A leading engineering & scientific consulting firm dedicated to helping our clients solve their technical problems.
Suppressing Lithium-ion Electric Drive Vehicle Battery Fires with Water

R. Thomas Long, Jr., P.E., CFEI
Andrew F. Blum, P.E., CFEI
March 5, 2015
Introduction

- FPRF research project:
 - NFPA
 - DOE/INL/DOT/NHTSA
 - AAM/OEMs
 - SAE

- Project Goal:
 - Collect data to supplement current comprehensive training program for emergency responders to prepare them for their role in safely handling incidents involving electric vehicles (EVs)
Introduction
Introduction

How large is the hazard zone?
Introduction

How large is the hazard zone?

Should the battery be allowed to burn?
Introduction

How large is the hazard zone?

Should the battery be allowed to burn?

Are there projectile hazards?
Introduction

How large is the hazard zone?

Should the battery be allowed to burn?

Are there projectile hazards?

How long do we suppress to control and then extinguish the fire?
Introduction

How large is the hazard zone?

Should the battery be allowed to burn?

What about electrical shock hazards?

Are there projectile hazards?

How long do we suppress to control and then extinguish the fire?
Introduction

How large is the hazard zone?

Should the battery be allowed to burn?

Are there projectile hazards?

Is current PPE appropriate?

What about electrical shock hazards?

How long do we suppress to control and then extinguish the fire?
Introduction

How large is the hazard zone?

Should the battery be allowed to burn?

Are there projectile hazards?

How effective is water as a suppressant?

How long do we suppress to control and then extinguish the fire?

Is current PPE appropriate?

What about electrical shock hazards?
How effective is water as a suppressant?
Test Plan Overview:

- Location: MFRI
- Number of Tests: 6
- Battery Types Tested: 2
- Data Collected:
 - Suppression time/water volume
 - FF tactics and observations
 - Electrical measurements
 - Water runoff sampling
 - Internal battery temperatures and cell voltages
 - Temperatures and heat fluxes at various locations
 - Photography, thermal imaging, HD videos
- Suppression: Fire department hand line
Batteries

- Three batteries generously donated from automotive manufacturer “A”
- Three batteries generously donated from automotive manufacturer “B”
Battery A

- 4.4 kWh battery
- Plug-in hybrid electric vehicle (PHEV)
- Installed under the rear cargo compartment of the vehicle.
- Enclosed in a metal case
- Li-ion battery cells
Battery A

![Image of Battery A](image)

HV Battery Assembly

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery assembly voltage</td>
<td>346 V</td>
</tr>
<tr>
<td>Number of Li-ion battery cells in the battery</td>
<td>288 cells</td>
</tr>
<tr>
<td>Li-ion battery cell voltage</td>
<td>3.6 V</td>
</tr>
<tr>
<td>Li-ion battery cell dimensions</td>
<td>4.42 x 4.35 x 0.56 in.</td>
</tr>
<tr>
<td></td>
<td>(112.2 x 110.6 x 14.1 mm)</td>
</tr>
<tr>
<td>Li-ion cell weight</td>
<td>0.54 lbs (245 g)</td>
</tr>
<tr>
<td>Li-ion battery assembly dimensions</td>
<td>32.4 x 38.1 x 14.9 in.</td>
</tr>
<tr>
<td></td>
<td>(822.4 x 967.8 x 378.4 mm)</td>
</tr>
<tr>
<td>Li-ion battery assembly weight</td>
<td>333 lbs (151.1 kg)</td>
</tr>
</tbody>
</table>
Battery A
Battery B

- 16 kWh battery
- Extended range electric vehicle (EREV).
- T-shaped battery spans nearly the length of the vehicle
- Mounted underneath the vehicle floor pan that separates the battery assembly from the passenger compartment.
- Li-ion battery cells
Battery B

<table>
<thead>
<tr>
<th>Type:</th>
<th>rechargeable energy storage system comprising multiple linked modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size/case:</td>
<td>5.5-foot-long T-shaped; glass-filled polyester structural composite with aluminum thermal radiation shield and steel</td>
</tr>
<tr>
<td>Mass (lb / kg):</td>
<td>435 / 198.1</td>
</tr>
<tr>
<td>Battery chemistry:</td>
<td>lithium-ion</td>
</tr>
<tr>
<td>Thermal system:</td>
<td>liquid active thermal control</td>
</tr>
<tr>
<td>Cells:</td>
<td>288 prismatic</td>
</tr>
<tr>
<td>Combined electric/extended driving range:</td>
<td>Up to 350 miles</td>
</tr>
<tr>
<td>Warranty:</td>
<td>eight years / 100,000 miles</td>
</tr>
<tr>
<td>Energy:</td>
<td>16-kWh</td>
</tr>
</tbody>
</table>
Battery B
MFRI: Suppression Testing

- 3 tests conducted each for Batteries A & B
 - 2 tests of battery alone
 - 1 test with interior finishes
VFT

- Designed by Exponent in conjunction with Tactical Incident Systems
 - Resembles modern EV
 - Opens in rear to allow for battery installation
 - Battery carriages roll each battery type into position
 - Allowed testing batteries in multiple locations
VFT
Fire Exposure: Burners and Burner Train

1. Manual shut off valve
2. Solenoid valve
3. Mass flow controller
4. Regulator assembly
Burner Arrangement

- Four burners
- All connected to burner train
- Produced 400 kW
- Positioned under battery
Firefighter Suppression Protocol

- 4 Firefighters
 - 2 on hose line, 2 support
- Water flow = 125 gpm
- 1.75 inch line
- ~75 psi city water supply
A Series
A Series
A Series
A Series (1 min - Ignition)

Battery Only

Battery & Interior
A Series (2 min)

Battery Only

Battery & Interior
A Series (4 min)

Battery Only

Battery & Interior
A Series (6 min)

Battery Only

Battery & Interior
A Series (8 min – Burners Off)

Battery Only

Battery & Interior
A Series (9 min – Start Suppression)

Battery Only

Battery & Interior
A Series (12 min)

Battery Only

Battery & Interior
A Series (15 min)

Battery Only

Battery & Interior
A Series (25 min)

Battery Only

Battery & Interior
A Series (30 min)

Battery Only

Battery & Interior
A Series (60 min)

Battery Only

Battery & Interior
Test A3
A Series Results Summary

- **Summary of Water Flow Calculations**

<table>
<thead>
<tr>
<th>Test</th>
<th>Suppression Time (min)</th>
<th>Total Water Flow (gal)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2.20</td>
<td>275</td>
<td>Battery Only</td>
</tr>
<tr>
<td>A2</td>
<td>3.53</td>
<td>442</td>
<td>Battery Only</td>
</tr>
<tr>
<td>A3</td>
<td>9.77</td>
<td>1060</td>
<td>Battery + Interior Components</td>
</tr>
</tbody>
</table>
A Series Results Summary

- **Observations summary:**
 - No projectiles
 - Popping heard/Arcing observed
 - Off-gassing preceded re-ignition events
 - Re-ignition 22 hours after test
 - Water flows increased over traditional ICE
B Series
B Series
B Series (1 min - Ignition)

Battery Only

Battery & Interior
B Series (2 min)

Battery Only

Battery & Interior
B Series (4 min)

Battery Only Battery & Interior
B Series (6 min)

Battery Only

Battery & Interior
B Series (8 min)

Battery Only

Battery & Interior
B Series (10 min)

Battery Only

Battery & Interior
B Series (12 min)

Battery Only

Battery & Interior
B Series (15 min)

Battery Only

Battery & Interior
B Series (21 min – Burners Off)

Battery Only

Battery & Interior
B Series (22 min – Suppression Starts)

Battery Only

Battery & Interior
B Series (30 min)

Battery Only

Battery & Interior
B Series (45 min)

Battery Only

Battery & Interior
B Series (60 min)

Battery Only

Battery & Interior
MFRI: B Series Results Summary

Summary of Water Flow Calculations

<table>
<thead>
<tr>
<th>Test</th>
<th>Suppression Time (min)</th>
<th>Total Water Flow (gal)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>14.03</td>
<td>1754</td>
<td>Battery Only</td>
</tr>
<tr>
<td>B2</td>
<td>21.37</td>
<td>2639</td>
<td>Battery Only</td>
</tr>
<tr>
<td>B3</td>
<td>9.32</td>
<td>1165</td>
<td>Battery + Interior Components</td>
</tr>
</tbody>
</table>
B Series Results Summary

- **Observations summary:**
 - No projectiles
 - Popping heard/Arcing observed
 - Off-gassing preceded re-ignition events
 - Water flows increased over traditional ICE
Results Summary

- **Summary of Water Flow Calculations for all Tests**

<table>
<thead>
<tr>
<th>Test</th>
<th>Suppression Time (min)</th>
<th>Total Water Flow (gal)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2.20</td>
<td>275</td>
<td>Battery Only</td>
</tr>
<tr>
<td>A2</td>
<td>3.53</td>
<td>442</td>
<td>Battery Only</td>
</tr>
<tr>
<td>A3</td>
<td>9.77</td>
<td>1060</td>
<td>Battery + Interior Components</td>
</tr>
<tr>
<td>B1</td>
<td>14.03</td>
<td>1754</td>
<td>Battery Only</td>
</tr>
<tr>
<td>B2</td>
<td>21.37</td>
<td>2639</td>
<td>Battery Only</td>
</tr>
<tr>
<td>B3</td>
<td>9.32</td>
<td>1165</td>
<td>Battery + Interior Components</td>
</tr>
</tbody>
</table>
“Unable to extinguish the fire - concentrated efforts on cooling the metal”

“There was tremendous heat”

“Consider 2 hose lines + backup: 1 for front and 1 for the rear to prevent chasing the fire”

“Floorboard (i.e. floor pan) makes fire harder to extinguish”
“These fires were worse than a conventional vehicle fire – harder to extinguish”

“EV fire behaves differently from traditional fire”
Key Findings

- Tests with EDV battery and interior finishes/upholstery was more intense than battery alone tests.
- Water alone (no additives) able to suppress the battery fires.
- Total water volumes for extinguishment varied widely throughout the tests.
- As the battery size increased and/or when the battery was less accessible, there was a significant increase in the total volume of water to extinguish the fire.
Key Findings

- Times for extinguishment ranged from 6 to 49 minutes
 - Does not include re-ignition - in one test, 22 hours later.
- In two fires the associated time to suppress the fire was greater than what was available from a single SCBA cylinder.
- Suppression efforts could last for one hour or more.
- Factors, including the size, position within vehicle, and access to battery will significantly influence the total time necessary for suppression.
Recommendations and Future Work

- Full-scale fire suppression testing of actual consumer EDVs
 - Collision vs. non-collision scenarios
 - Cell formats different than this series (i.e. 18650s)
 - New firefighter tactics (i.e. constant water application and two hose line team)
- Free burn full-scale EDV fires to compare and contrast the advantages and disadvantages of letting EDV fires burn out rather than suppressing.
- Evaluation of novel or alternate nozzle designs that may allow direct application of water to EDV batteries located below the vehicle underbody assembly.
- Evaluation of water additives/cooling agents/chemical suppressants
Acknowledgements

- Our thanks to:
 - Kathleen Almand, Executive Director, FPRF
 - Casey Grant, Research Director, FPRF
 - Marty LePore and the staff of MFRI
 - Karen Carpenter and the team at SwRI
 - AAM/SAE/DOE/DOT/NHTSA/INL
 - Exponent team

- Special thanks to the automotive manufacturers who generously donated batteries for testing
Questions?

R. Thomas Long, Jr., P.E., CFEI
Thermal Sciences, Fire Protection
Exponent, Inc.
301-291-2501
longrt@exponent.com