Foreword

In January 2012, Toyota released the 2012 PRIUS c gasoline-electric hybrid vehicle in North America. To educate and assist emergency responders in the safe handling of the PRIUS c hybrid technology, Toyota published this PRIUS c Emergency Response Guide.

High voltage electricity powers the electric motor, generator, air conditioning compressor and inverter/converter. All other automotive electrical devices such as the headlights, radio, and gauges are powered from a separate 12 Volt auxiliary battery. Numerous safeguards have been designed into the PRIUS c to help ensure the high voltage, approximately 144 Volt, Nickel Metal Hydride (NiMH) Hybrid Vehicle (HV) battery pack is kept safe and secure in an accident.

The PRIUS c utilizes the following electrical systems:
- Maximum 520 Volts AC
- Nominal 144 Volts DC
- Maximum 27 Volts AC
- Nominal 12 Volts DC

PRIUS c Features:
- A boost converter in the inverter/converter that boosts the available voltage to the electric motor to 520 Volts.
- A high voltage Hybrid Vehicle (HV) battery pack rated at 144 Volts.
- A high voltage motor driven Air Conditioning (A/C) compressor rated at 144 Volts.
- A body electrical system rated at 12 Volts, negative chassis ground.
- Supplemental Restraint System (SRS) - dual stage frontal airbags, a driver knee airbag, front seat side airbags, front seat cushion airbags, side curtain airbags and front seat belt pretensioners.
- An Electric Power Steering (EPS) assist motor rated at 27 Volts.

High voltage electrical safety remains an important factor in the emergency handling of the PRIUS c Hybrid Synergy Drive. It is important to recognize and understand the disabling procedures and warnings throughout the guide.

Additional topics in the guide include:
- PRIUS c identification.
- Major Hybrid Synergy Drive component locations and descriptions.
- Extrication, fire, recovery, and additional emergency response information.
- Roadside assistance information.

This guide is intended to assist emergency responders in the safe handling of a PRIUS c vehicle during an incident.

NOTE:
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the PRIUS c</td>
<td>1</td>
</tr>
<tr>
<td>PRIUS c Identification</td>
<td>2</td>
</tr>
<tr>
<td>Hybrid Synergy Drive Component Locations & Descriptions</td>
<td>5</td>
</tr>
<tr>
<td>Smart Key System (Optional Equipment)</td>
<td>8</td>
</tr>
<tr>
<td>Hybrid Synergy Drive Operation</td>
<td>10</td>
</tr>
<tr>
<td>Hybrid Vehicle (HV) Battery Pack</td>
<td>11</td>
</tr>
<tr>
<td>27 Volt System</td>
<td>12</td>
</tr>
<tr>
<td>Low Voltage Battery</td>
<td>13</td>
</tr>
<tr>
<td>High Voltage Safety</td>
<td>14</td>
</tr>
<tr>
<td>SRS Airbags & Seat Belt Pretensioners</td>
<td>15</td>
</tr>
<tr>
<td>Emergency Response</td>
<td>17</td>
</tr>
<tr>
<td>Extrication</td>
<td>17</td>
</tr>
<tr>
<td>Fire</td>
<td>24</td>
</tr>
<tr>
<td>Overhaul</td>
<td>25</td>
</tr>
<tr>
<td>Recovering/Recycling of NiMH HV Battery Pack</td>
<td>25</td>
</tr>
<tr>
<td>Spills</td>
<td>26</td>
</tr>
<tr>
<td>First Aid</td>
<td>26</td>
</tr>
<tr>
<td>Submersion</td>
<td>27</td>
</tr>
<tr>
<td>Roadside Assistance</td>
<td>28</td>
</tr>
</tbody>
</table>
About the PRIUS c

The PRIUS c 5-door hatchback joins the PRIUS, PRIUS V, CAMRY Hybrid and HIGHLANDER Hybrid as a hybrid model for Toyota. Hybrid Synergy Drive means that the vehicle contains a gasoline engine and an electric motor for power. The two hybrid power sources are stored on board the vehicle:

1. Gasoline stored in the fuel tank for the gasoline engine.
2. Electricity stored in a high voltage Hybrid Vehicle (HV) battery pack for the electric motor.

The result of combining these two power sources is improved fuel economy and reduced emissions. The gasoline engine also powers an electric generator to charge the battery pack; unlike a pure all electric vehicle, the PRIUS c never needs to be charged from an external electric power source.

Depending on the driving conditions one or both sources are used to power the vehicle. The following illustration demonstrates how the PRIUS c operates in various driving modes.

1. During light acceleration at low speeds, the vehicle is powered by the electric motor. The gasoline engine is shut off.

2. During normal driving, the vehicle is powered mainly by the gasoline engine. The gasoline engine also powers the generator to charge the battery pack and to drive the electric motor.

3. During full acceleration, such as climbing a hill, both the gasoline engine and the electric motor power the vehicle.

4. During deceleration, such as when braking, the vehicle regenerates kinetic energy from the front wheels to produce electricity that charges the battery pack.

5. While the vehicle is stopped, the gasoline engine and electric motor are off, however the vehicle remains on and operational.
PRIUS c Identification

In appearance, the 2012 model year PRIUS c is a 5-door hatchback. Exterior, interior, and engine compartment illustrations are provided to assist in identification.

The alphanumeric 17 character Vehicle Identification Number (VIN) is provided in the front windshield cowl, passenger side floor and on the driver side B pillar.

Example VIN: JTDKDTB30C3000101

A PRIUS c is identified by the first 8 alphanumeric characters JTDKDTB3.
PRIUS c Identification (Continued)

Interior

4 Instrument cluster (speedometer, READY indicator, hybrid system indicators, warning lights) located in center of the dash and near the base of the windshield.

NOTE:
If the vehicle is shut off, the instrument cluster gauges will be “blacked out”, not illuminated.
PRIUS c Identification (Continued)

Engine Compartment

5 1.5-liter aluminum alloy gasoline engine.

6 Logo on the inverter cover.

Engine Compartment View
<table>
<thead>
<tr>
<th>Component</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Volt Auxiliary Battery</td>
<td>Under Passenger Side Rear Seat</td>
<td>A lead-acid battery that supplies power to the low voltage devices.</td>
</tr>
<tr>
<td>Hybrid Vehicle (HV) Battery Pack</td>
<td>Mounted Under Rear Seat</td>
<td>144 Volt Nickel Metal Hydride (NiMH) battery pack consisting of 20 low voltage (7.2 Volt) modules connected in series.</td>
</tr>
<tr>
<td>Power Cables</td>
<td>Undercarriage and Engine</td>
<td>Orange colored power cables carry high voltage Direct Current (DC) between the HV battery pack, inverter/converter, and A/C compressor. These cables also carry 3-phase Alternating Current (AC) between the inverter/converter, electric motor, and generator.</td>
</tr>
<tr>
<td>Inverter/Converter</td>
<td>Engine Compartment</td>
<td>Boosts and inverts the high voltage electricity from the HV battery pack to 3-phase AC electricity that drives the electric motor. The inverter/converter also converts AC electricity from the electric generator and electric motor (regenerative braking) to DC that charges the HV battery pack.</td>
</tr>
<tr>
<td>Gasoline Engine</td>
<td>Engine Compartment</td>
<td>Provides two functions: 1) Powers vehicle. 2) Powers generator to charge the HV battery pack. The engine is started and stopped under control of the vehicle computer.</td>
</tr>
<tr>
<td>Electric Motor</td>
<td>Engine Compartment</td>
<td>3-phase high voltage AC permanent magnet electric motor contained in the front transaxle. It is used to power the front wheels.</td>
</tr>
<tr>
<td>Electric Generator</td>
<td>Engine Compartment</td>
<td>3-phase high voltage AC generator that is contained in the transaxle and charges the HV battery pack.</td>
</tr>
<tr>
<td>A/C Compressor (with Inverter)</td>
<td>Engine Compartment</td>
<td>3-phase high voltage AC electrically driven motor compressor.</td>
</tr>
</tbody>
</table>
Hybrid Synergy Drive Component Locations & Descriptions (Continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Tank and Fuel Line</td>
<td>Undercarriage and Center</td>
<td>The fuel tank provides gasoline via a fuel line to the engine. The fuel line is routed under the center of vehicle.</td>
</tr>
</tbody>
</table>
Hybrid Synergy Drive Component Locations & Descriptions (Continued)

Key Specifications:

- **Gasoline Engine:** 73 hp (54 kW), 1.5-liter Aluminum Alloy Engine
- **Electric Motor:** 60 hp (45 kW), Permanent Magnet Motor
- **Transmission:** Automatic Only (electrically controlled continuously variable transaxle)
- **HV Battery:** 144 Volt Sealed NiMH-Battery
- **Curb Weight:** 2,500 lbs/1,132 kg
- **Fuel Tank:** 9.5 gals/36.0 liters
- **Fuel Economy:** 53 / 46 (City/Hwy) miles/gal
 3.5 / 4.0 (City/Hwy) liters/100 km
- **Frame Material:** Steel Unibody
- **Body Material:** Steel Panels
- **Seating Capacity:** 5 passenger
Smart Key System (Optional Equipment)

The optional PRIUS c smart key system consists of a smart key transceiver that communicates bi-directionally, enabling the vehicle to recognize the smart key in proximity to the vehicle. Once recognized, the smart key will allow the user to lock and unlock the doors without pushing smart key buttons, and start the vehicle without inserting it into an ignition switch.

Smart key features:
- Passive (remote) function to lock/unlock the doors and start the vehicle.
- Wireless transmitter buttons to lock/unlock all 5 doors.
- Hidden metal cut key to lock/unlock the doors.

Door (Lock/Unlock)
There are several methods available to lock/unlock the doors.

- Pushing the smart key lock button will lock all doors. Pushing the smart key unlock button once unlocks the driver door, twice unlocks all doors.

- Touching the sensor on the backside of the driver door exterior handle, with the smart key in proximity to the vehicle, once unlocks the driver door, twice unlocks all doors. Touching the sensor on the backside of the front passenger door exterior handle, with the smart key in proximity to the vehicle, unlocks all doors. Touching the lock touch sensor on either front door, or pushing the back door lock button will lock all doors.

- Inserting the hidden metal cut key in the driver door lock and turning clockwise once unlocks the driver door, twice unlocks all doors. To lock all doors turn the key counter clockwise once. Only the driver door contains an exterior door lock for the metal cut key.
Smart Key System (Optional Equipment - Continued)

Vehicle Starting/Stopping
The smart key has replaced the conventional metal cut key, and the power button has replaced the ignition switch. The smart key only needs to be in proximity to the vehicle to allow the system to function.

- With the brake pedal released, the first push of the power button operates the accessory mode, the second push operates the ignition-on mode, and the third push turns the ignition off again.

<table>
<thead>
<tr>
<th>Ignition Mode</th>
<th>Multi-information Display (Instrument Cluster)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>-</td>
</tr>
<tr>
<td>Accessory</td>
<td>POWER ON</td>
</tr>
<tr>
<td>Ignition-On</td>
<td>POWER ON</td>
</tr>
<tr>
<td>Brake Pedal Depressed</td>
<td>Smart Key Symbol</td>
</tr>
<tr>
<td>Vehicle Started (READY-ON)</td>
<td>-</td>
</tr>
<tr>
<td>Malfunction</td>
<td>Warning Message</td>
</tr>
</tbody>
</table>

Ignition Mode Sequence (brake pedal released):

Starting the vehicle takes priority over all other ignition modes and is accomplished by depressing the brake pedal and pushing the power button once. To verify the vehicle has started, and the READY light is illuminated in the instrument cluster.

- If the internal smart key battery is dead, use the following method to start the vehicle.
 1. Touch the Toyota emblem side of the smart key to the power button.
 2. Within the 10 seconds after the buzzer sounds, push the power button with the brake pedal depressed (the READY light will illuminate).

- Once the vehicle has started and is on and operational (READY-ON), the vehicle is shut off by bringing the vehicle to a complete stop and then depressing the power button once.

- To shut off the vehicle before coming to a stop in an emergency, push and hold down the power button for more than 3 seconds. This procedure may be useful at an accident scene in which the READY indicator is on, park (P) cannot be selected, and the drive wheels remain in motion.
Hybrid Synergy Drive Operation

Once the READY indicator is illuminated in the instrument cluster, the vehicle may be driven. However, the gasoline engine does not idle like a typical automobile and will start and stop automatically. It is important to recognize and understand the READY indicator provided in the instrument cluster. When lit, it informs the driver that the vehicle is on and operational even though the gasoline engine may be off and the engine compartment is silent.

Vehicle Operation

- With the PRIUS c, the gasoline engine may stop and start at any time while the READY indicator is on.

- Never assume that the vehicle is shut off just because the engine is off. Always look for the READY indicator status. The vehicle is shut off when the READY indicator is off.

- The vehicle may be powered by:
 1. The electric motor only.
 2. A combination of both the electric motor and the gasoline engine.

- The vehicle computer determines how the vehicle operates in order to improve fuel economy and reduce emissions. Two features on the PRIUS c are EV (Electric Vehicle) mode and ECO (Economy) mode:
 1. EV Mode: When activated, and certain conditions have been met, the vehicle operates with the electric motor powered by the HV battery.
 2. ECO Mode: When activated, this mode helps enhance fuel economy on trips that involve frequent braking and acceleration.

Vehicle Proximity Notification System

A new feature on the 2012 PRIUS c is the vehicle proximity notification system that emits a sound when the vehicle is driven using only the electric motor at speeds less than 15 mph. The sound is intended to notify pedestrians that the vehicle is approaching.
Hybrid Vehicle (HV) Battery Pack

The PRIUS c features a high voltage Hybrid Vehicle (HV) battery pack that contains sealed Nickel Metal Hydride (NiMH) battery modules.

HV Battery Pack
- The HV battery assembly is enclosed in a metal case and is rigidly mounted under the rear seat. The metal case is isolated from high voltage.
- The HV battery pack consists of 20 low voltage (7.2 Volt) NiMH battery modules connected in series to produce approximately 144 Volts. Each NiMH battery module is non-spillable and in a sealed case.
- The electrolyte used in the NiMH battery module is an alkaline mixture of potassium and sodium hydroxide. The electrolyte is absorbed into the battery cell plates and will not normally leak, even in a collision.

<table>
<thead>
<tr>
<th>HV Battery Pack</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery pack voltage</td>
<td>144 V</td>
</tr>
<tr>
<td>Number of NiMH battery modules in pack</td>
<td>20</td>
</tr>
<tr>
<td>NiMH battery module voltage</td>
<td>7.2 V</td>
</tr>
<tr>
<td>NiMH battery module dimensions</td>
<td>5 x 1 x 11 in (118 x 20 x 276 mm)</td>
</tr>
<tr>
<td>NiMH module weight</td>
<td>2.3 lbs (1.04 kg)</td>
</tr>
<tr>
<td>NiMH battery pack dimensions</td>
<td>15 x 40 x 9 in (387 x 1011 x 225 mm)</td>
</tr>
<tr>
<td>NiMH battery pack weight</td>
<td>68 lbs (31 kg)</td>
</tr>
</tbody>
</table>

Note: Values in inches have been rounded

Components Powered by the HV Battery Pack
- Electric Motor
- Power Cables
- Electric Generator
- Inverter/Converter
- A/C Compressor

HV Battery Pack Recycling
- The HV battery pack is recyclable. Contact the nearest Toyota dealer or:
 United States: (800) 331-4331
 Canada: (888) TOYOTA 8 [(888) 869-6828]
27 Volt System

The PRIUS c is equipped with a 27 Volt AC assist motor for the Electric Power Steering (EPS) system. The EPS computer generates 27 Volts from the 12 Volt system. The 27 Volt wires are isolated from the metal chassis and routed a short distance from the EPS computer to the EPS assist motor in the steering column.

NOTE:
27 Volts AC has a higher arc potential than 12 Volts DC.
Low Voltage Battery

Auxiliary Battery

- The PRIUS c contains a sealed lead-acid 12 Volt battery. The 12 Volt auxiliary battery powers the vehicle’s electrical system similar to a conventional vehicle. As with conventional vehicles, the negative terminal of the auxiliary battery is grounded to the metal chassis of the vehicle.

- The auxiliary battery is located under the passenger side rear seat.

NOTE:
An under hood label shows the location of the HV battery (traction battery) and 12 Volt auxiliary battery.
High Voltage Safety

The HV battery pack powers the high voltage electrical system with DC electricity. Positive and negative orange colored high voltage power cables are routed from the battery pack, under the vehicle floor pan, to the inverter/converter. The inverter/converter contains a circuit that boosts the HV battery voltage from 144 to 520 Volts DC. The inverter/converter creates 3-phase AC to power the motor. Power cables are routed from the inverter/converter to each high voltage motor (electric motor, electric generator, and A/C compressor). The following systems are intended to help keep occupants in the vehicle and emergency responders safe from high voltage electricity:

High Voltage Safety System

- A high voltage fuse ① provides short circuit protection in the HV battery pack.

- Positive and negative high voltage power cables ② connected to the HV battery pack are controlled by 12 Volt normally open relays ③. When the vehicle is shut off, the relays stop electrical flow from leaving the HV battery pack.

⚠️ WARNING: The high voltage system may remain powered for up to 10 minutes after the vehicle is shut off or disabled. To prevent serious injury or death from severe burns or electric shock, avoid touching, cutting, or breaching any orange high voltage power cable or high voltage component.

- Both positive and negative power cables ④ are insulated from the metal body. High voltage electricity flows through these cables and not through the metal vehicle body. The metal vehicle body is safe to touch because it is insulated from high voltage components.

- A ground fault monitor ⑤ continuously monitors for high voltage leakage to the metal chassis while the vehicle is running. If a malfunction is detected, the hybrid vehicle computer ⑥ will illuminate the master warning light in the instrument cluster and indicate “Check Hybrid System” on the multi-information display.
SRS Airbags & Seat Belt Pretensioners

Standard Equipment
- Electronic frontal impact sensors (2) are mounted in the engine compartment as illustrated.
- Front seat belt pretensioners are mounted near the base of the B-pillars.
- A frontal dual stage driver airbag is mounted in the steering wheel hub.
- A frontal twin-chamber shaped dual stage passenger airbag is integrated into the dashboard and deploys through the top of the dashboard.
- The SRS computer, which contains an impact sensor, is mounted on the floor pan underneath the instrument panel.
- Front electronic side impact sensors (2) are mounted near the base of the B-pillars.
- Rear electronic side impact sensors (2) are mounted near the base of the C-pillars.
- Front seat side airbags are mounted in the front seatbacks.
- Side curtain airbags are mounted along the outer edge inside the roof rails.
- A driver knee airbag is mounted on the lower portion of the dash.
- Front door electronic side impact sensors (2) are mounted inside the base of the front doors.
- Front seat cushion airbags are mounted in the front seat cushions.

WARNING:
The SRS may remain powered for up to 90 seconds after the vehicle is shut off or disabled. To prevent serious injury or death from unintentional SRS deployment, avoid breaching the SRS components.
NOTE:
The front seatback mounted side airbags and the side curtain airbags may deploy independently of each other.

The knee airbag is designed to deploy simultaneously with the frontal airbag.

The PRIUS c is equipped with a standard front passenger occupant classification system that may prohibit the deployment of the front passenger frontal airbag, seat cushion mounted airbag, and seat belt pretensioner. If the passenger occupant classification system prohibits deployment during an SRS event, the front passenger SRS will not re-arm nor deploy.

Electronic side impact sensors are installed in each front door to aid in side collision detection accuracy.
Emergency Response

On arrival, emergency responders should follow their standard operating procedures for vehicle incidents. Emergencies involving the PRIUS c may be handled like other automobiles except as noted in these guidelines for Extrication, Fire, Overhaul, Recovery, Spills, First Aid, and Submersion.

⚠️ WARNING:
- *Never* assume the PRIUS c is shut off simply because it is silent.
- Always observe the instrument cluster for the READY indicator status to verify whether the vehicle is on or shut off. The vehicle is shut off when the READY indicator is off.
- Failure to shut off and disable the vehicle before emergency response procedures are performed may result in serious injury or death from the unintentional deployment of the SRS or severe burns and electric shock from the high voltage electrical system.

Extrication
- Immobilize Vehicle
 - Chock wheels and set the parking brake.
 - Move the shift lever to the Park position.

- Disable Vehicle
 - Performing either of the following two procedures will shut the vehicle off and disable the HV battery pack, SRS, and gasoline fuel pump.
Emergency Response (Continued)

Extrication (Continued)

Procedure #1
Mechanical Ignition Key System (Standard Equipment):

1. Confirm the status of the **READY** indicator in the instrument cluster.
2. If the **READY** indicator is illuminated, the vehicle is on and operational. Shut off the vehicle by turning the ignition key off, removing the ignition key and placing it on the dash.
3. Disconnect the 12 Volt auxiliary battery under the passenger side rear seat.
Emergency Response (Continued)

Extrication (Continued)

Smart Key System (Optional Equipment):

1. Confirm the status of the READY indicator in the instrument cluster.
2. If the READY indicator is illuminated, the vehicle is on and operational. Shut off the vehicle by pushing the power button once.
3. The vehicle is already shut off if the instrument cluster lights and the READY indicator are not illuminated. Do not push the power button because the vehicle may start.
4. If the smart key is easily accessible, keep it at least 16 feet (5 meters) away from the vehicle.
5. Disconnect the 12 Volt auxiliary battery under the passenger side rear seat to prevent accidental restarting of the vehicle.
Emergency Response (Continued)

Extrication (Continued)

Procedure #2 (Alternate if power button or ignition key is inaccessible)

1. Open the hood and remove the fuse box cover.
2. Remove the IG2 fuse (30A green colored) in the engine compartment fuse box (refer to illustration). If the correct fuse cannot be recognized, pull all fuses in the fuse box.
3. Disconnect the 12 Volt auxiliary battery under the passenger side rear seat.

NOTE:
Before disconnecting the 12 Volt auxiliary battery, if necessary, lower the windows, unlock the doors and open the back door as required. Once the 12 Volt auxiliary battery is disconnected, power controls will not operate.

![Remote Hood Release](image1)
![Hood Latch Release](image2)
![Fuse Box Cover](image3)
![IG2 Fuse Location in Engine Compartment Fuse Box](image4)

WARNING:
- The high voltage system may remain powered for up to 10 minutes after the vehicle is shut off or disabled. To prevent serious injury or death from severe burns or electric shock, avoid touching, cutting, or breaching any orange high voltage power cable or high voltage component.
- The SRS may remain powered for up to 90 seconds after the vehicle is shut off or disabled. To prevent serious injury or death from unintentional SRS deployment, avoid breaching the SRS components.
- If none of the disabling procedures can be performed, proceed with caution as there is no assurance that the high voltage electrical system, SRS, or fuel pump are disabled.
Emergency Response (Continued)

Extrication (Continued)

- Stabilize Vehicle
 Crib at (4) points directly under the front and rear pillars.
 Do not place cribbing under the high voltage power cables, exhaust system, or fuel system.

