INFORMATION FOR FIRST AND SECOND RESPONDERS

EMERGENCY RESPONSE GUIDE FOR VEHICLE

NOVA BUS LFSe+
BUS
ELECTRIC VEHICLE

Lithium-Ion Battery Packs 655V

Version
2022-September
CONTENTS

0. Rescue sheet ... Page 4

1. Identification / recognition Page 9

2. Immobilization / stabilization / lifting Page 11

3. Disable direct hazards / safety regulations Page 14

4. Access to the occupants Page 16

5. Stored energy / liquids / gases / solids Page 22

6. In case of fire Page 26

7. In case of submersion Page 29

8. Towing / transportation / storage Page 30

9. Important additional information Page 32

10. Explanation of pictograms used Page 33

<table>
<thead>
<tr>
<th>Identification #</th>
<th>Version #</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-00-149</td>
<td>2022 December 12</td>
<td>2</td>
</tr>
</tbody>
</table>
RESCUE SHEETS FOLLOW ON THE NEXT 4 PAGES
1. Identification / recognition

- No exhaust system on the high street side corner.
- Low voltage charging plug, rear streetside and curbside
- High voltage charging rails on the roof above the driver
- High voltage battery state of charge (SOC) and power flow display devices on the dashboard
- Orange high voltage cables in the motor compartment and inside roof fairings (in electric and HEV)
- High voltage components with warning labels

2. Immobilization / stabilization / lifting

Use only these lifting points.

If the vehicle has to be lifted, never put lifting equipment under the rear batteries

<table>
<thead>
<tr>
<th>Identification #</th>
<th>Version #</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-00-149</td>
<td>2022 December 12</td>
<td>5</td>
</tr>
</tbody>
</table>
3. Disable direct hazards / safety regulations

- The rated voltage on the LFSe+ vehicle is 655 VDC.
- Shutdown high voltage possible at two places
- Yellow wires with this tag can be cut to shutdown high voltage.

SWITCHING OFF THE IGNITION

1. Turn the master control switch to OFF.

SHUT DOWN HIGH VOLTAGE

Option 1 (non-destructive method)

1. Push the emergency stop button
2. Turn the 12/24V battery disconnect switch to OFF (if the streetside motor door is accessible)

Option 2 (destructive method)

Cut one of the yellow wires (images of the locations to cut high voltage interlock loop in ERG Section 3):

1. Inside streetside electronic steering compartment
2. Inside curbside motor access door
3. Both sides of the BTMS, on the roof.(p.23 of ERG)
4. Front of the roof, on the curbside.

4. Access to the occupants

- 1 emergency exit: roof hatch at rear
- 4 emergency exits: 2 push-out windows on each side
- Two door exits

5. Stored energy / liquids / gases / solids

<table>
<thead>
<tr>
<th>Li-Ion</th>
<th>☢️</th>
<th>☢️</th>
<th>☢️</th>
<th>☢️</th>
</tr>
</thead>
<tbody>
<tr>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
<td>☢️</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification #</th>
<th>Version #</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-00-149</td>
<td>2022 December 12</td>
<td>6</td>
</tr>
</tbody>
</table>
6. In case of fire

Lithium-ion batteries can self-ignite, and/or reignite even after a fire has been extinguished. Damaged batteries can vent toxic gas. Vehicles may be equipped with an optional automatic fire suppression system.

If coolant escapes from the battery cooling system, there is a thermal reaction risk in the high voltage batteries. Monitor the temperature (with a thermal imaging camera) of the high voltage battery. Wear appropriate protective equipment.

7. In case of water submersion

Damages related to a submerged vehicle may be difficult to evaluate. Use personal protective equipment (PPE). Avoid contact with high voltage cables and electric components. After the vehicle has been pulled out of the water and drained, follow section 3 instructions.

