THE OVERLOOKED INTERFACE
Agricultural Fires and Rural Communities

JEREMY A. KELLER, CF GISP
Ohio Fire Chiefs’ Association
and Bellefontaine Fire & EMS
Reasons for this Study

Define the Fire Environment
- Are trends in agriculture driving an increase in the numbers of field fires?
- “More fires today due to no-till and CRP” ... anecdotally from local firefighters
- Other potential impacts: Tile drainage, crop hybrids, residue removal

Define the wildfire hazard for communities not traditionally considered “WUI”
- Are potential wildfire hazards overlooked simply because they are so diffuse?
- Or because of a lack of understanding of modern agriculture?

Improve firefighter safety on wildland fires in areas without a perceived “wildfire problem”
- Personal observations, known incidents and anecdotal discussion of unsafe practices; complacency and lack of training/experience
- Time to bring local fire service on board with current wildland practices?
- 30 county area
- 13,057 square miles
- Northwest 1/3 of state
- Fairly uniform topography of rolling plains
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain Crops</td>
<td>62.9%</td>
<td>68.2%</td>
<td>+ 695 sq mi</td>
</tr>
<tr>
<td>Hayland</td>
<td>0.7%</td>
<td>1.7%</td>
<td>+ 130 sq mi</td>
</tr>
<tr>
<td>Developed: High & Medium Intensity</td>
<td>1.2%</td>
<td>1.7%</td>
<td>+ 62 sq mi</td>
</tr>
<tr>
<td>Developed: Low-Intensity & Open Areas</td>
<td>12.6%</td>
<td>9.0%</td>
<td>- 471 sq mi</td>
</tr>
<tr>
<td>Grass & Pasture</td>
<td>10.5%</td>
<td>8.6%</td>
<td>- 247 sq mi</td>
</tr>
<tr>
<td>Forest</td>
<td>10.0%</td>
<td>8.5%</td>
<td>- 200 sq mi</td>
</tr>
</tbody>
</table>
Fire Incident Data

National Fire Incident Reporting System (NFIRS)

- All reports from the 30-county study area from 2003-2014 (all available years with quality data)
- All vegetative cover fires, including incidents in the following categories:
 - 140 Series: Wildland fires (grass, brush, forest)
 - 170 Series: Field fires (agricultural land)
- Total of 15,100 incidents reported by local fire departments
 - 79% wildland fires (11,932 incidents)
 - 21% field fires (3,168 incidents)
Data Issues

- Incomplete NFIRS reporting from 2000-2002
- No specific location data: location limited to county and fire department which limited geographic analysis

Quality issues:
- Fire Cause:
 - 43% of incidents reported “undetermined” heat source
- Fire Size:
 - 71% incidents reported 0.0 acres
 - 11% had no size reported at all (unknown or blank)
 - Available numbers seemed unrealistic in many cases
314 Fire Departments
(411 fire stations)

- Wildland fire is very much a local responsibility
- Very little state or federal agency presence or assistance
The “Average” Fire Year: 2003-2014

Average Vegetative Cover Fires by Month, 2003-2014 (NFIRS reporting)

The “Average” Fire Year: 2003-2014

Average Fires per Month

- Agricultural Fires
- Brush/Grass/Woods Fires

Month: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

Average Fires per Month: 0, 10, 20, ... 200

Year: 2003-2014
Wildland & Field Fire Trends: 2003-2014

NFIRS data show the following trends in the study area
95% confidence level

All Vegetative Cover Fires
- Increase in total annual incidents, but not statistically significant
- Significant decrease in April fires

Wildland Fires
NFIRS 140 series: Brush, grass, and forest fires
- No statistically significant trends in annual fire load
- Significant monthly increase in May
- Significant monthly decrease in April

Agricultural Fires
NFIRS 170 series: Crop field fires
- No statistically significant trends in annual or monthly fire loads

Interpretation:
- Annual fire load is increasing, possibly by about 3% per year on average (although there is annual variation)
- May and June fire loads are increasing the fastest
- *Take with a grain of salt:* Data quality is somewhat suspect and requires further assessment
Actual Fire Occurrence: 2003-2014

Total Vegetative Cover Fires by Month, 2003-2014 (NFIRS reporting)

- March 2009
- July 2012
- October 2010
Fire Density – Grass/Brush Fires (2003-2014)
Fuels Data

Land Cover Data
- Most reliable source was CropScape
- NASS farm operator surveys not consistent
- Conservation tillage acres estimated from USDA and CTIC studies

NFIRS Fuels Data
- Wildland fuels can be derived from incident type (forest, grass or brush)
- Possibly some quality issues with interpretation of fuel category
- Possibly some overlap between field fires and wildland fires, if data misinterpreted or entered incorrectly

<table>
<thead>
<tr>
<th>Fuel Factors Analyzed</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td></td>
</tr>
<tr>
<td>Corn, soybean, wheat and hay acres (current & preceding year)</td>
<td>USDA NASS CropScape (remote sensing) USDA NASS Operator Surveys</td>
</tr>
<tr>
<td>Conservation Reserve Program (CRP) acres</td>
<td>USDA FSA data</td>
</tr>
<tr>
<td>Conservation tillage (no-till/reduced till) acres</td>
<td>USDA and CTIC estimates, extrapolated to cover study period</td>
</tr>
<tr>
<td>General wildland fuels</td>
<td>USDA NASS CropScape NFIRS incident type (grass, brush, forest)</td>
</tr>
</tbody>
</table>
Field Fire Seasons

<table>
<thead>
<tr>
<th>Spring Field Fire Season</th>
<th>Summer Field Fire Season</th>
<th>Fall Field Fire Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Mar/Apr)</td>
<td>(July)</td>
<td>(Oct/Nov)</td>
</tr>
<tr>
<td>Includes April, the busiest overall month for vegetative fires</td>
<td>Driven by the winter wheat harvest (late July)</td>
<td>Driven by the corn and soybean harvest</td>
</tr>
<tr>
<td>Fuels: Weathered corn residue from previous years (with some wheat)</td>
<td>Fuels: Standing wheat crop and wheat residue (current year)</td>
<td>Fuels: Standing corn and soybeans; corn/bean residue (current year); weathered corn residue (previous years)</td>
</tr>
<tr>
<td>Ignitions: Debris burning by residents neighboring fields</td>
<td>Ignitions: Equipment (harvest operations)</td>
<td>Ignitions: Equipment (harvest operations)</td>
</tr>
</tbody>
</table>
Field Fires vs. Fuels

<table>
<thead>
<tr>
<th>More of this...</th>
<th>Correlates with...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Wheat (this year)</td>
<td>Fewer fires in June</td>
</tr>
<tr>
<td></td>
<td>More fires in August</td>
</tr>
<tr>
<td>Winter Wheat (last year)</td>
<td>More fires on an annual basis</td>
</tr>
<tr>
<td></td>
<td>More fires in July</td>
</tr>
<tr>
<td>Soybeans (this year)</td>
<td>Nothing</td>
</tr>
<tr>
<td>Soybeans (last year)</td>
<td>Fewer fires on an annual basis</td>
</tr>
<tr>
<td></td>
<td>Fewer fires in August & October</td>
</tr>
<tr>
<td>Corn (this year)</td>
<td>Fewer fires in August and November</td>
</tr>
<tr>
<td>Corn (last year)</td>
<td>Fewer fires in April and July</td>
</tr>
</tbody>
</table>

Soybean harvest, Champaign County OH (Sept. 2015)
Conservation tillage (no-till, etc.) accounted for 67% of all farmed land in study area in 2014.
Conventional Tillage = No Fuel Remaining
Conservation Tillage = Plenty of Fuel
Estimated Dead Fine Fuel Loading for No-Till Fields (tons/acre)

<table>
<thead>
<tr>
<th>Field Fire Season</th>
<th>Corn</th>
<th>Soybeans</th>
<th>Wheat</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>1.4 – 4.6 tons/ac</td>
<td>0.4 – 1.1 tons/ac</td>
<td>1.1 – 2.0 tons/ac</td>
<td>0.4 – 4.6 tons/ac</td>
</tr>
<tr>
<td>Summer - Standing</td>
<td>N/A</td>
<td>N/A</td>
<td>3.6 – 4.5 tons/ac</td>
<td>3.6 – 4.5 tons/ac</td>
</tr>
<tr>
<td>Summer - Residue</td>
<td>N/A</td>
<td>N/A</td>
<td>1.3 – 2.1 tons/ac</td>
<td>1.3 – 2.1 tons/ac</td>
</tr>
<tr>
<td>Fall - Standing</td>
<td>4.8 – 10.1 tons/ac</td>
<td>1.9 – 3.0 tons/ac</td>
<td>N/A</td>
<td>1.9 – 10.1 tons/ac</td>
</tr>
<tr>
<td>Fall - Residue</td>
<td>1.8 – 4.8 tons/ac</td>
<td>0.6 – 1.3 tons/ac</td>
<td>1.3 – 2.1 tons/ac</td>
<td>0.6 – 4.8 tons/ac</td>
</tr>
</tbody>
</table>

Recommended Fuel Models (Rothermel, 1983 – GTR INT-143)

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Fuel Model</th>
<th>Fuel loading (1-hr fuels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residue (“stubble”)</td>
<td>FM 1 Short Grass</td>
<td>0.74 tons/acre</td>
</tr>
<tr>
<td>Standing grain crops</td>
<td>FM 3 Tall Grass</td>
<td>3.00 tons/acre</td>
</tr>
</tbody>
</table>
Conservation Tillage

Identified anecdotally as a source of new wildfires

- No statistical correlation between conservation tillage acres and field fire activity *during the study period* (2003-2014)
- Most rapid increase in adoption in 1990s, rate of increase steady but less dramatic in 2000s
- Changes to fire load prior to 2003 may have been missed due to lack of NFIRS data
- We are likely operating in the “new normal”

Fraction of Farmed Land in Western Lake Erie Basin in Conservation Tillage, 1989-2014

(USDA & Conservation Tillage Information Center)
Consolidation of Farming Operations

Total farmed acres by farm size class in NW Ohio, 1997-2012
(USDA Census of Agriculture)

Larger continuous fields with fewer fuel breaks
Conservation Reserve Program (CRP)

Identified anecdotally as a source of new wildfires

Active CRP Enrollments (1000 acres)

200,000 ac = 2.4% of study area
Conservation Reserve Program (CRP)

Identified anecdotally as a source of new wildfires

- No statistical correlation between CRP acres and fire activity *during the study period* (2003-2014)
- CRP acres have been relatively stable during this period; increases prior to 2003 may have been missed due to lack of NFIRS data
- We are likely operating in the “new normal”
Improved Corn Hybrid Varieties

- Modern corn hybrids produce more grain, but also have stronger stalks to resist wind damage.
- Tougher stalk materials degrade less over winter, especially when part of a reduced-till system.
- More fuel in spring, and more carry-over of fuel from year to year.

Residual corn stalks from two years prior.
Cover Crops

- Sowing of cover crops post-harvest is a growing trend
 - Add nutrients to soil, retain existing nutrients, improve soil health, etc.
 - Designed to die over winter or killed by spring herbicide application
- Creates additional spring fuel loads; diversity of cover crops and lack of data make true impact difficult to estimate
Removal of Crop Residues

- Baling and removal of corn and wheat residues
- Used for fodder and ethanol feedstock
- May remove up to 40% of residue post-harvest
- Obviously reduces fuel load, but magnitude is not understood (acres or rate removed)
Tile Drainage

- Subsurface drainage lines to remove excess soil moisture
 - Allows earlier field work by drying soil in spring
 - Could extend spring fire season; fuels dry earlier
- Practice is widespread in NW Ohio: More than 50% of cropland in most counties (USDA estimate, but true extent is unknown)
Wildland Fires by Fuel Type, 2003-2014 (NFIRS 140 series)

- Fuel category derived from incident type
- Fires predominantly occur in light fuels (grass and brush)
- Forest fires are very minimal
Daily Weather Observations

- Obtained daily weather observations from six National Weather Service reporting stations
- Developed weighted average of stations based on Thiessen polygon coverage of study area
Weather is the Key

No Surprises Here...

- Daily fire load very strongly correlated with minimum daily relative humidity ... more so than any other factor
- Makes sense given preponderance of fine fuels

Daily Weather Factors Analyzed

<table>
<thead>
<tr>
<th>Factor</th>
<th>Correlated with...</th>
<th>Fire Behavior Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Relative Humidity</td>
<td>More fires</td>
<td>Fuel moisture Probability of ignition</td>
</tr>
<tr>
<td>(daily min value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher Temperature</td>
<td>More fires</td>
<td>Fuel moisture Probability of ignition</td>
</tr>
<tr>
<td>(daily max value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased Visibility</td>
<td>More fires</td>
<td>Atmospheric stability Fire growth</td>
</tr>
<tr>
<td>(daily min value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased Cloud Cover</td>
<td>Fewer Fires</td>
<td>Atmospheric stability Fire growth</td>
</tr>
<tr>
<td>(daily max value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased Wind Speed</td>
<td>No correlation</td>
<td>Atmospheric stability Fire growth</td>
</tr>
<tr>
<td>(daily max value)</td>
<td>(fire size data suspect)</td>
<td></td>
</tr>
</tbody>
</table>

Additional finding: Daily **maximum** relative humidity decreased over time; potentially less opportunity for fuel moisture recovery overnight leading to earlier start for daily burning periods
Ignitions Data

Drawn entirely from NFIRS fire reports submitted by departments

Ignitions Trends Observed

- “Hot/smoldering object” and “open flame/smoldering” object were dominant heat sources all year
- Small spike in “explosives/fireworks” associated with July 4th
- Distinctive trends in “operating equipment” ignitions associated with farming activities
- Lightning (“natural causes”) not a major cause
- About 40% of fire reports were “undetermined”
All Vegetative Cover Fires by Heat Source (excluding “undetermined”), 2003-2013

- Operating Equipment
- Natural Source
- Explosives or Fireworks
- Spread from Another Fire
- Hot or Smoldering Object
- Open Flame or Smoking
Wildland Fire Ignitions by Heat Source (excluding “undetermined”), 2003-2013

Average Fires per Month

- Operating Equipment
- Natural Source
- Explosives or Fireworks
- Spread from Another Fire
- Hot or Smoldering Object
- Open Flame or Smoking
Soybean harvest
(Logan County, Ohio 2014)
Typical Residential Development

- Farm operator sells off strip of home sites along road
- Large yards generally protect actual homes
 - Distance from farm operations: Machinery, dust, chemicals, manure, etc.
 - Defensible space is coincidentally created
- Outbuildings are primary direct flame exposure for field fires
 - Also fences, propane tanks, vehicles, etc.
 - Propensity for firebrands not known
Home construction on small lot in crop field

(Logan County, Ohio 2015)
Farm outbuilding with crop field exposure
(Madison County, Ohio 2015)
Outbuilding & propane tank with crop field exposure

(Logan County, Ohio 2014)
Oil storage tank surrounded by crop field

(Hardin County, Ohio 2015)
Other Exposures

- Mobile farm equipment
 - Combines, grain buggies, trucks, etc.
- Loss of standing crops

Corn harvest operations (Logan County, Ohio; November 2015)
Other Exposures

- Damage to conservation tillage systems
 - Removal of crop residue
 - Soil compaction due to firefighting operations

Ruts from brush truck after March field fire
(Logan County, Ohio; March 2015)
"Official" WUI Areas
USDA Forest Service, 2010

Area:
- 159 square miles
 1.22% of study area

Population:
- 45,719
 2.2% of study area
 6.4% of rural population
Problems with the USFS WUI Study

Focus on Forests
- Oak savanna areas around Toledo are fire-adapted, but...
- Western Ohio forests are mostly residual beech-maple stands with long fire-return intervals (1000+ years)

Dismissal of “Cultivated Land”
- Fire occurrence may be low compared to “traditional” wildland, but significant periods of fire potential exist each year
SITUATIONAL AWARENESS

Recommendations to Improve Firefighter Situational Awareness

- Educate firefighters regarding the fire threat
- Increase awareness and understanding of fire weather forecast and warning products
- Tailor available NWS products to fire trends as shown in NFIRS reporting
FIRE DANGER -- Midewin Winter/Spring

Maximum, Average, and 90th Percentile, based on 11 years data

Fire Danger Area:
- Midewin
- ILZ2022
- Midewin Tallgrass
 * Meets NWCG Wx Station Standards

Fire Danger Interpretation:
- **EXTREME** -- Use extreme caution
- **Caution** -- Watch for change
- **Moderate** -- Lower Potential, but always be aware

Maximum -- Highest Burning Index by day for 2002 - 2013
Average -- shows peak fire season over 11 years (687 observations)
90th Percentile -- Only 10% of the 687 days from 2002 - 2013 had an Burning Index above 47

Local Thresholds - Watch out: Combinations of any of these factors can greatly increase fire behavior:
- 20' Wind Speed over 15 mph, RH less than 25%,
- Temperature over 75, 1-Hour Fuel Moisture less than 6

Years to Remember: 2005 2012

BARN FIRE
SOUTH ARSENAL FIRE
LORENZO FIRE

Fuel Model: L - Western Perennial Grasses

Remember what Fire Danger tells you:
- Burning Index gives day-to-day fluctuations calculated from 2 pm temperature, humidity, wind, daily temperature & rh ranges, and precip duration.
- Wind is part of BI calculation.
- Watch local conditions and variations across the landscape -- Fuel, Weather, Topography.
- Listen to weather forecasts -- especially WIND.

Past Experience:
- 20ft winds greater than 15mph, RH less than 25% can lead to rapid fire growth in grass fuel types.
- Moderate to Severe Drought.
- Dry winters and low herbaceous fuel moistures.

Responsible Agency: USFS - J. Martina
Design by NWCG Fire Danger Working Team
In an average year there are 1,258 wildfires in NW Ohio.

Wildfire Activity – Northwest Ohio

NW Ohio Wildland Fire Conditions
- Fires occur mostly in fine fuels: Grass, brush & crop fields
- Low relative humidity (<35%) is most reliable predictor of high fire activity
- What key weather factors tell you:
 - **Low Relative Humidity (RH):** Drier fuels, easier ignitions
 - **High Wind Speed:** Rapid fire spread

Monthly Wildfire Activity Interpretation

- **Very High:** Activity well above average (APR)
- **High:** Above average activity (MAR, JUL, OCT, NOV)
- **Moderate:** Average activity (MAY, JUN, AUG, SEP)
- **Low:** Below average activity (JAN, FEB, DEC)

Years to Remember
In an average year there are 1,258 wildfires in NW Ohio.

Red Flag Conditions
- Expect fires to start easily, spread rapidly, and be difficult to control
- **Relative Humidity** 25% or less
- **Wind Speed** 15 mph or more

Be alert any time forecast Relative Humidity is 35% or less

Common Denominators on Tragedy Wildfires

- **Fatalities & Near-Misses**
 - On relatively small fires
 - In relatively light fuels: Grass and light brush
 - Unexpected shift in wind direction and/or speed

These conditions are common on wildland fires in NW Ohio

How to Fight Fire Aggressively, Providing for Safety First
- Use class A foam on all wildland and field fires
- Use full wildland PPE – not bunker gear – to avoid heat stress
- Always attack from the burned area (“Attack from the Black”)
- All firefighters in secure position during mobile attack

Red Flag Conditions Chart

<table>
<thead>
<tr>
<th>Conditions</th>
<th>RH</th>
<th>Wind (mph)</th>
<th>Rate of Spread (ft/min)</th>
<th>Flame Length (ft)</th>
<th>Fire Size (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6 min</td>
</tr>
<tr>
<td>Moderate</td>
<td>45%</td>
<td>5</td>
<td>81</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>High</td>
<td>35%</td>
<td>10</td>
<td>270</td>
<td>7.5</td>
<td>19</td>
</tr>
<tr>
<td>Red Flag</td>
<td>25%</td>
<td>15</td>
<td>327</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

National Weather Service Fire Weather Forecast Offices
- General Fire Weather: www.srh.noaa.gov/ridge2/fire
- NWS North Webster, IN (IWX) www.weather.gov/iwx/fireweather
- NWS Cleveland, OH (CLE) www.weather.gov/cle/fireweather
- NWS Wilmington, OH (ILN) www.weather.gov/iln/fireweather
RECOMMENDATIONS: RESPONSE PLANNING & PREPAREDNESS

Training:
- Tailor entry and refresher training to the wildland fire environment in which the firefighter will operate
- Develop training specific to operations in fine fuels (standard NWCG curriculum is not appropriate for all situations)

Mutual Aid:
- Thin resources and staffing issues make mutual aid a necessity
- Improve mutual aid systems and pre-incident planning to ensure adequate response

Resources:
- Increase staffing during periods of predicted fire danger at career departments
- Consider paying volunteers to staff brush units during high fire danger periods
- Consider staging staffed brush units at shared locations during high fire danger periods
RECOMMENDATIONS: RESPONSE EFFECTIVENESS & SAFETY

Tactics:
- There is rarely a life safety issue on wildland fires; firefighters can create one through improperly aggressive tactics
- Promote safer and more effective wildland techniques (“Attack from the Black”)

Foam:
- Promote universal use of Class A foam to enhance effectiveness of limited wildland units and water supply (reduce scene time and prevent rekindles)

Personal Protective Equipment:
- Ensure appropriate wildland PPE is available; avoid using structural PPE
- Standard “yellows & greens” are usually not appropriate for volunteer departments; promote use of “turnout” style PPE (overgarments); maintain NFPA 1977 compliance
- Educate firefighters on proper wear and importance of its use; require in SOPs
CASE STUDY: BELLEFONTAINE FIRE & EMS (LOGAN COUNTY, OHIO)

Provider of fire and EMS services for the City of Bellefontaine and two rural townships

- Total protected population: 15,668 (2,232 in rural areas)
- Total protected area: 40.8 square miles
- Only career department in county
 11 x vol. fire dept. & 3 x EMS-only providers

2014 Call Volume: 2,473 total runs (6.8/day)

- 77% EMS; 23% fire and other
- 7% of runs are providing mutual aid

Apparatus:

- 1 x Aerial Ladder (L-21)
- 2 x Engine (Type 1) (E-21/22)
- 1 x Engine (Type 6) (G-21)
- 1 x Water Tender (Type S-3) (T-21)
- 3 x Ambulance (M-21/22/23)

Staffing:

- 1 x Department Chief (full time)
- 3 x Asst. Chief (Shift Supervisor) (full time)
- 14 x Firefighter/Paramedic (full time)
- 5 x Auxiliary FF/EMT (volunteer)
 Typical shift: 1 x AC + 4-5 FF (24/48)

Average Wildland Fire Load

- Bellefontaine: 6.3 / yr
- Logan County: 48.5 / yr

Bellefontaine FD Grass Rig (G-21)
Mutual Aid Study

Mutual Aid Partners:
- 20 Fire Departments within 15 miles; mostly volunteer staffing
- 23 x Brush Trucks (Type 6 Engines... more or less)

Response Time Modeling:
- Actual road travel time (minutes, using ArcGIS Network Analyst)
- Travel delays due to intersections, railroad crossings, etc.
- Average response time delays based on 9-1-1 dispatch records

Results:
- Table of response times for each brush unit vs. center or each wildland fuel block
- Ranked list of first 10 arriving units for each potential fire site
Fire Response Study: Weather & Fire Environment

- **Initial Attack Modeling:**
 - Using response time estimates, NFIRS fire reports, and NWS weather data
 - Ran BehavePlus simulations of most dangerous and most likely fire situations

- **“Most Dangerous” Scenarios:**
 Weather and fire environment conditions occurring on each of:
 - **W1:** Most active day for fire activity in NW Ohio (3/24/2009; 82 fires)
 - **W10:** Average of 10 most active days
 - **W100:** Average of 100 most active days

- **“Most Likely” Scenarios:**
 Average conditions prevailing in the three most active fire months in NW Ohio: April, July and November

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Mean No. Fires / day</th>
<th>Max. Temp.</th>
<th>Min. Relative Humidity</th>
<th>Max. 20-ft Wind Speed</th>
<th>Fine Dead Fuel Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>82</td>
<td>63 F</td>
<td>20%</td>
<td>19 mph</td>
<td>5%</td>
</tr>
<tr>
<td>W10</td>
<td>64.2</td>
<td>67 F</td>
<td>29%</td>
<td>22 mph</td>
<td>6%</td>
</tr>
<tr>
<td>W100</td>
<td>33.1</td>
<td>70 F</td>
<td>30%</td>
<td>18 mph</td>
<td>6%</td>
</tr>
<tr>
<td>April</td>
<td>10.1</td>
<td>62 F</td>
<td>44%</td>
<td>19 mph</td>
<td>7%</td>
</tr>
<tr>
<td>July</td>
<td>5.4</td>
<td>84 F</td>
<td>48%</td>
<td>14 mph</td>
<td>7%</td>
</tr>
<tr>
<td>November</td>
<td>6.0</td>
<td>50 F</td>
<td>55%</td>
<td>16 mph</td>
<td>10%</td>
</tr>
</tbody>
</table>

Standard conditions for all simulations:
- Fuel Model 1 (Short Grass) with 0% slope and no shading
- Fire reported at 0.1 hours from ignition
- Line production rate of 30 ch/hr using mobile direct (head) attack (based on 1989 Fried and Gilless study for CalFire)
Fire Response Study: Resource Scenarios

- **Resource Scenarios:**
 All fire environment scenarios run against the following resource scenarios:
 - **Current:** Existing situation
 - **BFD-Plus:** Add one brush unit to BFD
 - **VFD-Plus:** Add full-time staffing to three volunteer mutual aid departments
 - **Max-Plus:** Both enhancements

- All times based on average response times throughout BFD coverage area
Results:
- No successful containment for any resource configuration against W1, W10, W100 or April average conditions ("Escaped" fire in BehavePlus)
- Fire had "escaped" at 0.4 hrs (24 minutes) from time of report, with 5 or 6 engines on scene

Interpretation:
- Having a fire truly "escape" in NW Ohio is unlikely given fragmented landscape
- Failure to achieve containment indicates that offensive actions have no real effect on outcome
- When conditions indicate containment is unlikely, focus on defensive action

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rate of Spread (ch/hr)</th>
<th>Flame Length (ft)</th>
<th>Size at Report (ac)</th>
<th>Size at Initial Attack (ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>188.1</td>
<td>6.4</td>
<td>11.0</td>
<td>43.9</td>
</tr>
<tr>
<td>W10</td>
<td>239.6</td>
<td>7.1</td>
<td>16.0</td>
<td>63.9</td>
</tr>
<tr>
<td>W100</td>
<td>159.5</td>
<td>5.9</td>
<td>8.2</td>
<td>32.8</td>
</tr>
<tr>
<td>April</td>
<td>167.7</td>
<td>5.9</td>
<td>8.7</td>
<td>34.9</td>
</tr>
</tbody>
</table>

IC should not put firefighters at risk with offensive attack strategy when outcome is unlikely to be influenced
Fire Response Study: Contained Fire Scenarios

- **Results:**
 - Containment achieved under all scenarios for July and November average conditions.

- **July Simulations**
 - Containment at 120-146 acres at 0.8 to 1.1 hours (48-66 minutes).
 - A minimum of 6 engines required to achieve containment.

- **November Simulations**
 - Fires contained at 23-39 acres at 0.6 to 0.8 hours (36-48 minutes).
 - A minimum of 5 engines required to achieve containment.

- **Interpretation:**
 - Under less severe conditions, fire size may be limited by use of offensive tactics.
 - Average weather conditions for each month were used, actual tactics must be based on conditions prevailing at the time of the fire (regardless of month).

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rate of Spread (ch/hr)</th>
<th>Flame Length (ft)</th>
<th>Size at Report (ac)</th>
<th>Size at Initial Attack (ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July</td>
<td>90.9</td>
<td>4.5</td>
<td>3.2</td>
<td>12.7</td>
</tr>
<tr>
<td>November</td>
<td>64.8</td>
<td>3.2</td>
<td>1.5</td>
<td>6.1</td>
</tr>
</tbody>
</table>

IC should recognize when fire weather conditions will allow for successful offensive interventions.
Prevention & Mitigation

Expand Prevention & Mitigation Efforts

- Improve quality of incident reporting for wildland fires; better data = better analysis
- Tailor prevention efforts to observable trends in fire data and predicted fire weather
- Promote adoption of FireWise Community concepts

Example: Integrated program of prevention, mitigation and preparedness (following slide)
Northwest Ohio Wildland Fire Preparedness Matrix (Brush, Grass, Woods and Field Fires)

<table>
<thead>
<tr>
<th>Season</th>
<th>Threat</th>
<th>Prevent & Mitigate</th>
<th>Prepare</th>
<th>Respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>WINTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>Minimal fire load
Less active fire behavior</td>
<td>▪ Educate: Continual messaging on debris burning in preparation for spring
▪ Mitigate: Promote FireWise and NFPA 1141 measures for rural residents and subdivisions
▪ Mitigate: Identify and pre-plan areas at greatest risk for wildfire</td>
<td>▪ Schedule heavy maintenance of brush units for this period
▪ Schedule annual wildfire refresher training in preparation for spring
▪ Make purchases of tools, PPE, foam, etc.
▪ Update mutual aid agreements and response plans as needed</td>
<td>▪ Less active fire behavior may allow for more aggressive tactics</td>
</tr>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRING</td>
<td>Peak season for brush, grass and field fires
Large fire load, especially during April
Fires start easily, spread rapidly, and are difficult to contain</td>
<td>▪ Educate: Focus on debris/trash burning by rural residents
▪ Enforce: Target illegal outdoor burning</td>
<td>▪ Monitor fire weather forecasts daily and keep crews informed
▪ Consider augmented staffing of brush units
▪ Expand resources: Consider outfitting utility vehicles as brush trucks with skid units
▪ Participate in prescribed burning with natural resources agencies to increase wildfire experience</td>
<td>▪ Expect very dangerous fire behavior and fast-moving fires
▪ Offensive attack may be ineffective on many days
▪ Focus on defensive tactics: Protect exposures and do not unnecessarily put firefighters at risk</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUMMER</td>
<td>Brush fires continue, but fire load is lower due to seasonal vegetation green-up
Field fires pick up in late July due to wheat harvest
Fire behavior generally less intense, but extended dry periods can intensify severity</td>
<td>▪ Educate: Focus on farm workers in advance of wheat harvest
▪ Educate/Enforce: Focus on fireworks around July 4th; target illegal fireworks for enforcement
▪ Mitigate: Train farm workers in appropriate action and incipient fire control for field/combine fires</td>
<td>▪ Monitor fire weather forecasts daily when dry conditions prevail and during the wheat harvest
▪ Consider increased brush unit staffing during periods when higher fire activity is likely</td>
<td>▪ Less active fire behavior may allow for more aggressive tactics
▪ Be alert for periods of higher fire danger when a switch to defensive tactics may be wise</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FALL</td>
<td>Brush fire activity picks up as vegetation cures, especially after first hard frost
Field fire activity escalates due to soybean and corn harvest
Fire behavior generally less intense, but periods of warm, dry weather can increase severity</td>
<td>▪ Educate: Focus on farm workers in advance of corn/soybean harvest
▪ Mitigate: Train farm workers in appropriate action and incipient fire control for field/combine fires</td>
<td>▪ Monitor fire weather forecasts daily when dry conditions prevail and during the wheat harvest
▪ Consider increased brush unit staffing during periods when higher fire activity is likely
▪ Participate in prescribed burning with natural resources agencies to increase wildfire experience</td>
<td>▪ Less active fire behavior may allow for more aggressive tactics
▪ Be alert for periods of higher fire danger when a switch to defensive tactics may be wise</td>
</tr>
<tr>
<td>September</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THANKS FOR ATTENDING!