Pennsylvania House Hotel Fire
Tyrone, Pennsylvania

Carl E. Peterson, Manager
NFPA Fire Record Department

Only two persons were able to escape from the Pennsylvania House Hotel when flames quickly spread through the building on January 16, 1972, leaving 12 others dead. The hotel building was typical of many old, small community hotels built to serve the travelers of 75 years ago — hotels that for the most part have been replaced by motels as transportation has changed through the years. The owners of older buildings have attempted to keep a hotel business going, with the result that many of the hotels have changed in character, serving as residential hotels for local citizens rather than lodging a transient population. In this case the building served as a residence for the owner and his family as well as a combination residential-transient hotel.

The building was originally constructed around 1898, but it had been modified and added to over the years. At the time of the fire the configuration was a rectangular first story 80 feet deep and 55 feet wide, with two U-shaped upper stories 45 feet deep by 55 feet wide. The U opened to the rear.

After the fire had been controlled and extinguished, the remains of the hotel contained the bodies of 12 fire victims. Heavy equipment had to be used to remove collapsed sections of the hotel before the search for the victims could begin. The damage to the exposure abutting the hotel to the north is clearly visible. The pitched roof on the building at the right of the photo was the second exposure to the north.
These views of the front and rear of the Pennsylvania House Hotel were taken around 1940. Despite interior renovations over the years, the exterior of the building remained relatively unchanged.

MARTIN STARR

The wood building (balloon frame construction) had a partial brick veneer facing on the front. The interior partitions and ceilings were wood lath and plaster. Some wood paneling had been added on the first story for interior finish. The floors were wood, covered in some areas with tile or linoleum.

The first story contained the hotel lobby, a bar, a barber shop, a large room used by the owner as a family room, a kitchen, a liquor storage room, and miscellaneous small storage areas. The second and third stories contained 25 guest rooms as well as storage rooms and separate bath and toilet facilities.

An open stairway that ran from the hotel lobby to the second-story corridor served as the main means of egress from the upper floors. There was another stairway that ran from the kitchen to the second-story corridor, but it was used only by the owner’s family. Each end of the second-story corridor had access to an exterior wood fire escape, which consisted of a wood platform across the first-story roof at the rear of the building and a flight of stairs to the ground.
An exterior wood stairway at each end of the third-story corridor ran to the roof of the rear of the first story. A single interior open stairway ran from the second-story corridor to the third-story corridor.

The width of the corridors in the upper stories and the width of the interior stairways are not known. Persons familiar with the building before it was destroyed by fire report the stairways and corridors were narrow. There was no automatic fire suppression or detection equipment in the hotel.

Buildings abutted the hotel on either side. On the south side was a four-story brick, wood-joisted building with mercantile occupancy on the first floor and offices and a Masonic hall in the upper stories. The exposed brick wall was blank except for a light shaft, which had windows with wired glass.

On the north side abutting the hotel was a two-story frame building that housed a dentist's office and other offices in the first story and apartments in the second story. There was no fire wall between the hotel and this building.

The electrical service for the hotel was probably installed in 1942 (a previous owner reported that the hotel had been rewired that year). Additional electric circuits were added over the years, increasing the load but not the size of the service. The electric meter, main disconnect switch, and fuse boxes were located in a small room between the bar and the hotel lobby. That room, approximately 4 feet wide and 20 feet long, was also used for storing tools and hotel maintenance supplies, including floor care materials, paint, turpentine, and other combustible liquids.

A few weeks before the fire the owner reportedly had had trouble with the electric wiring. The fuses in the main disconnect panel were blowing. An electrician was called to survey the job of rewiring the hotel, but when the electrician was ready to start, the hotel owner dismissed him, saying that he had resolved the problem. What he had reportedly done was to increase the size of the fuses in the main disconnect.

At approximately 2:30 am on January 16, 1972, the owner smelled wire insulation burning and attempted to determine the source of the burning. The bartender, who was still working, later said the owner searched throughout the first-story area—including the closet where the electrical panels were located—for the source of the burning odor. When he was unable to find any burning or to locate the source of the odor, he went to bed. The bartender left the building about 10 minutes later. He was the last known person to leave the building that night.

At 5:25 am on January 16, a man living in an apartment down the street but on the same side as the hotel looked out his window to see, reflected in the windows of buildings across the street, flames coming from the hotel. While he went to investigate he asked his wife to call the Fire Department.

Arriving fire fighters found the fire already pushing out the front windows in the first story and breaking through the roof. The severity of the fire prevented any attempt to enter the building. One resident living in a room in the third story awoke when he thought he heard someone knocking on his door. Opening the door, he found the corridor full of hot smoke, which he reported as black and greasy. Unable to enter the corridor, he closed his door again. As his room was at the rear of the building, he jumped to the roof over the rear of the first story and used the fire escape to reach the ground. Another resident, who lived in a room at the rear of the second story, also awoke to find the corridor full of smoke; he went out his window to the first-story roof and down the fire escape. These were the only two persons to escape from the building.

With the hotel fully involved with fire and the exposure to the north rapidly becoming involved, the Tyrone Fire Department immediately set up master-stream devices to cut off fire spread. At the time the temperature was 10°F below zero and the wind was blowing 30 mph. Two other fire departments were dispatched to assist at the fire, as were ambulances from the entire area.

The fire took several hours to control and extinguish. The hotel was completely destroyed, having collapsed onto the first floor. The roof was burned off the two-story exposure (the north side of the hotel), and the remainder of that building received severe damage. The
next building to the north, also a two-story frame building, which abutted the first exposure, was also severely damaged. The four-story building abutting to the south received damage from heat, smoke, and water more than direct fire damage. The property loss was estimated at $60,000 to the hotel and $74,000 to the exposures. Thirty-one fire fighters suffered injuries.

But the real loss in this fire was the loss of 12 lives. The owner lived in the hotel with his wife and five children, who ranged in age from one year to 13 years old. All seven died in the fire. The family all occupied rooms on the second floor at the front of the hotel. Besides the owner and his family, five registered guests died, three of them in rooms in the third story and two in rooms in the second story.

Although the complete destruction of the building made it difficult to reconstruct all the events, the location of many of the bodies indicated the victims died before they could leave their rooms. The body of one of the owner's daughters was found in a location that indicated she had been trying to get down the corridor to the rear fire escape; she had almost reached that point.

The origin of the fire was determined to be in the closet between the bar and the hotel lobby. It appears logical that the overloaded electrical service was responsible for the start of the fire. The fact that the main disconnect fuses were blowing indicates that the entire electrical requirement for the hotel exceeded the service capacity. The open stairways and nonfirestopped walls together with lack of any fire detection system allowed the fire to spread extensively before discovery. In all too many cases unconcern for basic fire protection exists; and such unconcern will result in a continuation of such occurrences in this type of building.

The Case for Evacuating High-Rise Buildings (continued from page 26)

area more endangered receives no help at all. And who is going to do the selecting? Again, the only qualified person would be the fire chief, and then only after he had determined the conditions in all areas — probably too late to help most of the people who needed help. “Safe areas” are a fine idea, but what is going to keep them safe? We have safe areas now, provided by fire doors that are blocked open, party walls that are breached, sprinklers that are shut off. If people won’t use stair towers and smokeproof towers now, how are they to be forced to use “safe areas” in the future? And how are they going to be kept there? Remember the second basic point, that people are going to want to get out, and will try to get out, of a burning building. So, while these things are recommended, they are not by themselves the answer.

“None of the articles advocates use of elevator systems for mass evacuation.” This may be true, but the fact is that elevators are used for mass evacuations. In nearly every article dealing with fire in a high-rise building, the elevators are used by part, and probably by the majority, of those who evacuate, as long as they are still in operation. Unfortunately I know of no studies that show the numbers or percentages of people by escape routes; but I am sure that the majority escape by way of the elevator, where such means is available. “Fatal Hotel Fire, New Orleans,” mentions that one of the guards who discovered the fire evacuated two carloads of people from that floor before he had to leave (the nearest usable staircase was 135 feet away). The article contains no mention of how many more from that floor used the elevator, or if any used the stairs. Remember the third basic point, that people are going to use their normal exit first. So, while no one advocates use of elevators for mass evacuation, elevator evacuation is a fact and should be recognized as a fact. There is nothing that can be done to prevent at least the attempt to use the elevators.

The last sentence states: “Elevators are not designed as a safe means of evacuation.” True, they are not; but why aren’t they? It is a fact they are used for evacuation. It is a fact they are used by the people who should know them best for what they are, by the people who suggest that we reserve one for them, by the people who get into just as much trouble with them as the unwitting stranger — fire fighters themselves. It is a fact elevators are the prime means of moving people from floor to floor in high-rise buildings — often the only means normally available. Isn’t it time we made them safe? If we can spend millions of dollars building the buildings and getting people up there, is it asking too much to get them down again safely? If stair towers can be made smokeproof, why can’t elevator shafts? Or at least just the cars?

I feel it is a necessity that elevators receive the attention due them; that it be recognized that they are what they are, that they do what they do, and that they are going to be used for what they do even under fire situations. The fire protection people must recognize this fact, and act accordingly. Like automobiles, elevators are here to stay, even though they can be dangerous. The Government is finally forcing the automobile people to develop safe automobiles. Will the same be necessary for the elevator people?