Carbon Monoxide Diffusion through Walls:
A Critical Review of Literature and Incidents

Izabella M. Vermesi
Francesco Restuccia
Carlos Walker-Ravena
Guillermo Rein
Department of Mechanical Engineering
Imperial College London

Richard Roberts (guest speaker)
Honeywell Inc.

03.03.2015
Orlando, FL
What is carbon monoxide (CO)?

- Tasteless, odorless, colorless, HIGHLY TOXIC gas
- Forms when there is not enough oxygen to produce carbon dioxide CO₂ (e.g. stoves, internal combustion engines operating inside enclose spaces)
- Combines with hemoglobin and takes the place that is normally reserved for carrying oxygen
- Causes headaches, nausea, loss of consciousness, death
Reported incidents of CO transport

- 4 incidents where CO travelled from restaurant kitchens into adjacent apartments
 - Ovens and grills from the restaurants left smoldering overnight with ventilation off, produced CO that travelled into the apartments above the restaurants
 - No communicating opening between the restaurants and apartments
- 1 incident in hotel where CO buildup formed in an exhaust shaft because of the natural gas heater of a swimming pool;
 - CO travelled through the walls into an adjacent room with no communicating opening to the shaft
 - 2 employees were affected by poisoning
Reported incidents of CO transport

- 4 incidents where CO travelled from restaurant kitchens into adjacent apartments
 - Ovens and grills from the restaurants left smoldering overnight with ventilation off, produced CO that travelled into the apartments above the restaurants
 - No communicating opening between the restaurants and apartments
- 1 incident in hotel where CO buildup formed in an exhaust shaft because of the natural gas heater of a swimming pool;
 - CO travelled through the walls into an adjacent room with no communicating opening to the shaft
 - 2 employees were affected by poisoning

ATTRIBUTED TO DIFFUSION
What is diffusion?

DIFFUSION

= movement of a substance from an area of higher concentration to an area of lower concentration; results in mixing and mass transport, without requiring bulk flow

Diffusivity = material property dependent on the membrane and the gas that diffuses through it
Experiments from JAMA paper by Hampson et al. (2013)

- Plexiglass chamber over wooden frame
- CO infusion side
- 2.44m (96”)
- Control side
- Gypsum wallboard sample (various thickness)
- Junctions sealed with silicone caulk
- 0.61m (24’’)

Imperial College
London
Experiments from JAMA paper by Hampson et al. (2013)

- Plexiglass chamber over wooden frame
- CO infusion side
- Gypsum wallboard sample (various thickness)
- Junctions sealed with silicone caulk
- 2.44 m (96”)
- Control side
- 0.61 m (24”)
- BYPASSING
Experiments from JAMA paper by Hampson et al. (2013)

- Plexiglass chamber over wooden frame
- CO infusion side
- Gypsum wallboard sample (various thickness)
- Junctions sealed with silicone caulk
- 2.44m (96”)
- Control side
- 0.61m (24”)
- Bypassing
- Leaks
Experiments from JAMA paper by Hampson et al. (2013)

- **plexiglass chamber over wooden frame**
- CO infusion side
- 2.44m (96”)
- control side

- gypsum wallboard sample (various thickness)
- junctions sealed with silicone caulk
- 0.61m (24”)

Diagram:
- **LEAKS**
- **DIFFUSION THROUGH GYPSUM BOARD**
- BYPASSING
Experiments from JAMA paper by Hampson et al. (2013)
Experiments from JAMA paper by Hampson et al. (2013)
Experiments from JAMA paper by Hampson et al. (2013)
Experiments from JAMA paper by Hampson et al. (2013)
Mass transfer model

• 1D mass transfer model to verify the validity of experiments (length>>width)

• Diffusivity is measured on both sides of the tank using raw data from experiments of Hampson et al. (time, CO concentration)

\[D_1 = \frac{-VL}{2At} \ln \left(\frac{2c_1}{c_1^0} - 1 \right) \]

\(V = \) volume of tank [m\(^3\)], \(L = \) thickness of gypsum board [m],
\(A = \) area of gypsum board [m\(^2\)], \(t = \) time [s],
\(c_1^0 = \) initial CO concentration in the infusion chamber,
\(c_1 = \) concentration in infusion chamber at time \(t \)
Diffusivity values from mass transfer model and from literature
Diffusivity values from mass transfer model and from literature

Molar mass:
- C_8H_{18} : 114g/mol
- $\text{CH}_3\text{-COO-CH}_2\text{-CH}_3$: 88g/mol
- CO : 28g/mol
Molar mass:
- $\text{C}_8\text{H}_{18} = 114\text{g/mol}$
- $\text{CH}_3\text{-COO-CH}_2\text{-CH}_3 = 88\text{g/mol}$
- $\text{CO} = 28\text{g/mol}$

Ethyl acetate and octane: heavier than CO, CO diffuses more easily.
Diffusivity values from mass transfer model and from literature

- **CO**
 - (Cleary, 2014)

- **CH₃-COO-CH₂-CH₃**
 - (Blondeau et al, 2003)

- **C₈H₁₈**
 - (Blondeau et al, 2003)
Mass transfer model

![Graph showing mass transfer model results](image)

- calculated C1
- calculated C2
- measured C1
- measured C2

CO Concentration C_1 [ppm] vs. **Time [min]**

0 100 200 300 400 500 600
CO detection legislation

CO Legislation as of January 2014

- State Legislation Passed
- No Legislation Currently
CO detection legislation

CO Legislation as of January 2014

- State Legislation Passed
- No Legislation Currently
- Commercial Sleeping Occupancies
CO detection legislation

- Current model codes do not require CO detection if there are no “communicating” openings between a garage and occupied areas of the building:
 - 2012 edition of NFPA 101, 5000 and 1
 - 2015 edition of IFC, IBC and IRC
Conclusion

• Diffusion is confirmed to be the main transport of CO in Dr. Hampson’s experiments
• Rate of diffusion is surprisingly high
• 5 reported incidents of carbon monoxide intoxication which can be attributed to diffusion
• Experiments in literature that use various VOC that prove gases are able to migrate through the pores in the walls
• CO is a smaller molecule than these, it can diffuse at least as fast as those

Re-evaluation of the codes to see if the new findings warrant modifications
Acknowledgements: