ROP Meeting Agenda

NFPA Technical Committee On
Fire Doors and Windows
(FDW-AAA)

February 9-10, 2011
The Embassy Suites New Orleans Convention Center
New Orleans, LA

1. Call meeting to order. Call meeting to order by the Chair Bruce Campbell at 8:00 AM on Wednesday February 9, 2011 at The Embassy Suites New Orleans Convention Center, New Orleans, LA.

2. Self-introduction of members and guests.

For a current committee roster - See Page 3.

3. Approval of Minutes.

Approve the meeting minutes - See Page 7.

5. Staff Report. (K. Collette)
 b. Inspection, Testing, and Maintenance Summit Review.
 d. Document Information Pages.
 e. TIAS.

7. Act on proposed changes to NFPA 80.
 a. For Public Proposals – See Page 15.
8. Act on proposed changes to NFPA 105.

a. For Public proposals – See Page 32.

9. Other Business.

a. Radiation Dampers.
 b. Static versus Dynamic Fire Dampers.
 c. Sill construction.
 d. Fire/Thermal Pins.
 e. Glazing in Detection and Correctional Occupancies.
 f. Power Operators.
 g. DNFSB conference call notes re: curtain smoke dampers.
 h. Section 4.1.3.

10. Scheduling of Next Meeting.

11. Adjournment.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Address</th>
<th>Alternate Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce G. Campbell</td>
<td>Chair</td>
<td>Hughes Associates, Inc. 520 Courtney Way, Suite A Lafayette, CO 80026-8863</td>
<td>David V. Tomecek</td>
<td>4/3/2003</td>
</tr>
<tr>
<td>Chad E. Beebe</td>
<td>Principal</td>
<td>American Society for Healthcare Engineering PO Box 5756 Lacey, WA 98509-5756</td>
<td></td>
<td>10/20/2010</td>
</tr>
<tr>
<td>David S. Cha</td>
<td>Principal</td>
<td>Northwestern Memorial Hospital 259 East Erie, Suite 448 Chicago, IL 60611</td>
<td></td>
<td>10/6/2000</td>
</tr>
<tr>
<td>William Conner</td>
<td>Principal</td>
<td>Bill Conner Associates LLC 637 North Marion Street Oak Park, IL 60302</td>
<td></td>
<td>4/3/2003</td>
</tr>
<tr>
<td>Jeffrey E. Gould</td>
<td>Principal</td>
<td>FM Approvals/FM Global 1151 Boston-Providence Turnpike PO Box 9102 Norwood, MA 02062-9102</td>
<td>Scott K. Anderson</td>
<td>7/1/1993</td>
</tr>
<tr>
<td>Harold D. Hicks, Jr.</td>
<td>Principal</td>
<td>Atlantic Code Consultants 4530 William Penn Highway, #4350 Murrysville, PA 15668-2002</td>
<td>Kurt A. Roeper</td>
<td>1/1/1994</td>
</tr>
<tr>
<td>Wayne D. Holmes</td>
<td>Principal</td>
<td>HSB Professional Loss Control 508 Parkview Drive Burlington, NC 27215</td>
<td></td>
<td>1/1/1992</td>
</tr>
<tr>
<td>Thomas R. Janicak</td>
<td>Principal</td>
<td>Ceco Door Products 801 Mark Lane Hampshire, IL 60140 Steel Door Institute</td>
<td>Kurt A. Roeper</td>
<td>1/1/1986</td>
</tr>
<tr>
<td>Calvin A. Banning</td>
<td>Principal</td>
<td>AREVA NP, Inc. 6100 Southwest Blvd., Suite 400 Fort Worth, TX 76109</td>
<td>John G. Crowther</td>
<td>1/1/1991</td>
</tr>
<tr>
<td>Daniel R. Barnacki</td>
<td>Principal</td>
<td>International Door Association 28 Lowry Drive West Milton, OH 45383</td>
<td>Garry Stewart</td>
<td>7/16/2003</td>
</tr>
<tr>
<td>Paul R. Coleman</td>
<td>Principal</td>
<td>676 SE 35th Avenue Hillsboro, OR 97123-7419</td>
<td></td>
<td>1/1/1996</td>
</tr>
<tr>
<td>Jerrold S. Gorrell</td>
<td>Principal</td>
<td>Theatre Safety Programs 15514 East Bumble Bee Lane Fountain Hills, AZ 85268</td>
<td>US Institute for Theatre Technology</td>
<td>4/3/2003</td>
</tr>
<tr>
<td>Steven C. Hahn</td>
<td>Principal</td>
<td>Lawrence Roll-Up Doors, Inc. 3130-D Balfour Road, #193 Brentwood, CA 94513</td>
<td>Richard Cookson</td>
<td>1/1/1992</td>
</tr>
<tr>
<td>William E. Koffel</td>
<td>Principal</td>
<td>Koffel Associates, Inc. 6522 Meadowridge Road, Suite 101 Elkridge, MD 21075-6191</td>
<td>Vickie J. Lovell</td>
<td>1/1/1990</td>
</tr>
<tr>
<td>Name</td>
<td>Role</td>
<td>Date</td>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Nancy L. Kokesh</td>
<td>Principal</td>
<td>1/15/2004</td>
<td>Intertek Testing Services 1450 Newbrook Drive Chantilly, VA 20151-2223</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Thomas M. Rubright</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Heery International-HLM Design 1717 Arch Street, Suite 3730 Philadelphia, PA 19103</td>
<td></td>
</tr>
<tr>
<td>Steven P. Reynolds</td>
<td>Principal</td>
<td>3/21/2006</td>
<td>The Peelle Company Ltd. 2414 West 5th Street Russellville, AR 72801</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: National Elevator Industry Inc. alternate: Brian D. Black</td>
<td></td>
</tr>
<tr>
<td>Thomas A. Salamone</td>
<td>Principal</td>
<td>11/2/2006</td>
<td>AKF Engineers 3839 East Mustard Way Springfield, MO 65803</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Window & Door Manufacturers Association alternate: John Woestman</td>
<td></td>
</tr>
<tr>
<td>Michael L. Savage, Sr.</td>
<td>Principal</td>
<td>4/28/2000</td>
<td>Middle Department Inspection Agency, Inc. 333 Pfingsten Road Northbrook, IL 60062-2096</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook, IL 60062-2096</td>
<td></td>
</tr>
<tr>
<td>Michael Tierney</td>
<td>Principal</td>
<td>1/12/2000</td>
<td>Builders Hardware Manufacturers Association 3900 Dr. Greaves Road Grandview, MO 64030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook, IL 60062-2096</td>
<td></td>
</tr>
<tr>
<td>David A. San Paolo</td>
<td>Principal</td>
<td>4/17/1998</td>
<td>The Maiman Company 3839 East Mustard Way Springfield, MO 65803</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Window & Door Manufacturers Association alternate: John Woestman</td>
<td></td>
</tr>
<tr>
<td>Matthew E. Schumann</td>
<td>Principal</td>
<td>10/27/2009</td>
<td>Builders Hardware Manufacturers Association</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook, IL 60062-2096</td>
<td></td>
</tr>
<tr>
<td>Robert Van Beelaere</td>
<td>Principal</td>
<td>4/3/2003</td>
<td>Ruskin Manufacturing 3900 Dr. Greaves Road Grandview, MO 64030</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate: Underwriters Laboratories Inc. 333 Pfingsten Road Northbrook, IL 60062-2096</td>
<td></td>
</tr>
<tr>
<td>Address List No Phone</td>
<td>Date</td>
<td>Vendors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Doors and Windows</td>
<td>1/3/2011</td>
<td>Kristin Collette FDW-AAA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Date</th>
<th>Vendor Details</th>
</tr>
</thead>
</table>
| Anthony W. Yuen | Principal| 1/12/2000 | University of California
317 University Hall, #1150
Berkeley, CA 94720-1150 |
| Brian D. Black | Alternate| 1/10/2008 | BDBlack Codes, Inc.
4034 North Hampton Brook Drive
Hamburg, NY 14075
National Elevator Industry Inc.
Principal: Steven P. Reynolds |
6100 Southwest Blvd., Suite 400
Fort Worth, TX 76109
Principal: Calvin A. Banning |
| Kurt A. Roeper | Alternate| 9/30/2004 | Ingersoll-Rand Security Technologies
9017 Blue Ash Road
Cincinnati, OH 45242
Steel Door Institute
Principal: Thomas R. Janicak |
| Emmanuel A. Sopeju | Alternate| 4/17/1998 | Underwriters' Laboratories of Canada
7 Underwriters Road
Scarborough, ON M1R 3B4 Canada
Principal: Matthew E. Schumann |
520 Courtney Way, Suite A
Lafayette, CO 80026
Principal: Bruce G. Campbell |
1151 Boston Providence Turnpike
PO Box 9102
Norwood, MA 02062-9102
Principal: Jeffrey E. Gould |
| Richard Cookson | Alternate| 1/1/1991 | The Cookson Company
PO Box 23880
Phoenix, AZ 85063
Door & Access Systems Manufacturers Assn. International
Principal: Steven C. Hahn |
| Vickie J. Lovell | Alternate| 10/28/2008 | InterCode Incorporated
777 East Atlantic Avenue, Suite 301
Delray Beach, FL 33483
Glazing Industry Code Committee
Principal: William E. Koffel |
| Thomas M. Rubright | Alternate| 1/14/2005 | William S. Trimble Company, Inc.
2200 Atchley Street
Knoxville, TN 37920
Door and Hardware Institute
Principal: Keith E. Pardoe |
PO Box 1603
Kent, WA 98035
International Door Association
Principal: Daniel R. Bernacki |
| John Woestman | Alternate| 7/23/2008 | The Kellen Company
808 North York Street, Box 989
Monroe, IA 51070-0989
Principal: David A. San Paolo |
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>John G. Degenkolb</td>
<td>Member Emeritus</td>
<td>1/1/1955</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDW-AAA</td>
</tr>
<tr>
<td></td>
<td>71 Gold Hill Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carson City, NV 89706-0736</td>
<td></td>
</tr>
<tr>
<td>Joseph N. Saino</td>
<td>Member Emeritus</td>
<td>SE 1/1/1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDW-AAA</td>
</tr>
<tr>
<td></td>
<td>6560 Kirby Forest Cove</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memphis, TN 38119</td>
<td></td>
</tr>
<tr>
<td>Kristin Collette</td>
<td>Staff Liaison</td>
<td>6/29/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDW-AAA</td>
</tr>
<tr>
<td></td>
<td>National Fire Protection Association</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Batterymarch Park</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quincy, MA 02169-7471</td>
<td></td>
</tr>
</tbody>
</table>
1. **Call meeting to order.** The meeting was called to order by Chair Bruce Campbell at 8:00 AM on Wednesday October 8, 2008 at the Embassy Suites, Phoenix, AZ.

2. **Self-introduction of members and guests.** The following committee members and guest were in attendance

<table>
<thead>
<tr>
<th>NAME</th>
<th>REPRESENTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell, Bruce (Chair)</td>
<td>Hughes Associates, Inc.</td>
</tr>
<tr>
<td>Banning, Calvin</td>
<td>AREVA NP, Inc.</td>
</tr>
<tr>
<td>Berhinig, Robert</td>
<td>Underwriters Laboratories Inc.</td>
</tr>
<tr>
<td>Conner, William</td>
<td>American Society of Theater Consultants</td>
</tr>
<tr>
<td>Gorrell, Jerrold</td>
<td>US Institute for Theatre Technology</td>
</tr>
<tr>
<td>Hahn, Steven</td>
<td>Door & Access Systems Manufacturers</td>
</tr>
<tr>
<td>Hicks, Harold</td>
<td>Atlantic Code Consultants</td>
</tr>
<tr>
<td>Janicak, Thomas</td>
<td>Steel Door Institute</td>
</tr>
<tr>
<td>Koffel, William</td>
<td>Glazing Industry Code Committee</td>
</tr>
<tr>
<td>Kokesh, Nancy</td>
<td>Intertek Testing Services, NA Inc.</td>
</tr>
<tr>
<td>Pardoe, Keith</td>
<td>Door & Hardware Institute</td>
</tr>
<tr>
<td>Peterkin, James (Alt to P. Colman)</td>
<td>NFPA Health Care Section</td>
</tr>
<tr>
<td>Roeper, Kurt (Alt to Janicak)</td>
<td>Steel Door Institute</td>
</tr>
<tr>
<td>San Paolo, David</td>
<td>Window & Door Manufacturers Association</td>
</tr>
<tr>
<td>Van Becelaere, Robert</td>
<td>Ruskin Manufacturing</td>
</tr>
<tr>
<td>Woestman, John (Alt to D. San Paolo)</td>
<td>Window & Door Manufacturers Association</td>
</tr>
<tr>
<td>Yuen, Anthony</td>
<td>University of California</td>
</tr>
<tr>
<td>Collette, Kristin</td>
<td>National Fire Protection Association</td>
</tr>
</tbody>
</table>
The following guests were in attendance:

<table>
<thead>
<tr>
<th>NAME</th>
<th>REPRESENTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razwick, Jeff</td>
<td>Technical Glass Products</td>
</tr>
<tr>
<td>Steel, Kate</td>
<td>Steel Consulting, rep. SAFTI First</td>
</tr>
<tr>
<td>Zaremba, Thom</td>
<td>Pilkington</td>
</tr>
</tbody>
</table>

The following committee members were absent

<table>
<thead>
<tr>
<th>NAME</th>
<th>REPRESENTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernacki, Daniel</td>
<td>International Door Association</td>
</tr>
<tr>
<td>Cha, David</td>
<td>Northwestern Memorial Hospital</td>
</tr>
<tr>
<td>Gould, Jeffrey</td>
<td>FM Global</td>
</tr>
<tr>
<td>Holmes, Wayne</td>
<td>HSB Professional Loss Control</td>
</tr>
<tr>
<td>Patton, Vernon</td>
<td>First Energy Corporation</td>
</tr>
<tr>
<td>Reynolds, Steven</td>
<td>National Elevator Industry Inc.</td>
</tr>
<tr>
<td>Rispoli, Ronald</td>
<td>Entergy Corporation</td>
</tr>
<tr>
<td>Salamone, Thomas</td>
<td>AKF Engineers</td>
</tr>
<tr>
<td>Savage, Michael</td>
<td>Middle Department Inspection Agency, Inc.</td>
</tr>
<tr>
<td>Tierney, Michael</td>
<td>Builders Hardware Manufacturers</td>
</tr>
</tbody>
</table>

3. **Approval of Minutes.** The minutes from the 30 January 2008 meeting were approved with no modifications.

4. **Review of Agenda.** Chair Campbell reviewed the agenda and announced two additions to be discussed at the end of the agenda. These items included a discussion of the research proposal created by Harold Hicks and discussion about contact with Bill McHugh from Firestop Contractors Inc. regarding the inclusion of new material into future editions of NFPA 80.

5. **Review of revision cycle schedule and ROC information.** Ms. Collette reviewed the upcoming dates of the Annual 2009 revision cycle as well as information regarding the ROC meeting process.

6. **Report of Glazing Task Group. (Nancy Kokesh)** Task Group Chair Nancy Kokesh summarized the work of the Glazing Task Group from their meeting on 7 October 2008. She explained that the purpose of their meeting was to prepare actions on the public comments affecting glazing and present them to the committee. The task group generated suggested actions as well as proposed committee comments.

7. **Act on proposed changes to NFPA 80.** All public comments were addressed and committee comments were generated. See the ROC letter ballot package.

8. **Act on proposed changes to NFPA 105.** All public comments were addressed. See the ROC letter ballot package.
9. **Report of Task Group on Miscellaneous Products.** The task group on miscellaneous products, formed at the ROP meeting in January 2008, reported that they had contacted or will be contacting three manufacturers regarding their products and to receive input on those product’s installation and maintenance requirements. The three products include rolling fire doors with integral emergency egress, accordion fire doors, and telescopic fire doors. Because no action could be taken at the ROC stage, the task group will report back during the proposal stage of the Annual 2012 revision cycle.

10. **Other Business.**

 a. **Research Proposal** – The committee submitted a research proposal, “Radiant Heat Flux and Thermal Imaging Test for Fire Protective and Fire Resistance Glazing” to the Fire Protection Research Foundation in January 2008. It was discussed that the proposal be resubmitted by January 31, 2009 to be considered once again by the Foundation. The committee discussed some changes during the meeting and agreed to send any feedback to Harold Hicks in the weeks following the meeting. The proposal would be revised as needed and submitted by the January deadline.

 b. **Firestop Systems** – Chair Campbell and Mr. Koffel discussed the inclusion of a new chapter on installation, testing and maintenance of firestop installations into NFPA 80. Chair Campbell polled the committee and the committee displayed interest in adding this new chapter to the document. It was decided that Chair Campbell would submit a letter to the Secretary of the Standards Council notifying them of the addition to the document and requesting their agreement of the scope of the committee. If the Standards Council agrees that it is within the scope of the committee to include in the document, Chair Campbell will form a task group to work on the new text for the next edition.

11. **Scheduling of Next Meeting.** The next meeting of the FDW-AAA committee will be the report on proposals meeting during the Annual 2012 cycle. This meeting will occur at a location in the Southeast in the winter of 2011.

12. **Adjournment.** Chair Campbell adjourned the general portion of the meeting at 1:00 pm. Committee members that were available reconvened at 2:00 pm to discuss and revise the research proposal on radiant heat flux.

Meeting minutes prepared by,

[Signature]

Kristin Collette
NFPA Staff Liaison
Welcome!
February 2011
Embassy Suites Hotel
New Orleans, LA

Overview
General Procedures for Meeting
Timeline for Processing the Code
Committee Actions
Committee Statements
Balloting

Participation in NFPA Committee Meetings is generally limited to Committee Members and NFPA Staff
Participation by guests is usually granted by the Chair
The Chair may limit the time of any presentation (member or guest)

All guests are requested to sign-in and identify their affiliation
Members, please verify/update your contact information on pages attached to sign-in
Use of tape recorders or other means of reproducing verbatim transcriptions of the meeting are prohibited

Formal voting
- Secured by post-meeting letter ballot (2/3 majority agreement)
- Voting during meeting requires simple majority vote and is used to establish a sense of agreement that can be letter balloted
- Only the results of the letter ballot determine the official position of the Committee on any Proposal
Reminder to Members in Special Expert (SE) Category: If representing a non-SE interest (such as a consultant representing a manufacturer or an association of users), this must be declared. The member should refrain from voting on the issue.

Remaining timeline for processing the 2013 edition of NFPA 80 and NFPA 105
- Proposal Closing Date: November 23, 2010
- ROP Meeting: February 9-10, 2011
- ROP Published: June 2011
- Comment Closing Date: August 30, 2011
- ROC Meeting: Fall 2011
- ROC Published: February 2012
- NITMAM Closing Date: April 6, 2012
- NFPA Meeting: June 2012

Report on Proposals (ROP) preparation - today

General Procedures
- Follow Robert’s Rules of Order
- Prior to discussion, a motion is required

Committee Member participation:
- Member addresses the Chair
- Member receives recognition from the Chair
- Member speaks to the Chair
- Member poses questions to others through the Chair
- Member answers questions through the Chair

Committee Chair Actions:
- States the Motion
- Calls for discussion
- Ensures all issues have been heard
- Takes the Vote
- Announces the result of the Vote
Committee Actions on Proposals:
- Accept
- Accept In Principle
- Accept In Part
- Accept In Principle In Part
- Reject

Accept:
- The Proposal is accepted by the Committee without change
- No Committee Statement is required for an Accept, but one is permitted to be provided for clarification

Accept in Principle:
- The Committee agrees with the change in principle, and accepts the Proposal but with change in wording
- Committee must indicate change in Committee Action and rationale in Committee Statement

Accept in Part:
- Only part of the Proposal is accepted
- Committee must indicate accepted part in Committee Action and address rejected part and rationale for rejection in Committee Statement

Accept in Principle in Part:
- A combination of Accept in Principle and Accept in Part
- Committee must indicate accepted and changed parts in Committee Action
- Committee must indicate rejected parts and rationale for changed/rejected parts in Committee Statement

Reject:
- The Committee rejects the Proposal in entirety
- Committee must indicate reasons for rejection in Committee Statement
Committee Statements (Explaining the Committee Action):
- Action of “Accept” requires no Committee Statement
- All other actions require a Committee Statement to explain the action of the Committee

Committee Statement must include a valid reason for the action
- The reason should be technical where applicable
- Must explain why the Proposal was not accepted
- Acceptance of another Proposal is not an adequate reason to reject a Proposal

Committee Statements (continued)
- Should not reference a Proposal with opposing action unless the referenced Proposal satisfactorily explains the rejection
- Should not make a vague reference to intent
- Should explain how submitter’s substantiation is inadequate

Letter ballots are on the Committee Action
- The Ballot form allows you to vote
 Affirmative on all actions
 Affirmative on all actions except those specifically noted
- The Ballot form provides a column for affirmative with comment
 Note: This box only needs to be checked if there is an accompanying comment

Your ballot form is electronically submit-able
- You can save a copy for yourself
- You can also print and fax/mail it to NFPA

Alternates are encouraged to return ballots (insurance if Principal's ballot not received)
Ballot Process:
- Initial letter ballot
- Circulation of Negatives, if any received
- Circulation serves as second ballot to allow change of vote
- Final vote reported
Questions?
80- Log #CP2 (Entire Document)

Submitter: Technical Committee on Fire Doors and Windows,
Recommendation: Review entire document to: 1) Update any extracted material by preparing separate proposals to do so, and 2) review and update references to other organizations documents, by preparing proposal(s) as required.
Substantiation: To conform to the NFPA Regulations Governing Committee Projects.
Note: This Proposal originates from Tentative Interim Amendment 80-10-1 (TIA 950) issued by the Standards Council on August 6, 2009.

Submitter: Bruce G. Campbell, Hughes Associates, Inc.

Recommendation: 1. Revise Chapter 2 to read as follows:

2.3 Other Publications

2.3.1 ASME Publications. American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016-5990.

2.3.2 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

2.3.3 GSA Publications. Canadian Standards Association, 500 Spectrum Way, Suite 100, Mississauga, ON L4W 5N6, Canada.

2.3.43 BHMA Publications. Builders Hardware Manufacturers Association, 335 Lexington Avenue, 17th Floor, New York, NY 10017.

ANSI/BHMA A156.4, Standard for Door Controls (Closers), 2000.

2.3.54 GSA Publications. U.S. General Services Administration, 1800 F Street, N.W., Washington, DC 20405.

2.3.65 SMACNA Publications. Sheet Metal and Air Conditioning Contractors' National Association, 4201 Lafayette Center Drive, