<td>Dwight Packer</td>
<td>10/29/2013</td>
<td>Principal</td>
<td>Indian Health Service</td>
<td>1301 Young Street, #1071, Dallas, TX 75202</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Joseph Bermes</td>
<td></td>
</tr>
<tr>
<td>Eric R. Rosenbaum</td>
<td>02/28/2013</td>
<td>Principal</td>
<td>JENSEN HUGHES</td>
<td>3610 Commerce Drive, Suite 817, Baltimore, MD 21227-1652</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American Health Care Association</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Phil Thomas</td>
<td></td>
</tr>
<tr>
<td>Randall Snelling</td>
<td>02/13/2014</td>
<td>Principal</td>
<td>Det Norske Veritas Healthcare</td>
<td>Chief Physical Environment Officer, 400 Techne Center Drive, Suite 100, Milford, OH 45150-3706</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert E. Solomon</td>
<td>10/4/2009</td>
<td>Principal</td>
<td>National Fire Protection Association</td>
<td>1 Batterymarch Park, Quincy, MA 02169-7471</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Gregory E. Harrington</td>
<td></td>
</tr>
<tr>
<td>Joseph Bermes</td>
<td>10/4/2009</td>
<td>Alternate</td>
<td>Indian Health Service</td>
<td>Division of Engineering Services, 2201 Sixth Avenue, Room 937, Seattle, WA 98121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Principal: Dwight Packer</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Affiliation/Company</td>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Joseph L. Cappiello</td>
<td>Alternate</td>
<td>Healthcare Facilities Accreditation Program</td>
<td>142 East Ontario Street, Chicago, IL 60611</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal: Bradley C. Keyes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anne M. Guglielmo</td>
<td>Alternate</td>
<td>The Joint Commission</td>
<td>1 Renaissance Boulevard, Oakbrook Terrace, IL 60181</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal: George Mills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peter A. Larrimer</td>
<td>Alternate</td>
<td>US Department of Veterans Affairs</td>
<td>1805 Constitution Blvd, Valencia, PA 16059</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal: David P. Klein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Brian Prediger</td>
<td>Alternate</td>
<td>US Army Medical Command Headquarters</td>
<td>2748 Worth Road, Suite 22, Fort Sam Houston, TX 78234</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Director, Facilities Engineering Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal: Philip J. Hoge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David A. Dagenais</td>
<td>Alternate</td>
<td>Wentworth-Douglass Hospital</td>
<td>789 Central Avenue, Dover, NH 03820</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>American Society for Healthcare Engineering</td>
<td>Principal: Chad E. Beebe</td>
<td></td>
</tr>
<tr>
<td>Gregory E. Harrington</td>
<td>Alternate</td>
<td>National Fire Protection Association</td>
<td>1 Batterymanch Park, Quincy, MA 02169-7471</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal: Robert E. Solomon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim L. Osborn</td>
<td>Alternate</td>
<td>Michigan Dept. of Labor & Economic Growth</td>
<td>State Fire Marshals Office/Bureau of Fire Services, PO Box 30700, Lansing, MI 48909</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>International Fire Marshals Association</td>
<td>Principal: Kenneth E. Bush</td>
<td></td>
</tr>
<tr>
<td>Phil Thomas</td>
<td>Alternate</td>
<td>Phil Thomas & Associates PLC</td>
<td>10008 Carmen Vincent Court, Fort Smith, AR 72908-9199</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>American Health Care Association</td>
<td>Principal: Eric R. Rosenbaum</td>
<td></td>
</tr>
</tbody>
</table>
DOCUMENT TO BE INTERPRETED: NFPA 101 and NFPA 110

EDITION: 2000 and 1999

BACKGROUND INFORMATION (optional):

NFPA 101-2000 edition references NFPA 110-1999 edition as currently enforced by CMS. NFPA 110 Section 6-3.6 identifies that electrolyte levels shall be checked weekly; however, the predominant battery type used for starting emergency generators are valve regulated lead acid (VRLA) type. VRLA batteries are sealed units with the exception of a one-way pressure relief valve. The electrolyte in these batteries is also immobilized, most often in an absorbent glass mat, and therefore cannot be periodically checked. NFPA 110-2005 edition Section 8.3.7 was consequently updated to address this fact and later editions have been further clarified. The following can be concluded from the changes to NFPA 110 and associated committee statements:

Electrolyte levels cannot be checked or modified on a VRLA battery due to the sealed container and immobilized electrolyte. NFPA 110 was therefore revised to address this fact beginning with the 2005 edition. This change reflected that checking battery voltage is a more appropriate test for VRLA and other "maintenance free" batteries.

NFPA 101-2012 edition that is proposed for adoption by TJC/CMS would reference NFPA 110-2010 edition includes the updated language permitting battery voltage to be checked in lieu of electrolyte levels where applicable (such as for VRLA batteries).

QUESTION:

Is permitting battery voltage to be checked in lieu of electrolyte levels where applicable an acceptable alternative for generator batteries?
DOCUMENT TO BE INTERPRETED: 101

EDITION: 2000

BACKGROUND INFORMATION (optional):

Sections 18.3.7.1 (3) and 19.3.7.1 of NFPA 101-2000 edition states that a smoke compartment shall not exceed 22,500 square feet.

QUESTION:

Is the 22,500 square feet criteria for area of a smoke compartment based on gross floor area? Can vertical shafts and stairs be excluded from smoke compartment area calculations?
HITF INTERPRETATION REQUEST
JUNE 2015

DOCUMENT TO BE INTERPRETED: 101

EDITION: 2012

BACKGROUND INFORMATION (optional):

As permitted by Categorical waiver Sections 18.2.3.4(5) and 19.2.3.4(5) allow: “Where a corridor width is at least 8 ft. wide. Projections into the required width shall be permitted for fixed furniture provided...”

QUESTION:

Is it permitted to place “non-fixed” furniture in corridors that are wider than 8’ as long as the furniture does not encroach into the required exit width of the corridor?
BACKGROUND INFORMATION (optional):

Patient evacuation equipment such as “med sleds” was used during Superstorm Sandy, among other recent catastrophic events, to evacuate patients down the exit stairways due to untenable conditions when the defend-in-place principle was no longer appropriate. Remote storage of this equipment could delay emergency evacuation.

QUESTION:

Is it the intent of NFPA 101 to permit the storage of emergency patient evacuation equipment within exit stairways in health care occupancies provided that the equipment is located such that it does not obstruct the required egress width of the stairway?
DOCUMENT TO BE INTERPRETED: 101

EDITION: 2000

BACKGROUND INFORMATION (optional):

Sections 18/19.2.7 require exit discharge to be arranged in accordance with Section 7.7. Section 7.7.2 requires that not more than 50 percent of the required exits and not more than 50% of the required egress capacity, shall be permitted to discharge through areas on the level of exit discharge provided the level of discharge meets the three requirements within this section.

A common occurrence in large health care occupancies is interconnected, adjoining buildings where the buildings are separated by 2 hour fire resistance rated construction. In most of these cases, these connections to adjacent buildings are used as horizontal exits, and the buildings have separate evacuation and notification for alarm purposes. Where a building adjoins two or more buildings, multiple horizontal exits into these adjoining buildings are often provided due to the difficulty in providing exit stairways that either discharge directly to the exterior and/or exit passageways on the level of exit discharge. Section 18/19 2.2.5.2 allows for horizontal exits to account for a maximum of 2/3 of a floor’s egress capacity. The intent of section 7.7.2 is for 50% of the exits to lead people out of the building of origin without egress through the interior of the level of discharge. The horizontal exits into adjacent buildings essentially allow for this to happen which meets the intent of section 7.7.2.

If 2/3 of a floor’s population can exit via a horizontal exit as per 18/19.2.2.5.2 but section 7.7.2 requires 50% of the exits to discharge at a public way or exterior exit discharge, then the code must consider the horizontal exiting into another building as an exterior discharge.

Example:
A story has three exit stairs, two of which discharge directly to the exterior. Over time two adjacent buildings are built with connections to the original building. The buildings are separated by 2-hour fire barriers such that the connections are horizontal exits in accordance with Section 7.2.4. Thus, five exits are provided to serve the story. Since the use of two horizontal exits (out of a total of five exits) is less than the 2/3 requirement of 18/19.2.2.5.2 the story would comply. However, only two of these five exits meet the conventional definition of exits that terminate directly at a public way or at an exterior discharge. The resulting number of exits that discharge directly to the exterior is less than 50% as required by 7.7.2.

The result is that use of these two type of exits (exit stairs and horizontal exits to adjacent buildings) in accordance with their requirements will result in a conflicting situation unless the horizontal exits into an adjacent building are considered to be exterior exit discharge.

QUESTION:

Will the use of a horizontal exit into an adjacent building be considered as an exterior exit discharge (meeting the requirements of 7.7.2) since the occupant who uses this exit will have exited their building of origin? Will the use of an exit stairs discharging into an adjacent building be considered as an exterior exit discharge (meeting the requirements of 7.7.2) since the occupant who uses this exit will have exited their building of origin?
Item (A) of these sections requires that a suite have exit access to a corridor or to a horizontal exit. Where two or more exit access doors are required, one of the exit access doors is permitted by Item (C) to be to an exit stair, exit passageway, an exit door to the exterior, or to another suite.

The code does not address a condition where a suite is provided with access to a door in a smoke barrier as one of the two required egress doors from the suite. Given that the occupants of the suite egressing into adjoining smoke compartment will have access to an exit within that smoke compartment (or to another smoke compartment), the condition appears to provide the same or higher level of protection for the suite occupants as providing exit access into a corridor leading to an exit. A smoke barrier will typically have a fire-resistance rating whereas the corridor wall is non-rated. The egress directly into an adjoining smoke compartment is also consistent with the horizontal evacuation principle for health care facilities.

Thus, the arrangement of egress for a suite whereby the two, required exit access doors consist of an exit access door in a smoke barrier and an exit access door into an exit stair should be viewed as providing an acceptable level of life safety.

QUESTION:

Is it the intent of the code to permit an exit access door in a smoke barrier for compliance with the requirement for a suite to have exit access to a corridor or to a horizontal exit?
HITF Question For Jump Seats

HITF INTERPRETATION REQUEST

Date: June 3, 2015

Document/Edition to be interpreted: NFPA 101, 2015 Edition

Sections:
- 7.3.2.2, 10.3.2.1, 18/19.2.3.4(5), 20/21.2.3.2, 38/39.2.3.2

Subject: Self-retracting jump seats in corridors

General Background:

These questions concern self-retracting fold down seats (referred to as jump seats). For an example of typical jump seats, see photo below.

![Photo of Jump Seats](image)

For the purpose of these HITF questions, assume that the jump seats meet or exceed the following minimum characteristics:

The wood used in these jump seats has a Class C interior finish rating and the jump seat components meet the requirements for Class I when tested in accordance with NFPA 260, *Standard Methods of Tests and Classification System for Cigarette Ignition Resistance of Components of Upholstered Furniture*.

The seats are normally in the retracted position and project not more than 4-1/2 inches from the wall. An occupant must pull down a seat to use it. When the occupant leaves the seat, the seat...
HITF Question For Jump Seats

automatically returns to its normally retracted position at which time the seat projection into the means of egress complies with NFPA 101, 7.3.2.2 and does not interfere with the means of egress.

7.3.2 Measurement of Means of Egress.
7.3.2.1 The width of means of egress shall be measured in the clear at the narrowest point of the egress component under consideration, unless otherwise provided in 7.5.2.2 or 7.3.2.3.
7.3.2.2 Projections within the means of egress of not more than 4½ in. (114 mm) on each side shall be permitted at a height of 38 in. (965 mm) and below. In the case of stair and landing handrails forming part of a guard, in accordance with 7.2.2.4.5.3, such projections shall be permitted at a height of 42 in. (1065 mm) and below.
7.3.2.3 In health care and ambulatory health care occupancies, projections shall be permitted in corridors in accordance with Chapters 18 through 21.

Background for Healthcare Occupancies:

These jump seats are permitted to be installed in accordance with the furniture criteria of NFPA 101, 18/19.2.3.4(5). However, the requirements of NFPA 101, 18/19.2.3.4(5) (b), (c), (d), (e), and (g) appear to be overly restrictive with respect to these seats. Due to their fire characteristics, these seats would likely not be characterized as a hazardous area even if they were grouped together in an area greater than 50 square feet.
NFPA 101, 18/19.7.5.2(2) permits any type of furniture to be installed in a healthcare occupancy within a building that is protected throughout by an approved, supervised automatic sprinkler system.

19.7.5.2 Newly introduced upholstered furniture within healthcare occupancies shall comply with one of the following provisions, unless otherwise provided in 19.7.5.3:

(1) The furniture shall meet the criteria specified in 10.3.2.1 and 10.3.3.

(2) The furniture shall be in a building protected throughout by an approved, supervised automatic sprinkler system in accordance with 9.7.1.1(1).

Question 1: In a healthcare occupancy within a building that is protected throughout by an approved, supervised automatic sprinkler system, can the jump seats described above be installed on one side of a corridor of any permitted width and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2 and therefore not have to meet the requirements of NFPA 101, 18/19.2.3.4(5)?

If Question 1 is Yes:

Question 1a: In a healthcare occupancy within a building that is protected throughout by an approved, supervised automatic sprinkler system, can the jump seats described above be installed on both sides of a corridor of any permitted width and be considered a projection of not more than 4-1/2 inches in
HITF Question For Jump Seats

accordance with NFPA 101, 7.3.2.2 and therefore not have to meet the requirements of NFPA 101, 18/19.2.3.4(5)?

If Question 1 is No:

Question 2: In a healthcare occupancy within a building that is protected throughout by an approved, supervised automatic sprinkler system, can the jump seats described above be installed on one side of a minimum 6 foot wide corridor and be considered a projection less of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2 and therefore not have to meet the requirements of NFPA 101, 18/19.2.3.4(5)?

If Question 2 is Yes:

Question 2a: In a healthcare occupancy within a building that is protected throughout by an approved, supervised automatic sprinkler system, can the jump seats described above be installed on both sides of a minimum 6 foot wide corridor and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2 and therefore not have to meet the requirements of NFPA 101, 18/19.2.3.4(5)?

If Question 2 is No:

Question 3: In a healthcare occupancy within a building that is protected throughout by an approved, supervised automatic sprinkler system, can the jump seats described above be installed on one side of a minimum 6 foot wide corridor and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2 and therefore not have to meet the requirements of NFPA 101, 18/19.2.3.4(5)?

If Question 3 is Yes:

Question 3a: In a healthcare occupancy within a building that is protected throughout by an approved, supervised automatic sprinkler system, can the jump seats described above be installed on both sides of a minimum 8 foot wide corridor and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2 and therefore not have to meet the requirements of NFPA 101, 18/19.2.3.4(5)?

============ =============== ============

Background for Ambulatory Healthcare and Business Occupancies:

In accordance with NFPA 101, 20/21/38/39.3.6, there are no requirements to separate use spaces from the corridors in ambulatory healthcare and business occupancies within buildings that are protected throughout by an approved, supervised automatic sprinkler system unless those use spaces are hazardous areas requiring protection in accordance with NFPA 101, 20/21/38/39.3.2. Due to their fire characteristics, these seats would likely not be characterized as a hazardous area even if they were grouped together.
In accordance with NFPA 101, 20/21.3.2.2, the minimum clear width of corridors is 44 inches and in accordance with NFPA 101, 38/39.3.2.2, the minimum clear width of corridors serving 50 persons or more is 44 inches.