8. Towing / transportation / storage

- Park the vehicle at least 16 feet (5 meters) from buildings and other vehicles (quarantine area). Risk of self-ignition or reignition.
- Use thermal infrared camera to monitor the battery temperature.
- Tow the vehicle on a flatbed
EMERGENCY RESPONSE GUIDE FOLLOWS ON THE NEXT PAGES
1. Identification / recognition

1. No exhaust system on the high street side corner.
2. High voltage low power charging plug, rear streetside and curbside
3. High voltage high power charging rails on the roof above driver
4. High voltage battery state of charge (SOC) and power flow display devices on the dashboard
5. Orange high voltage cables in the motor compartment and inside roof fairings (in electric and HEV)
6. High voltage components with warning labels

ELECTRIC IDENTIFICATION

A certification label is installed in all Nova Bus vehicles.
The 8th digit of the 17-digits VIN specifies the vehicle powertrain type:

J = Diesel,
K = Alternate fuel (CNG),
L = HEV,
M = Electric
INFORMATION ON HIGH VOLTAGE ENERGY SOURCE

Lithium-Ion battery cell chemistry, 655V nominal pack voltage. Bus may be equipped with four or six battery packs, with each pack providing 94 kWh, yielding a total nominal energy capacity between 376 kWh and 564 kWh. The high voltage system layout is shown below.
2. Immobilization / stabilization / lifting

IMMOBILIZATION PROCEDURE:
1. Park the bus in a safe location.
2. Chock the wheels (if vehicle upright).
3. Set the parking brake, select neutral on the push-button drive selector and turn the master control switch to the off position.
4. Release the air pressure from the front door motors: move the door control switch, located on the operator’s left control panel, to the F position (one notch to the right of neutral). This action avoids automatic door closure.
JACKING PROCEDURE

If jacking is required, follow the procedure indicated here.

1. Position the bus on a hard, level, flat surface before jacking.

2. Set the parking brake and select neutral on the push-button drive selector and turn the master control switch to the off position.

3. The floor jack must be located properly to prevent the possibility of the jack sliding out from under the bus.

4. If the vehicle is too low to use the hoisting point, raise the vehicle from the front and place a jack stand under one of the jacking points. Then use one or more jacks under the forward lower radius rod connector clamps.

5. The designated support points are located under each jacking pad. (Front of the bus)

6. If it's impossible to follow step 3, the jack stand can be placed under the front axle.

7. If the vehicle is too low to use the hoisting point, raise the vehicle from the rear and place a jack stand under one of the jacking points. Then use one or more jacks under the forward lower radius rod connector clamps.

8. The designated support points are under each jacking pad. They are located along the underside of the vehicle, behind the rear wheels. (Rear of the bus)

9. If it's impossible to follow step 4, the jack stand can be placed under the rear axle.

WARNING

Never put lifting equipment under the rear batteries.
H: HOISTING (REFERS TO RAISING THE BUS USING EQUIPMENT SUCH AS KONI TOWER HOISTS UNDER THE WHEEL/TIRES OF THE BUS)

J: JACKING (REFERS TO LOCATIONS ON THE BUS & WHERE A FLOOR OR BOTTLE JACK IS USED TO RAISE THE BUS)

M: MANDATORY SUPPORT POINT FOR SAFETY STANDS

S: SUPPORT POINT FOR SAFETY STANDS

A: ADDITIONAL SUPPORT POINTS FOR SAFETY STANDS

Although it is recommended to follow internal, local, state/provincial and federal regulations when hoisting.

NOVA BUS advises using a minimum of four safety stands to support the vehicle.

Two stands should be placed behind the rear axle, and two at the front axle.
3. Disable direct hazards / safety regulations

Check the instrument panel for any of the symbols (1) appearing with a beep sound. If they appear, a thermal runaway is detected in the lithium-ion batteries.

SWITCHING OFF THE IGNITION

1. Turn the master control switch to the off position.

DEACTIVATING THE HIGH VOLTAGE SYSTEM

Option 1 (non-destructive method)

1. Push the emergency stop button.
2. If the streetside motor access door is accessible, turn the 12/24V battery disconnect switch to the off position

Option 2 (destructive method)

If the driver’s area and streetside motor access door are inaccessible.

Cut the yellow wire at one of the three locations:

1. Inside streetside electronic steering compartment
2. Inside curbside motor access door
3. Both sides of the BTMS, on the roof (p.23 of ERG)
4. Front of the roof, on the curbside

Cutting at any of the locations shown will disable the high voltage supply.

NOTE
IF THE BUS IS CHARGING

1. Open either the curbside or streetside motor access doors.
2. Press the black stop button (1) on the CSS backplate. The three lights (2) on the backplate will illuminate.
3. Wait for the three lights to extinguish, then disconnect the cable.
4. Access to the occupants

VEHICLE SHELL AND BODY STRUCTURE

The materials used for the vehicle shell and body structure are shown below, including details of high-strength steel zones.
PROHIBITED CUT ZONES

The no-cut zones are shown below. The no-cut zones include any portion of the orange high voltage cables, any of the four to 6 ESS high voltage battery packs, and any components contained in the rear motor compartment (including the low-power charging ports on either side of the vehicle). The prohibited cut zones are to be respected when the high voltage is active.
ADJUSTMENT MECHANISM(S): DRIVER’S SEAT

USSC operator’s seat controls

SEAT HEIGHT ADJUSTMENT

The height adjusting knob is located on the front left edge of the seat cushion. All air can be quickly released by pulling the knob out. Pushing the knob in restores air to the system. Rotating the knob raises or lowers the seat accordingly.

SEAT TILT ADJUSTMENT

The seat cushion angle can be adjusted 10 degrees; turn the tilt adjustment knobs located on the middle sides of the seat cushion.

SEAT BACK RECLINE

The seat back angle can be adjusted from 45 degrees forward to 125 degrees backward. Two seat recline knobs are located on both sides of the seat back where they meet the seat cushion.

LUMBAR SUPPORT

Located on the front edge of the seat are the air lumbar switches. Pushing the switches increases or decreases the amount of lumbar support.

FORE/AFT SLIDE

The entire seat can be adjusted by 11.8 inches front to back. Raising the slide handle, located at the seat front below the plastic bellows, releases the lock and allows the seat to move forward or backward. Optional: Press the red air slide release button located on the switch box to release the slides.
RECARO operators’ seat controls

Seat Cushion Rake Adjustment
The front part of the seat can be adjusted 15 degrees by pulling the handles up and moving the tight extension up and down to the desired angle.

Headrest Support
Height adjustment – pull up or push down until the desired height is obtained. Tilt adjustment – pull forward or push back until the desired angle is obtained.

Thigh Extension (Cushion Length Adjustment)
The front part of the seat cushion can be extended up to 2 in. (50 mm), by pulling the front of the thigh extension forward or backward to the desired length.

Manual Fore / Aft Adjustment
Pull the handle up to move the seat backward and forward.

Backfire Recline
For desired back angle, rotate hand wheel clockwise or counterclockwise.

Adjustable Shock
To adjust the shock, turn clockwise to soften the ride. Turn counterclockwise to stiffen the ride.

Air Lumber Adjustments
Push switch forward to inflate. Push with rearward to deflate.

Air Track Release
To release tracks, push button and shift body for desired position.

Seat Cushion Rake Adjustment

Pneumatic Air Suspension Switch
Push the switch up to raise suspension. Push switch down to lower suspension.
ADJUSTMENT MECHANISM(S): STEERING WHEEL

To adjust the angle:
1. Pull the knob up.
2. Place the steering wheel in the desired position.
3. Release the knob.

To adjust height:
1. Push the knob down.
2. Place the steering wheel in

VEHICLE KNEELING SYSTEM

Some conditions must be met before the access ramp can be deployed:
- The master control switch must be in the run or lights position.
- The transmission pushbutton selector is set to neutral.
- The Parking brake must be in the on position.

To adjust the height:
1. Before boarding or discharging passengers via the front door, activate (down position) the front kneeling switch (item 1 in figure to the right) to release air from the pneumatic front suspension. The front of the vehicle will lower between 4 and 5 inches (10 and 13 cm) to facilitate boarding. While the front is being lowered, an alarm sounds and a light flashes on the outside of the front door. The light continues to flash until the front of the vehicle is fully lowered. A tell-tale also lights up to indicate that the operation is in progress.

2. To raise the vehicle, set the kneeling switch in the up position. Once the vehicle reaches the minimum operating height, control of the brakes and accelerator is returned to the operator.
5. Stored energy / liquids / gases / solids

<table>
<thead>
<tr>
<th>COMPONENT TYPE</th>
<th>TYPE/ CHEMISTRY</th>
<th>NUMBER</th>
<th>VOLUME/ WEIGHT</th>
<th>MAX. OPERATING PRESSURE</th>
<th>SPECIFIC DANGER (SYMBOL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 High voltage propulsion batteries</td>
<td>Lithium-ion</td>
<td>4 or 6</td>
<td>1342 lbs (609 kg) (each)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 12/24V Batteries (house)</td>
<td>Lead-acid/ AGM</td>
<td>2</td>
<td>78 lbs (35 kg) (each)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Air system</td>
<td>Compressed Air</td>
<td>4 Tanks</td>
<td>8,000 cu. in. (0.13 cubic meters)</td>
<td>135 psi (961 kPa)</td>
<td></td>
</tr>
<tr>
<td>5 Fire suppression bottle (optional)</td>
<td>Type ABC Powder</td>
<td>2 Tanks</td>
<td>22 lbs (10 kg) of dry chemical agent</td>
<td>360 psi (2482 kPa)</td>
<td></td>
</tr>
<tr>
<td>6 Coolant (MCP)</td>
<td>Ethylene-glycol/H₂O</td>
<td>5 gal (19 L)</td>
<td>7.25 psi (50 kPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Coolant (ECP)</td>
<td>Ethylene-glycol/H₂O</td>
<td>5 gal (19 L)</td>
<td>7.25 psi (50 kPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Coolant (High voltage batteries)</td>
<td>Ethylene-glycol/H₂O</td>
<td>2 Tanks</td>
<td>0.2 g (736 ml) x 4 or 6</td>
<td>36 psi (250 kPa) overpressure</td>
<td></td>
</tr>
<tr>
<td>9 Cooling system</td>
<td>Ethylene-glycol/H₂O</td>
<td>15 gal (56.7 L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 A/C fluid</td>
<td>R407C</td>
<td>14 lbs (6.35 kg)</td>
<td>250 psi (1725 kPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Flammable fluids/ materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Diesel fuel (auxiliary heater)</td>
<td>Diesel</td>
<td>1 Tank</td>
<td>17.6 gal (67 L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Steering assist fluid</td>
<td>Castrol TranSynd</td>
<td>1 Tank</td>
<td>0.75-0.80 gal (2.85-3.01 L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Rear axle/front wheel bearing fluid</td>
<td>API GL-5/ SAE J2360</td>
<td>2 Tanks</td>
<td>4.6 gal (17.1 L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Interior materials</td>
<td></td>
<td></td>
<td>In accordance with DOT/FMVSS 302</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HIGH VOLTAGE BATTERY INFORMATION - GENERAL FIRST AID MEASURES AND ENVIRONMENTAL ASPECTS

Under normal conditions of use, the battery does not present any risk of exposure to its content. However, unforeseen circumstances (e.g., a vehicle collision) may cause damage to one or more battery cells with uncontrolled increases in temperature and pressure (thermal runaway), which can lead to several possible hazards, as described below:

Exposure to high voltage: 60V direct current (VDC) or 30V alternating current (VAC)

WARNING

Mitigate the risks with stranded energy in high voltage packs.

- Avoid contact with high voltage cabling and components. ALWAYS assume the high voltage system is energized.
- Avoid contact with a damaged high voltage battery, a significant shock hazard may exist.
- Never cut orange high voltage cabling or penetrate high voltage components with tools.
- High voltage system shutdown procedures in Section 3, disable direct hazards, are designed to disable the vehicle’s high voltage system, not to discharge the high voltage battery. The high voltage battery will remain energized.
- Even with the high voltage batteries completely discharged (State of Charge = 0), the system remains within the class B voltage definition and should, therefore, be disconnected as indicated in Section 2, immobilization.
- Sparks, smoke, bulging, or bubbling noises coming from the high voltage battery are signs of a potentially overheating battery, which could result in a delayed fire.
- Follow local medical protocols and First Aid SOPs for any burn, electrical, or other injuries.

EXPOSURE TO ELECTROLYTE MIXTURES:

- Wear appropriate PPE if exposure to electrolyte is expected. SCBA is highly recommended due to the possibility of severely irritating fumes.
- Any clothing or PPE that may have come into contact with electrolyte should be either decontaminated or discarded appropriately.
- If required, seek medical assistance.

INHALATION IN NON-FIRE SITUATIONS:

- If you detect leaking fluids, sparks, smoke, or bubbling noises coming from the high voltage battery, ventilate the vehicle by opening the windows to prevent the buildup of fumes.
- If electrolyte leaks and gets exposed to the air, electrolytic vapors may be released. Even in a non-fire situation, the electrolytic vapors may be toxic or at least severely irritating. If vapors are inhaled, immediately move to fresh air.
SAFETY MEASURES FOR BATTERY HANDLING:

- The battery assembly cover should never be breached or removed under any circumstances, including fire. Doing so might result in severe electrical burns, shocks, or electrocution.

HARMFUL AND/OR FLAMMABLE FUMES:

- Contents of high voltage batteries should be considered corrosive, toxic, and/or flammable
- If you detect unusual odors or experience eye, nose, throat, or skin irritation, use full PPE with SCBA.
- If you detect leaking fluids, sparks, smoke, or bubbling noises coming from the high voltage battery, ventilate the vehicle by opening doors and windows to prevent the buildup of fumes.
- Sparks, smoke, or bubbling noises coming from the high voltage battery are signs of a potentially overheating battery, which could result in a delayed fire.

SPILL/LEAK HAZARDS FROM HIGH VOLTAGE BATTERIES:

- High voltage li-Ion batteries are considered dry cell batteries, and if damaged or breached, electrolyte leakage should be minimal.
- The high voltage batteries of this vehicle are liquid cooled with coolant flowing to and from an external radiator unit on the roof. If the cooling circuit is damaged or disconnected from the batteries or if the battery housing is breached, coolant may leak. The coolant is a water/glycol/ethylene solution, similar to that of the conventional vehicle radiators and should not be confused with the battery electrolyte. Battery electrolyte is internal to the individual battery cells inside the battery pack.
- If damage is extensive, cross contamination with battery electrolyte is possible.
6. In case of fire

BATTERY FIRE SITUATIONS

- Establish a 20-foot radius safety zone around the vehicle.
- Lithium-ion batteries contain fuel and oxidizer. They do not require an oxygen source, therefore, water cannot remove the oxygen source. Water can, however, reduce temperatures when supplied in large amounts, and control spreading.
- Do not extinguish battery fires with small amounts of water. Establish an additional water source as battery fires can take up to 24 hours to burn out and several thousand gallons of water.
- Do not use ABC fire extinguishers to put out a lithium-ion battery fire.
- Standard firefighting practices can be applied to other portions of the vehicle to prevent the fire from spreading.
- Use a thermal imaging camera to ensure all heat sources are extinguished and prevent risk of reignition.
- In case of thermal runaway, the lithium-ion batteries can release hydrogen fluoride.
- In case of fire, breather valves on the high voltage batteries may emit large flames as a result of the thermal runaway.
STORING DAMAGED ESS HIGH VOLTAGE BATTERY PACKS

When a damaged ESS high voltage battery pack is placed in storage, it is placed in a quarantine area. The quarantine area must fulfill the following minimum requirements:

• The location of a quarantine area shall be chosen under the aspect to minimize collateral damage to any kind of structure within its vicinity in case of a fire or sudden ignition of stored materials. The quarantine area shall not be in the direct vicinity of office buildings, residential areas, etc. The distance should be of 15 meters (50 ft), all around the batteries container and 12 meters (40 ft) all around the good batteries storage trailer.

• The quarantine area shall be in an area where possible smoke and fume development cannot harm people or impede traffic nor harm the environment.

• The quarantine area shall not be within a water protection area.

• The quarantine area shall separate from the storage of other dangerous goods such as inflammable or chemical substances.

• The quarantine area shall be well ventilated.

• The quarantine area shall have enough space to store more than 1 ESS high voltage battery pack at a time with safe distance between the battery packs to avoid chain reactions in case of a fire. We recommend the storage of the batteries in a container located outside.

• The quarantine area shall provide proper equipment for long-term monitoring of damaged battery packs, such as an infrared camera.

• The quarantine area shall be protected from unauthorized access.

OTHER MATERIALS IN FIRE SITUATIONS

If other materials are involved, use class ABC fire extinguisher.

Lithium-ion batteries can self-ignite, and/or reignite even after a fire has been extinguished. Damaged batteries can vent toxic gas.

If coolant escapes from the battery cooling system, there is a risk of thermal reaction in the high voltage batteries.

Monitor the temperature (with a thermal imaging camera) of the high voltage battery.

Wear appropriate protective equipment.
OPTIONAL FIRE SUPPRESSION SYSTEM

1. Fogmaker
The Fogmaker saline water fire suppression system is a system that detects and suppresses fire in the engine compartment. A hydropneumatic detection tube ruptures and depressurizes. The loss of pressure will trigger the release valve and the suppression agent will instantly fill the hydraulic hoses, pipes, and nozzles. The pressurized suppressant is ejected from the nozzles, and it creates a dense fog of suppression agent.

Suppression agent
- Saline water mist

2. Kidde
The Kidde fire suppression system is located in the engine compartment. The fire sensor detects a fire in the compartment and a protection panel’s fire alarm and a delay engine stop indicators illuminate. An audio alarm sounds, and the HVAC shuts down immediately. After 15 seconds, the engine shuts down automatically and the fire extinguisher discharges by itself into the compartment. The engine shut down and the fire extinguisher activation can be delayed for an additional 15 seconds by depressing the protection panel’s engine stop indicator/switch. The driver can discharge the extinguisher immediately and shut down the HVAC and the engine with the manual activation switch. After activation, the system must be reset, and the extinguisher removed and replaced.

Suppression agents
- Purple K dry chemical
- ABC dry chemical
7. In case of water submersion

- The high voltage system is isolated from the chassis and is designed to pose no shock hazard from touching the vehicle body.
- The system is designed not to energize surrounding water and is equipped with short-circuit fault detectors designed to shut down the high voltage system in the event of a short.
- On a submerged vehicle, avoid contact with high voltage components, cabling, or service disconnects.
- Follow standard departmental practices and procedures for passenger access and vehicle removal from water and wear appropriate Personal Protective Equipment (PPE).

Follow Section 3, disable direct hazards / safety regulations once out of the water. Allow the water to drain. Wear appropriate protective equipment.
8. Towing / transportation / storage

- DO NOT TOW a vehicle that has been involved in an incident on its drive wheels.
- The electric motors can produce electricity when moving the vehicle with the rear drive tires on the ground. This remains a potential source of electric shock even when the high voltage system is disabled.
- The vehicle can be transported on a flat bed, preventing any wheel rotation during transport.
- Park the fully electric vehicle involved in an accident in a suitable place, maintaining a safe distance from other vehicles, buildings, and combustible objects. The distance should be of 15 meters (50 ft), all around what was involved in an incident until the recommissioning of the vehicle is completed.
- If the ESS high voltage batteries are damaged, there is a risk of delayed thermal or chemical reaction.
- There is a risk of delayed fire, especially after fire suppression has been deployed if the pack has not fully combusted.
- Observe the vehicle for a minimum period of 48 hours using a thermal infrared camera or other method of your choice that will allow a quick and proper reaction in case of a thermal runaway.
MAXIMUM LOADING DURING LIFTING AND RECOVERY:

This information specifies the loading that can be applied when using a towing hook, towing hitch cross-member, axles, and torque stay anchorages.

Single towing hook: Do not load the hook more than the vehicle gross weight.

Double towing hooks: Do not load each hook more than half the vehicle gross weight.

Towing hitch, towing Hitch Cross-Member: Max. 25.5 inches (648 mm) from the center of member

MINIMUM JACK REQUIREMENTS

<table>
<thead>
<tr>
<th>Weight Capacity</th>
<th>10 tonnes (10,000 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of jack head</td>
<td>2 in. (51 mm)</td>
</tr>
</tbody>
</table>

MINIMUM SUPPORT REQUIREMENTS

<table>
<thead>
<tr>
<th>Weight Capacity</th>
<th>10 tonnes (10,000 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of support head</td>
<td>6 in. (152 mm)</td>
</tr>
</tbody>
</table>

TRACK

Aluminum Wheels

<table>
<thead>
<tr>
<th>Front</th>
<th>86.8 in. (2,205 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear</td>
<td>77.2 in. (1,960 mm)</td>
</tr>
</tbody>
</table>

Steel Wheels

<table>
<thead>
<tr>
<th>Front</th>
<th>86.3 in. (2,191 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear</td>
<td>76.5 in. (1,942 mm)</td>
</tr>
</tbody>
</table>

CENTER OF GRAVITY

Length

<table>
<thead>
<tr>
<th>To front of rear axle</th>
<th>78.9 in. (2,003 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To rear of front axle</td>
<td>160 in. (4,064 mm)</td>
</tr>
</tbody>
</table>

Width

| To the right of bus centerline | 0.43 in. (11 mm) |

Height

| From the ground | 60 in. (1,527 mm) |

WHEELBASE

| 244 in. (6,200 mm) |
9. Important additional information

- Do not cut high voltage orange cables unless the system is de-energized using the procedure in section 3.
- Do not touch any high voltage orange cables and electric components unless the system is de-energized using the procedure in section 3.
- Do not perform any operation on a damaged vehicle without appropriate Personal Protective Equipment (PPE)
10. Explanation of pictograms used

<table>
<thead>
<tr>
<th>Pictogram</th>
<th>Description</th>
<th>Pictogram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use water to extinguish the fire</td>
<td></td>
<td>Air-conditioning component</td>
</tr>
<tr>
<td></td>
<td>Use ABC powder to extinguish the fire</td>
<td></td>
<td>Air-conditioning line</td>
</tr>
<tr>
<td></td>
<td>Auto fire suppression system</td>
<td></td>
<td>Roof exit</td>
</tr>
<tr>
<td></td>
<td>General warning sign</td>
<td></td>
<td>Door exit</td>
</tr>
<tr>
<td></td>
<td>Warning, Electricity</td>
<td></td>
<td>Steering wheel tilt control</td>
</tr>
<tr>
<td></td>
<td>Low temperature warning</td>
<td></td>
<td>Height control</td>
</tr>
<tr>
<td></td>
<td>Electric propulsion</td>
<td></td>
<td>Seat adjustment</td>
</tr>
<tr>
<td></td>
<td>High voltage components</td>
<td></td>
<td>Lifting points</td>
</tr>
<tr>
<td></td>
<td>High voltage components</td>
<td></td>
<td>Gas strut, preloaded spring</td>
</tr>
<tr>
<td></td>
<td>Cut high voltage interlock loop</td>
<td></td>
<td>Air tank</td>
</tr>
<tr>
<td></td>
<td>High voltage power cable</td>
<td></td>
<td>Diesel Fuel</td>
</tr>
<tr>
<td></td>
<td>Low voltage device that disconnects high voltage</td>
<td></td>
<td>Use thermal infrared camera</td>
</tr>
<tr>
<td></td>
<td>Device to shut down power in vehicle</td>
<td></td>
<td>Risk of a Fire</td>
</tr>
<tr>
<td></td>
<td>Low voltage battery</td>
<td></td>
<td>Risk of an explosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental hazard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of acute toxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gases under pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk of corrosive material/substances</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>