Obstructions and ESFR Sprinklers – Phase 2

FINAL REPORT

PREPARED BY:
Garner A. Palenske, P.E., and William N. Fletcher, P.E.
Aon Fire Protection Engineering
San Diego, CA, USA
ESFR sprinklers are often installed in warehouses to avoid installation of in-rack sprinklers. Due to the unique discharge pattern of the ESFR sprinkler, obstructions located near the sprinkler can greatly affect the distribution of water and potentially sprinkler performance. The 2013 Edition of NFPA 13, Standard for the Installation of Sprinkler Systems, provides requirements which are intended to minimize the affect obstructions have on ESFR sprinkler performance.

Recent testing has been performed with obstructions that encroach upon the NFPA 13 obstruction limitations with successful results. The information from these tests, as well as information gathered from further testing, can be used as a technical basis for revisions to the NFPA 13 requirements.

The Fire Protection Research Foundation initiated this project to ultimately develop a tool that can be used to provide reliable analysis of the impact of obstructions on ESFR sprinkler performance. This tool and existing test data can be used as a basis for the NFPA 13 Technical Committees to develop new requirements and guidance for ESFR sprinklers.

The second phase of this project implemented the test plan developed in the first phase. The testing in Phase 2 focused on open web bar joist obstructions and identified remaining knowledge gaps for future phases.

The Fire Protection Research Foundation expresses gratitude to the report authors Garner A. Palenske, P.E., and William N. Fletcher, P.E., who are with Aon Fire Protection Engineering Corporation. The Foundation also expresses gratitude to Dan Steppan, the project director for Underwriters Laboratories (UL), who conducted the ADD and full scale testing at the UL facility. The Research Foundation appreciates the guidance provided by the Project Technical Panelists, the funding provided by the project sponsors, and all others that contributed to this research effort.

The content, opinions and conclusions contained in this report are solely those of the authors.
About the Fire Protection Research Foundation

The Fire Protection Research Foundation plans, manages, and communicates research on a broad range of fire safety issues in collaboration with scientists and laboratories around the world. The Foundation is an affiliate of NFPA.

About the National Fire Protection Association (NFPA)

Founded in 1896, NFPA is a global, nonprofit organization devoted to eliminating death, injury, property and economic loss due to fire, electrical and related hazards. The association delivers information and knowledge through more than 300 consensus codes and standards, research, training, education, outreach and advocacy; and by partnering with others who share an interest in furthering the NFPA mission.

All NFPA codes and standards can be viewed online for free.

NFPA's membership totals more than 65,000 individuals around the world.

Keywords: ESFR sprinklers, obstructions, NFPA 13, warehouse protection, bar joists, bridging members
PROJECT TECHNICAL PANEL

Roland Asp, NFSA
Jim Biggins, Global Risk Consultants Corporation
Andrew Blum, Exponent
Phil Brown, AFSA
Scott Futrell, Futrell Fire Consult and Design
John Huffstetler, Family Dollar (alternate to Kurt Smith)
John Kelly, Washington DC Fire & EMS Department
Russ Leavitt, Telgian Corporation
Kurt Smith, Family Dollar
Will Smith, Code Consultants Inc.
Matt Klaus, NFPA Staff Liaison

PROJECT SPONSORS

Property Insurance Research Group:
AIG
CNA Insurance
FM Global
Liberty Mutual Insurance
Tokio Marine Management
Travelers Insurance
XL Gaps
Zurich Insurance Group

Globe Fire Sprinkler Corporation
IKEA
P&G
Target
Tyco
Viking
Executive Summary

The objective of the Phase 2 research effort was to explore the threshold and tolerance of the early suppression fast response (ESFR) sprinklers to obstructions. This research utilized both intermediate scale testing and full-scale testing.

ESFR sprinklers were developed to meet the demands of high challenge storage fire scenarios and are a common choice to protect warehouses. Many aspects of ESFR sprinklers are unique compared to standard spray sprinklers. Paramount to ESFR sprinkler performance is the ability of the sprinkler to provide large amounts of water, in a specific discharge pattern, to the fire source in the incipient phase of fire development. Obstruction of the sprinkler discharge pattern could greatly affect the ability of the ESFR sprinkler to achieve fire suppression.

Actual delivered density (ADD) testing was utilized to identify the obstruction parameters for the full-scale testing. The variation in the performance of the various ESFR sprinkler models was established so that the results of the testing program would not be product specific. ADD testing was conducted, both with and without obstructions, to evaluate this issue.

Five large-scale fire tests were conducted to gather data to establish the acceptable threshold the ESFR sprinkler could be obstructed until the obstruction prevented the ESFR sprinkler from meeting its performance objectives. Each test was conducted using a nominal storage height of 30 feet and a ceiling height of 40 feet. The main storage array consisted of double-row rack storage and two single-row racks target arrays separated with four-foot aisles on both sides. Standard cartoned unexpanded Group A plastic test commodity was used in the testing. The ignition was located at the base of the storage array and horizontally offset approximately 2 feet from the obstructed sprinkler in the transverse flue space.

Due to a recent change to NFPA 13 regarding the use of K-14 ESFR sprinklers, the K-17 ESFR sprinkler was selected for this test series. Two full-scale tests were performed with bar joist obstructions and three tests were performed with a combination of bar joist and bridging member obstructions. Tables 1 and 2 outline the summary of these tests and their respective results.
### Table 1. Test Parameters

<table>
<thead>
<tr>
<th>Test</th>
<th>Storage Type</th>
<th>Commodity Type</th>
<th>Pallet Type</th>
<th>Nominal Storage Height (feet)</th>
<th>Ceiling Height (feet)</th>
<th>Nominal Clearance (feet)</th>
<th>Aisle Width (feet)</th>
<th>Ignition Location</th>
<th>Sprinkler Systems</th>
<th>Sprinkler Orientation</th>
<th>Deflector to Ceiling (inch)</th>
<th>Sprinkler Spacing, sprinkler by branchline,</th>
<th>Temperature Rating (°F)</th>
<th>Sprinkler Type</th>
<th>Nominal Sprinkler Discharge Coefficient K (gpm/psig $^{0.5}$)</th>
<th>Nominal Discharge Density (gpm/ft$^2$)</th>
<th>Nominal Discharge Pressure (psig)</th>
<th>Primary Obstruction</th>
<th>Secondary Obstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double Row Rack</td>
<td>Cartoned Unexpanded Group A Plastic (Plastic Cups in Corrugated Boxes on Hardwood Pallets)</td>
<td>2 way entry, stringer, hardwood</td>
<td>30</td>
<td>40</td>
<td>10</td>
<td>4</td>
<td>Under One Sprinkler (offset)</td>
<td>Ceiling Only (no in-rack sprinklers)</td>
<td>Pendent</td>
<td>14</td>
<td>10 feet by 10 feet</td>
<td>165</td>
<td>ESFR</td>
<td>16.8</td>
<td>1.21</td>
<td>52</td>
<td>36 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

- **Primary Obstruction**
  - Test 1: 36 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler
  - Test 2: 30 inch deep steel joist, edge of lower chord 3 inches from centerline of sprinkler
  - Test 3: 36 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler
  - Test 4: 36 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler
  - Test 5: 22 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler

- **Secondary Obstruction**
  - Test 1: None
  - Test 2: None
  - Test 3: 1-1/2 inch by 1-1/2 inch bridging member; 1-1/2 inch away from sprinkler
  - Test 4: 1-1/2 inch by 1-1/2 inch bridging member; Centered below sprinkler
  - Test 5: 1-1/2 inch by 1-1/2 inch bridging member; Centered below sprinkler
Table 2. Test Results