20.2.3 Capacity of Means of Egress.

20.2.3.1 The capacity of any required means of egress shall be determined in accordance with Section 7.3.

20.2.3.2 The clear width of any corridor or passageway required for exit access shall be not less than 44 in. (1120 mm).

20.2.3.3 Where minimum corridor width is 6 ft (1830 mm), projections not more than 6 in. (150 mm) from the corridor wall, above the handrail height, shall be permitted for the installation of hand-rub dispensing units in accordance with 20.4.3.

20.2.3.4 Doors in the means of egress from diagnostic or treatment areas, such as x-ray, surgical, or physical therapy, shall provide a clear width of not less than 32 in. (810 mm).

38.2.3.2 The clear width of any corridor or passageway serving an occupant load of 50 or more shall be not less than 44 in. (1120 mm).

Within a building that is protected throughout by an approved, supervised automatic sprinkler system, there are no restrictions for furniture to be installed in business occupancies in accordance with NFPA 101, 38/39.7.5 and NFPA 101, 20/21.7.5.2 permits furniture to be installed within an ambulatory healthcare occupancy provided it meets NFPA 101, 10.3.2.1.

38.7.5 Upholstered Furniture and Mattresses. The provisions of 10.3.2 shall not apply to upholstered furniture and mattresses.

20.7.5.2 Newly introduced upholstered furniture shall comply with 10.3.2.1 and one of the following provisions:

(1) The furniture shall meet the criteria specified in 10.3.3.
(2) The furniture shall be in a building protected throughout by an approved, supervised automatic sprinkler system in accordance with 9.7.1.1(1).

The jump seats meet the requirements for Class I when tested in accordance with NFPA 260 and therefore meet NFPA 101, 10.3.2.1 as required by 20.7.5.2. Note: This requirement is more restrictive than the requirement for healthcare occupancies.

10.3.2.1 Upholstered Furniture. Newly introduced upholstered furniture, except as otherwise permitted by Chapters 11
through 43, shall be resistant to a cigarette ignition (i.e., smoldering) in accordance with one of the following:

(1) The components of the upholstered furniture shall meet the requirements for Class I when tested in accordance with NFPA 260, Standard Methods of Tests and Classification System for Cigarette Ignition Resistance of Components of Upholstered Furniture.

(2) Mocked-up composites of the upholstered furniture shall have a char length not exceeding 1½ in. (38 mm) when tested in accordance with NFPA 261, Standard Method of Test for Determining Resistance of Mock-Up Upholstered Furniture Material Assemblies to Ignition by Smoldering Cigarettes.

Question 4: Within a building that is protected throughout by an approved, supervised automatic sprinkler system, in an ambulatory healthcare occupancy or a business occupancy can the jump seats described above be installed on one side of a corridor of any permitted width and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2?

If Question 4 is Yes:

Question 4a: Within a building that is protected throughout by an approved, supervised automatic sprinkler system, in an ambulatory healthcare occupancy or a business occupancy can the jump seats described above be installed on both sides of a corridor of any permitted width and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2?

If Question 4 is No:

Question 5: Within a building that is protected throughout by an approved, supervised automatic sprinkler system, in an ambulatory healthcare occupancy or a business occupancy can the jump seats described above be installed on one side of a minimum 6 foot wide corridor and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2?

If Question 5 is Yes:

Question 5a: Within a building that is protected throughout by an approved, supervised automatic sprinkler system, in an ambulatory healthcare occupancy or a business occupancy can the jump seats described above be installed on both sides of a minimum 6 foot wide corridor and be considered a projection of not more than 4-1/2 inches in accordance with NFPA 101, 7.3.2.2?