 NOTE: The PRIUS c is equipped with a tire pressure warning system that by design prevents pulling the metal valve stem with integral transmitter from the wheel. Snapping the valve stem with pliers or removing the valve cap and Schrader valve will release the air in the tire.

- Access Patients
 Glass Removal
 Use normal glass removal procedures as required.

 SRS Awareness
 Responders need to be cautious when working in close proximity to undeployed airbags and seat belt pretensioners. Front dual stage airbags automatically ignite both stages within a fraction of a second.

 Door Removal/Displacement
 Doors can be removed by conventional rescue tools such as hand, electric, and hydraulic tools. In certain situations, it may be easier to pry back the vehicle body to expose and unbolt the hinges.

 NOTE:
 To prevent accidental airbag deployment when performing front door removal/displacement, ensure the vehicle is shut off and the 12 Volt auxiliary battery is disconnected.
Emergency Response (Continued)

Extrication (Continued)

Roof Removal

The PRIUS c is equipped with side curtain airbags. When undeployed, total roof removal is not recommended. Patient access through the roof can be performed by cutting the roof center section inboard of the roof rails as illustrated. This would avoid breaching the side curtain airbags, inflators, and wiring harness.

NOTE:
The side curtain airbags may be identified as illustrated on this page (additional component details on page 15).

Dash Displacement

The PRIUS c is equipped with side curtain airbags. When undeployed, total roof removal is not recommended to avoid breaching the side curtain airbags, inflators, and wiring harness. As an alternative, dash displacement may be performed by using a Modified Dash Roll.
Extrication (Continued)

Rescue Lift Air Bags
Do not place cribbing or rescue lift air bags under the high voltage power cables, exhaust system, or fuel system.

Repositioning Steering Wheel and Front Seat
Telescopic steering wheel and seat controls are shown in the illustrations.
Emergency Response (Continued)

Fire
Approach and extinguish a fire using proper vehicle fire fighting practices as recommended by NFPA, IFSTA, or the National Fire Academy (USA).

- Extinguishing Agent
 Water has been proven to be a suitable extinguishing agent.

- Initial Fire Attack
 Perform a fast, aggressive fire attack.
 Divert the runoff from entering watershed areas.
 Attack teams may not be able to identify a PRIUS c until the fire has been knocked down and overhaul operations have commenced.

- Fire in the HV Battery Pack
 Should a fire occur in the NiMH HV battery pack, attack crews should utilize a water stream or fog pattern to extinguish any fire within the vehicle except for the HV battery pack.

WARNING:
- The NiMH battery electrolyte is a caustic alkaline (pH 13.5) that is damaging to human tissues. To avoid injury by coming in contact with the electrolyte, wear proper personal protective equipment.
- The battery modules are contained within a metal case and accessibility is limited.
- To avoid serious injury or death from severe burns or electric shock, never breach or remove the high voltage battery pack cover under any circumstance including fire.

When allowed to burn themselves out, the PRIUS c NiMH battery modules burn rapidly and can quickly be reduced to ashes except for the metal.

Offensive Fire Attack
Normally, flooding an NiMH HV battery pack with copious amounts of water at a safe distance will effectively control the HV battery pack fire by cooling the adjacent NiMH battery modules to a point below their ignition temperature. The remaining modules on fire, if not extinguished by the water, will burn themselves out.

However, flooding the PRIUS c HV battery pack is not recommended due to the battery case design and location preventing the responder from properly applying water through the available vent openings safely. Therefore, it is recommended that the incident commander allow the PRIUS c HV battery pack to burn itself out.

Defensive Fire Attack
If the decision has been made to fight the fire using a defensive attack, the fire attack crew should pull back a safe distance and allow the NiMH battery modules to burn themselves out. During this defensive operation, fire crews may utilize a water stream or fog pattern to protect exposures or to control the path of smoke.
Emergency Response (Continued)

Overhaul
During overhaul, immobilize and disable the vehicle if not already done. Refer to illustrations on page 17, 18, 19 and 20. The HV battery cover should never be breached or removed under any circumstances including fire. Doing so may result in severe electrical burns, shock, or electrocution.

- Immobilize Vehicle
 Chock wheels and set the parking brake.
 Move the shift lever to the Park position.

- Disable Vehicle
 Performing either of the following two procedures will shut the vehicle off and disable the HV battery pack, SRS, and gasoline fuel pump.

Procedure #1

Mechanical Ignition Key System (Standard Equipment):
1. Confirm the status of the READY indicator in the instrument cluster.
2. If the READY indicator is illuminated, the vehicle is on and operational. Shut off the vehicle by turning the ignition key off, removing the ignition key and placing it on the dash.
3. Disconnect the 12 Volt auxiliary battery under the passenger side rear seat.

Smart Key System (Optional Equipment):
1. Confirm the status of the READY indicator in the instrument cluster.
2. If the READY indicator is illuminated, the vehicle is on and operational. Shut off the vehicle by pushing the power button once.
3. The vehicle is already shut off if the instrument cluster lights and the READY indicator are not illuminated. Do not push the power button because the vehicle may start.
4. If the smart key is easily accessible, keep it at least 16 feet (5 meters) away from the vehicle.
5. Disconnect the 12 Volt auxiliary battery under the passenger side rear seat to prevent accidental restarting of the vehicle.

Procedure #2 (Alternate if power button or ignition key is inaccessible)
1. Open the hood and remove the fuse box cover.
2. Remove the IG2 fuse (30A green colored) in the engine compartment fuse box as illustrated on page 20. If the correct fuse cannot be recognized, pull all fuses in the fuse box.
3. Disconnect the 12 Volt auxiliary battery under the passenger side rear seat.

NOTE:
Before disconnecting the 12 Volt auxiliary battery, if necessary, lower the windows, unlock the doors and open the back door as required. Once the 12 Volt auxiliary battery is disconnected, power controls will not operate.

⚠️ WARNING:
- The high voltage system may remain powered for up to 10 minutes after the vehicle is shut off or disabled. To prevent serious injury or death from severe burns or electric shock, avoid touching, cutting, or breaching any orange high voltage power cable or high voltage component.
- The SRS may remain powered for up to 90 seconds after the vehicle is shut off or disabled. To prevent serious injury or death from unintentional SRS deployment, avoid breaching the SRS components.
- If none of the disabling procedures can be performed, proceed with caution as there is no assurance that the high voltage electrical system, SRS, or fuel pump are disabled.

Recovering/Recycling of NiMH HV Battery Pack
Clean up of the HV battery pack can be accomplished by the vehicle recovery crew without further concern of runoff or spillage. For information regarding recycling of the HV battery pack, contact the nearest Toyota dealer, or:

United States: (800) 331-4331
Canada: (888) TOYOTA 8 [(888) 869-6828]
Emergency Response (Continued)

Spills
The PRIUS c contains the same common automotive fluids used in other non-hybrid Toyota vehicles, with the exception of the NiMH electrolyte used in the HV battery pack. The NiMH battery electrolyte is a caustic alkaline (pH 13.5) that is damaging to human tissues. The electrolyte, however, is absorbed in the cell plates and will not normally spill or leak out even if a battery module is cracked. A catastrophic crash that would breach both the metal battery pack case and a battery module would be a rare occurrence.

Similar to the use of baking soda to neutralize a lead-acid battery electrolyte spill, a dilute boric acid solution or vinegar can be used to neutralize a NiMH battery electrolyte spill.

NOTE:
Electrolyte leakage from the HV battery pack is unlikely due to its construction and the amount of available electrolyte contained within the NiMH modules. Any spillage would not warrant a declaration as a hazardous material incident. Responders should follow the recommendations as outlined in this emergency response guide.

In an emergency, the NiMH battery part number G9280-5230 manufacturer’s Material Safety Data Sheet (MSDS) is available by contacting:

United States: CHEMTREC at (800) 424-9300
Canada: CANUTEC at *666 or (613) 996-6666 (collect)

- Handle NiMH electrolyte spills using the following Personal Protective Equipment (PPE):
 - Splash shield or safety goggles. Fold down helmet shields are not acceptable for acid or electrolyte spills.
 - Rubber, latex or nitrile gloves.
 - Apron suitable for alkaline.
 - Rubber boots.

- Neutralize NiMH Electrolyte
 - Use a boric acid solution or vinegar.
 - Boric acid solution - 800 grams boric acid to 20 liters water or 5.5 ounces boric acid to 1 gallon of water.

First Aid
Emergency responders may not be familiar with a NiMH electrolyte exposure when rendering aid to a patient. Exposure to the electrolyte is unlikely except in a catastrophic crash or through improper handling. Utilize the following guidelines in the event of exposure.

⚠️ WARNING:
The NiMH battery electrolyte is a caustic alkaline (pH 13.5) that is damaging to human tissues. To avoid injury by coming in contact with the electrolyte, wear proper personal protective equipment.

- Wear Personal Protective Equipment (PPE)
 - Splash shield or safety goggles. Fold down helmet shields are not acceptable for acid or electrolyte spills.
 - Rubber, latex or nitrile gloves.
 - Apron suitable for alkaline.
 - Rubber boots.

- Absorption
 - Perform gross decontamination by removing affected clothing and properly disposing of the garments.
 - Rinse the affected areas with water for 20 minutes.
 - Transport patients to the nearest emergency medical care facility.

- Inhalation in Non-Fire Situations
 - No toxic gases are emitted under normal conditions.

- Inhalation in Fire Situations
 - Toxic gases are given off as by-products of combustion. All responders in the Hot Zone should wear the proper PPE for fire fighting including SCBA.
 - Move a patient from the hazardous environment to a safe area and administer oxygen.
 - Transport patients to the nearest emergency medical care facility.
Emergency Response (Continued)

First Aid (Continued)

- Ingestion
 - Do not induce vomiting.
 - Allow the patient to drink large quantities of water to dilute the electrolyte (never give water to an unconscious person).
 - If vomiting occurs spontaneously, keep the patient’s head lowered and forward to reduce the risk of aspiration.
 - Transport patients to the nearest emergency medical care facility.

Submersion
A submerged hybrid vehicle does not have high voltage potential on the metal vehicle body, and is safe to touch.

Access Patients
 - Responders can access the patient and perform normal extrication procedures. High voltage orange color coded power cables and high voltage components should never be touched, cut, or breached.

Vehicle Recovery
 - If a hybrid vehicle is fully or partially submerged in water, emergency responders may not be able to determine if the vehicle has been automatically disabled. The PRIUS c may be handled by following these recommendations:

1. Remove the vehicle from the water.
2. Drain the water from the vehicle if possible.
3. Follow the immobilizing and disabling procedures on page 17, 18, 19 and 20.
Roadside Assistance

Roadside assistance for the Toyota PRIUS c may be handled like conventional Toyota vehicles except as noted in the following pages.

Toyota Roadside Assistance is available by contacting:

United States: (800) 297-0486 (for the first 2 years/25,000 miles)
Canada: (888) TOYOTA 8 [(888) 869-6828] (for the first 3 years/60,000 km)

Shift Lever
Similar to many Toyota vehicles, the PRIUS c uses a gated shift lever as shown in the illustration. However, the PRIUS c shift lever includes a B position, allowing enhanced engine braking when driving down a steep grade.

Towing
The PRIUS c is a front wheel drive vehicle and it must be towed with the front wheels off the ground. Failure to do so may cause serious damage to Hybrid Synergy Drive components.

- A flat bed trailer is the preferred method of towing.
- With the brake pedal released, turn the ignition-on. Then, move the shift lever from the P position to the N position with the brake pedal depressed.
- If the shift lever cannot be moved out of P, a shift lock release button is provided under the cover near the shift lever as shown in the illustration.
- If a tow truck is not available, in an emergency the vehicle may be moved using a cable or chain secured to the emergency towing eyelet or rear tow hook for short distances at low speeds (below 18 mph (30km/h)). The eyelet is located with the tools in the cargo area of the vehicle, refer to the illustration on page 29.
Roadside Assistance (Continued)

Electric Back Door Opener
The PRIUS c is equipped with an electric back door opener. In the event of 12 Volt power loss, the back door cannot be opened from the outside of the vehicle.

Spare Tire
The jack, tools, towing eyelet and spare tire are provided as shown.
Jump Starting
The 12 Volt auxiliary battery may be jump started if the vehicle does not start and the instrument cluster gauges are dim or off after depressing the brake pedal and pushing the power button or turn the mechanical ignition key.

The 12 Volt auxiliary battery is located under the passenger side rear seat.

- Open the passenger side rear door and remove the battery cover.
- Connect the positive jumper cable to the positive terminal.
- Connect the negative jumper cable to the negative terminal.
- Place the smart key in proximity to the interior of the vehicle, depress the brake pedal, and push the power button or turn the mechanical ignition key.

NOTE:
If the vehicle does not recognize the smart key after connecting the booster battery to the vehicle, open and close the driver door when the vehicle is shut off.

If the smart key internal battery is dead, touch the Toyota emblem side of the smart key to the power button during the start sequence. Refer to the instructions and illustrations on page 9 for more details.

- The high voltage HV battery pack cannot be jump started.

Immobiliser
The PRIUS c is equipped with an optional immobiliser system.

- The vehicle can be started only with a registered smart key or mechanical ignition key.