<table>
<thead>
<tr>
<th>Fire Test Number</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
<th>Test 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Date</td>
<td>April 14, 2015</td>
<td>April 16, 2015</td>
<td>April 20, 2015</td>
<td>April 22, 2015</td>
<td>April 24, 2015</td>
</tr>
<tr>
<td>Primary Obstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler</td>
<td>30 inch deep steel joist, edge of lower chord 3 inches from centerline of sprinkler</td>
<td>36 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler</td>
<td>36 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler</td>
<td>22 inch deep steel joist, edge of lower chord 6 inches from centerline of sprinkler</td>
<td></td>
</tr>
<tr>
<td>Secondary Obstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>1-1/2 inch by 1-1/2 inch bridging member; 1-1/2 inch away from sprinkler</td>
<td>1-1/2 inch by 1-1/2 inch bridging member; Centered below sprinkler</td>
<td>1-1/2 inch by 1-1/2 inch bridging member; Centered below sprinkler</td>
<td></td>
</tr>
<tr>
<td>Length of Test (minutes)</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>First Sprinkler Operation Time (min: sec)</td>
<td>0:56</td>
<td>1:42</td>
<td>1:19</td>
<td>1:11</td>
<td>1:01</td>
</tr>
<tr>
<td>Last Sprinkler Operation Time (min: sec)</td>
<td>6:08</td>
<td>7:37</td>
<td>1:19</td>
<td>1:11</td>
<td>6:42</td>
</tr>
<tr>
<td>Number of Operated Sprinklers</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>Peak Gas Temperature at Ceiling Above Ignition (°F)</td>
<td>294</td>
<td>406(^1)</td>
<td>238</td>
<td>250</td>
<td>1264</td>
</tr>
<tr>
<td>Maximum 1 minute Average Gas Temperature at Ceiling Above Ignition (°F)</td>
<td>129</td>
<td>256(^1)</td>
<td>114</td>
<td>115</td>
<td>979</td>
</tr>
<tr>
<td>Peak Steel Temperature at Ceiling Above Ignition (°F)</td>
<td>128</td>
<td>157(^1)</td>
<td>86</td>
<td>84</td>
<td>248</td>
</tr>
<tr>
<td>Maximum 1 minute Average Steel Temperature at Ceiling Above Ignition (°F)</td>
<td>126</td>
<td>157(^1)</td>
<td>85</td>
<td>83</td>
<td>246</td>
</tr>
<tr>
<td>Ignition Time of Target Array (min: sec)</td>
<td>3:36 (North Target)</td>
<td>3:24 (North Target)</td>
<td>N/A</td>
<td>N/A</td>
<td>2:26 (North Target)</td>
</tr>
<tr>
<td>Fire Travel to Extremities of Test Array</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes (North Target)</td>
</tr>
</tbody>
</table>

From the full-scale fire tests that were conducted, the following conclusions can be made:

- A K-17 ESFR sprinkler obstructed by a bar joist with a 6-inch offset from the closest edge of the obstruction and without a horizontal bridging member produced acceptable results.

- A K-17 ESFR sprinkler obstructed by a bar joist with a 3-inch offset from the closest edge of the obstruction and without a horizontal bridging member controlled the fire with 12 sprinklers activating.

- Tests 3 and 4 showed that regardless of horizontal offset a bridging member with a vertical separation of 19.5 inches on a 36-inch deep bar joist with a 6-inch offset provides acceptable results.

---

\(^1\) Due to a data system issue, data was taken at 20 second intervals during Test 2. The values reported are the peak and one minute maximum recorded values and likely not the true peak and time average maximum values.
• The failure of Test 5 can be attributed to the vertical proximity of the bridging member to the sprinkler. This test illustrated that a bridging member directly underneath the sprinkler with a vertical separation of 6 inches produced unacceptable results.

• The fire growth rates discussed in Report Section 8.3 show that the fire in Test 2 was not comparable to the other four fires and should be repeated.

The following additional testing is recommended:

• Testing of bridging members on different bar joist depths to increase the understanding of the vertical distance effects of the obstructions

• A K-14 ESFR sprinkler test with the worst-case successful obstruction arrangement found during the K-17 ESFR testing.

• ADD testing to evaluate various obstructions scenarios prior to full-scale testing.

• Evaluate the results of Test 2 by retesting the obstruction scenario at full-scale or by other means such as intermediate scale testing methods.

• Miscellaneous obstruction tests