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Abstract 

A scalable approach to very early warning fire detection systems is 
needed to address a diverse set of building environments. In this paper, 
an integrated model was developed to evaluate detector performance in 
the building environment. The approach evaluated the early fire 
detection performance of fixed and adaptive sensing aspirating smoke 
detectors. The validated modeling results showed adaptive sensing 
provides reduced false alarm rates in a number of scenarios. This 
approach can provide decision makers critical information on a 
detector’s performance in the context of the building environment. 
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Introduction 

High sensitivity smoke detection systems offer a very early warning to a 
fire hazard, typically by employing laser scattering measurements that 
provide sensitivity that is orders of magnitude greater than conventional 
detectors. With high sensitivity, the risk of false or nuisance alarms is 
inherently higher but such risk is typically reduced by proper design, 
installation and commissioning that incorporates an understanding of 
the specific installation environment. However, achieving such a tailored 
design, installation and commissioning process (within a quantitative 
framework) is not straightforward.  

In commercial buildings for example, while the number of small (less 
than 25,000 sqft) commercial buildings is substantial; by floor space, 
large (greater than 25,000 sqft) commercial buildings dominate with 
over 60 % of the build space [1]. Given that fire detection systems are 
deployed over a diverse set of building environments, a scalable 
approach to solutions is required.  



High sensitivity smoke detection design philosophies for commercial 
buildings have been developed heuristically, which if not certified by 
outside agencies, cannot assure desired performance. A key gap is the 
design knowledge to relate point detection performance to the overall 
smoke detection system performance for long term exposures to a 
dynamic building environment. There is growing interest for modelling 
and optimizing the performance of the building’s services at early 
stages of the construction project. This leads building engineers and 
owners to demand fire detection system performance tied to building 
operations and events. 

Closing this gap would enable designers and building owners to better 
understand the impact of sensitivity, latency and detector false alarm 
rates (FAR) in the context of a given building environment. This would 
enable more informed and consistent smoke detection system setting 
selection, including the threshold selection or the use of adaptive 
algorithms.  

Background  

Significant advances have been made recently on developing 
methodologies for predicting the performance of smoke detectors. In 
2008, the NFPA published a report on a validated engineering 
methodology to calculate and accurately predict the response time of 
spot-type and aspirated smoke detection systems exposed to specific 
cases of incipient fires and growing fires [2]. In addition, experiments 
conducted by Dinaburg and Gottuk (2012) demonstrated a method and 
apparatus for controlling smoke concentration levels to measure the 
drift and sensitivity of air sampling detectors (ASDs) during exposure to 
small levels of smoke [3]. Utilizing the 2012 results, James Milke, John 
Vythoulkas and Yun Jiang demonstrated a method to simulating 
response time and sensitivity impact on ASDs with respect to low 
ambient smoke levels [4].  

These findings provide a basis for understanding the detector model’s 
sensitivity in particular situations, such as after a pre-exposure to a 
background level of smoke. These studies are first steps towards 
addressing the need for methodologies that evaluate the impact of 
sensitivity, latency and detector FAR in the context of the building 
operation. 

While the sensitivity of a detector has been reliably predicted with 
methods as previously mentioned, modelling the probability of nuisance 
alarms during the detector’s lifetime involves the creation of more 
complex models of the building’s environment and its long term 
evolution. 

 

 



Objective  

To develop a methodology for calculating and visualizing the 
operational performance of aspirating smoke detectors during long term 
exposures to characteristic building environments.  

The key metrics of the classic ROC analysis are true positive rate (TPR) 
(which, in our case, characterizes the probability of the detector 
providing an early fire detection) and FAR. The joint representation of 
these metrics for a representative operation time will allow evaluating 
the reliability of a detector to detect smoke and minimize disruptions 
due to nuisance and false alarms.  

Model Development 

The model developed focuses on linking building operations to ASD 
operation by calculation of the receiver operator characteristics (ROC). 
This approach provides a graphical means to measuring a smoke 
detector performance [5]. Ultimately, such a model is intended to 
support the evaluation of detector performance over days and years 
(with environmental variability) and to determine the impact to alarm 
decisions made every second. Towards this goal, separate models 
were created to simulate building operations, smoke and nuisance 
events, detector performance and algorithms. The building operation, 
events and detector models were experimentally derived while the 
algorithm models were developed in C-code and run on Matlab and 
Visual Studio. 

The decision to experimentally derive versus simulate components of 
the model is based on the estimated accuracy gained from each 
approach. Historical data and known relationships for detectors in 
specific building environment are substantial and likely of higher fidelity 
than a standalone simulation. Given a specific building environment, 
there remains a vast range of potential nuisance or fire events which 
can vary significantly, with any one test not being representative of the 
potential range of scenarios. Simulation of such events can cover a 
broad array of conditions beyond what is possible with experiments 
alone. Finally, the algorithm performance is simulated using the actual 
algorithm embedded within the detector to provide true representations 
of the response.  

The integration of each model is achieved by providing a common input 
and output enabling the output from the building operation and events 
models to be inserted into each detector model. The output of the 
detector model then flows to the algorithm model. The final output, the 
alarm decision, is then tied back to the building operation and event 
inputs.  

For the purpose of illustrating the utility of such a model, a test case 
was chosen that could readily be validated with experimental data.   



The test case consisted of an elevated and sustained ambient pollution 
level created by a typical daily event in a given building, represented in 
our experiments by a paraffin candle lit twice per day and then snuffed. 
Candles were lit at 9 am and 6 pm and allowed to burn for 15 min 
before being extinguished.   

This experiment is intended to serve as an easily reproducible test case 
for the purpose of model validation. At the same time, it provides insight 
into a potential operational scenario a building owner may face: in a 
warehouse a diesel truck starts every morning in preparation for loading 
of refrigerated goods for delivery runs, altering the ambient pollution 
level but not representing an actionable fire or smoke event. Such a 
scenario can highlight the tradeoffs between fixed vs. adaptive 
sensitivity approaches with respect to detector true positive and FAR. 

The experimentally derived detector model incorporates the detector’s 
front end response (DUT 1’s detector readings with respect to smoke 
concentration shown in figure 1). ASD detectors typically have a large 
dynamic range with nonlinear responses. Each manufacturer’s detector 
performs a calculation of this response before calculating the sensitivity 
and alarm levels. This linearization is based in the transfer function of 
the circuit which needs to be experimentally validated in order to build a 
simulator. The following steps were followed in our case: 

1. In a smoke tunnel, create very slow ramps that increase the smoke 
density up to 0.2 % obs/m and get the particles density vs the laser 
head response (the obscuration in this case has to be estimated 
from the particles concentration). 

2. Create in a smoke tunnel slow ramps that increase the smoke 
density up to 2 % obs/m and get the obscuration vs the laser head 
response. 

3. Create in a smoke tunnel ramps that increase the smoke density up 
to 20 % obs/m and get the obscuration vs the laser head response. 

4. Smoldering fire testing in a fire room and get the obscuration vs the 
laser head response. 

By experimentally validating the transfer function of the detector circuit, 
Figure 1, the relationship between %LH and smoke concentration can 
be determined. Characterizing this transfer function for different 
detectors will allow using the same stimulus model to compare the 
behavior of different detector models. 

For the simulation of our device with adaptive algorithm, the source 
code of a Detector Under Test (DUT) 1 was used. The hardware 
dependencies to sensors are emulated in a model-view view model 
application that provides synthetic inputs. The use of visual studio 
allowed the algorithm code to be separated from the user interface and 
hardware. Using this approach, data is fed to the application and the 



firmware clock is sped up to reduce computation time. The algorithm 
model environment can simulate the decision making of both fixed and 
adaptive sensitivity algorithms. The obscuration, laser head value, and 
alarm threshold is then output in an Excel spread sheet for ROC 
analysis.  

After incorporating the model components described above, evaluation 
of an ASD during long term operation in building environments can be 
performed in terms of true positive and FAR. Note that in this paper we 
maintain the TPR naming used for classic ROC analysis. The TPR is 
defined as the ASD’s identification of the fire event in the incipient 
stages. The definition relates to the operation of high sensitivity smoke 
detectors for early warning.  

 

Figure 1. Experimentally derived relationship between the smoke 
concentration observed in the environment and the detector 
readings needed for the algorithms. 

A measure of a system’s ability to balance performance can be 
represented graphically with an ROC curve as shown in figure 2. In an 
ROC curve, a given detector performance is plotted as the probability of 
early detection or TPR as a function of the FAR (Specificity). Each point 
represents a sensitivity / specificity pair corresponding to the fire 
detection threshold settings selected in a particular detector. Given that 
typical building owner/operators expect high rates of detection with low 
FAR, the measure of performance is then evaluated as the minimum 
distance from any point in the ROC curve to the ideal goal (100 % fires 
detected early with 0 false alarms. Goal is represented as a ‘star’ in 
figure 2).  

The representation of the detector performance with an ROC curve 
enables understanding and communicating the impact that the alarm 
threshold has on performance. The choice in alarm threshold for fixed 
sensitivity systems provides a specific sensitivity / specificity 
performance. The overall detector performance is fixed. This means 



that earlier detection is a trade for higher FAR and potentially inferior 
performance given the false alarm tolerance.  In the current study, the 
DUT 1 and DUT 2 utilize fixed sensitivity to determine the presence of 
smoke. 

However, algorithms and hardware that provide adaptive decision 
making capability moves the detector performance closer to the goal 
(figure 2). This enables a detector to provide equivalent or better 
sensitivity at lower FAR. The adaptive sensing approach studied utilizes 
the fluctuations in the background particulate levels to adapt the alarm 
threshold. The DUT 1 studied in this paper has an additional setting that 
utilizes adaptive sensing to set the alarm threshold. Looking at the 
detector over an extended period of time, it can be inferred that the 
sensitivity of the detector to a fire remains constant, as it adapts to the 
fluctuations caused by the ambient conditions. This enables adaptive 
sensitivity to keep constant the ratio between true alarm events and 
probability of nuisance alarms during the detector life. The approach 
shifts the overall detector performance closer to the goal. 

 

Figure 2.  Illustration of an ROC analysis, a given detector 
performance is plotted as the probability of early detection or 
TPR as a function of the FAR. 

Experimental Validation of Model  

A key component of the model development was the validation of the 
detector simulation. Five detectors were used in the study: Two 
detectors for study and 3 reference detectors. Four DUT were 
connected to a smoke distribution box: The two detectors for study were 
a Kidde Senator 100 and a Vesda-VEU; the two reference detectors are 
a Kidde Senator 200 and a Vesda-VLP. An additional ASD was used to 
pump smoke into the distribution box as well as monitor the smoke level 
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input. Sampling air is transported via conventional 27 mm air sampling 
pipes. The tests have been executed at a stable environmental lab 
temperature of 22 ºC.  

The endcaps and holes of the detectors inlets were been calibrated in 
order that all  DUT aspirate the air at an average speed of 2 m/s to 
provide a transport time from fire room to detectors of < 30 seconds. 
The exhaust pipe returns the sampled air into the chamber as well to 
maintain the equilibrium of differential pressures. 

In order to ensure all detectors saw the same levels of smoke at the 
same time, measurements were conducted in a sealed chamber and 
connected to a smoke distribution box. Smoke was pumped from the 
fire room to the distribution box via an ASD Smoke detector to monitor 
the smoke levels being transferred to the distribution box. This detector 
provided the basis for the fire test ground truth. The two other reference 
detectors were placed inside the distribution box to monitor smoke 
distribution within the distribution box. The homogeneity of the smoke 
seen by the detectors was then validated using four EN54-20 standard 
cotton wick fires with permutation of detector positions between tests. 
The detector responses matched within 0.02 % obs/m and 5 seconds.  

 

 

Figure 3.  Picture of experimental test rig and schematic showing the 
test setup. 

Alarm conditions and laser head values were recorded for the Kidde 
Senator100 and Vesda-VEU at a rate of 0.003 Hz. The sample values 



correspond to the highest value obtained during this period to ensure 
we capture alarm conditions. The period of time was chosen based on 
the resolving power needed to describe the smoke conditions and 
capture performance of the detectors with respect to multiple, slowly 
evolving, smoke conditions. The sensitivity settings for the Vesda-VEU 
and the Kidde Senator100 were 0.4 %obs/m and Alarm Factor 2, 
respectively. These settings were selected to maintain a high degree of 
fidelity between the detector responses. 

The model validation test included a mix of nuisance sources and real 
smoke events over ten days to simulate a building environment. In the 
tested scenario, 24 hours of background data was collected. This was 
followed by a series of nuisance events, in this case elevated 
background particulate levels, generated by 2 candle burnings per day 
over 4 consecutive days. A period of 5 days of no nuisance events 
followed. Finally, the test concluded with a standard BS6266 single wire 
burn test, representing a real fire event.    

Performance Analysis using ROC 

ROC analysis was used to compare the performance of fixed and 
adaptive sensing algorithms for ASD. The comparison requires 
measurement of performance with respect to a ground truth. In the 
present case, we categorize the fire ground truth as the wire burn and 
the nuisance ground truth as the eight candles that were burned. The 
results from the fixed and adaptive sensitivity data sets were then 
analyzed to decide if the output of the detector was a true positive or a 
false alarm.  

The ROC analysis is displayed in the figure below. In the fixed 
sensitivity operation, the detectors are able to identify smoke quickly 
leading to a higher true detection rate (Fixed threshold at 0.3 %Obs/m), 
but at the cost of an increase in false alarms. At the least sensitive 
setting, obscuration at 2.3 %Obs/m, the detector did not false alarm but 
the sensitivity was reduced by 50 %. This observation from the 
modeling results matched with the DUT 2 (blue diamonds). In fixed 
sensitivity operation, equivalent performance was observed for both 
detectors.  

The adaptive algorithm performance (Red Squares) plotted in the figure 
below demonstrates how decision making improves performance. The 
improvement in performance predicted was then validated with DUT 1, 
which showed a reduced FAR at a TPR of 0.833. Note that the 
simulated results under predicted performance due to the conservative 
assumptions of the model. In the present case monitoring variance of 
background particulate levels provides the additional information 
necessary to improve the overall detector performance. The shift can be 
attributed to the detector monitoring the variance in the background 
particulate levels that occur over 24+ hours.  



A key requirement for a system level analysis is the availability of high 
quality, independent ground truth data. In the present case, the fire 
ground truth is defined as from the start of the wire burn test until 60 
minutes afterwards. This means that a true positive detection occurs 
when the detector alarms for part or all of the 60 minutes. An increase 
in interdependence between ground truth data and the DUTs will 
generate spuriously high performance of all detectors. Given that high 
quality ground truth data is often lacking, comparisons of relative 
performance along a ROC may be more informative and avoid inherent 
test bias that may result from selection of ground truth data. As an 
example, fixed sensitivity detectors operating at different thresholds 
reflects positions on the ROC curve (in this case a straight line) 
enabling selection of a true detection rate (at the expense of the false 
positive rate), but has no impact on the overall shape of the curve. This 
is the case for comparing fixed threshold operation and adaptive 
sensing. However, improvements in performance are shown as 
movement of data points and curves closer to the goal of a 100 % true 
detection rate and 0 % FAR. In the present case we see adaptive 
sensitivity enables settings that improve the detector performance by 
changing the shape of the ROC curve.  

 

Figure 4:  Results from the ROC analysis 

The model based approach combined with an ROC analysis 
demonstrates the ability to compare the overall performance of two 
fundamentally different ASD constructions. The results also show the 
improvement enabled by using adaptive algorithms. This finding is 
similar to previous work by Rose-Pehrsson on early warning fire 
systems for a specific naval application. In that case, early warning fire 
detection systems were experimentally evaluated with an ROC analysis 
to support detector down selection [6]. However, building applications 
can have a large number of operating conditions. This requires a model 
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based approach to analyze larger data sets required for building 
applications.  

Discussion (extensions to other data sets) 

The model approach under development and presented in this paper 
can be applied to any building context and better illuminate the tradeoffs 
between early detection and false alarm risk. The benefit from 
visualizing (via ROC analysis) performance and drawbacks for various 
use cases for different ASD settings will provide more informed and 
consistent design decisions. Fixed threshold systems offer a rather 
predictable linear relationship between loss of sensitivity and false 
alarm probability. However, adaptive systems show a ROC 
performance that is generally closer to optimal but depends on the 
temporal profile of air pollutants and the dynamics of the adaptive 
algorithms. This makes ROC analysis further desirable to plan the 
configuration of ASD systems with adaptive sensitivity.  

Any number of scenarios can be envisioned during ASD operation since 
the environment is dynamic. As a starting point, we confine the study to 
normal operating conditions. A system level study of performance is 
very dependent on the environmental data sets chosen for analysis. 
Achieving a balanced view of the detector requires evaluation over long 
operational periods in real environments substituted with a balance of 
simulated environments that span a diverse set of backgrounds. 

The use cases in the present study will include situations that provide a 
balanced view of the scenarios. These scenarios are based on 
historical data of normal building operations with ASD systems installed 
for three scenarios: 

1. Daily fluctuations – operations in buildings that contain situations 
with frequent exposure to large fluctuations in background 
particulate levels.  

2. Seasonal fluctuations – operation over the course of a year that 
exposes ASD to fluctuations in background particulate levels. 

3. Infrequent background fluctuations – clean room/telecom/data 
center operations that have been built with an ASD and are under 
normal operation.   

These scenarios are generated by hybrid datasets including synthetic 
data and/or data from real environments. Response time, sensitivity and 
FAR will be assessed in this context. An ROC analysis for fixed 
threshold and adaptive sensitivity will be analyzed for a given 
parameter. The overall detector performance will then extracted by 
evaluation of the ROC curve to distinguish between nuisance and fire 
cases. 

 



Summary 

The goal of this work was to extend the current capabilities of predictive 
tools for ASD smoke detectors. The methodology for predicting the 
system level performance of ASD in deployed environments was 
developed. The integrated computational and experimental 
methodology for predicting ASD performance in normal environments is 
key to understanding the balance between detection and false alarms. 
Looking forward, the validation of this methodology will help the 
community to understand ASD performance in normal environments 
and may help shed light on contentious issues like fixed threshold and 
adaptive sensitivity. 
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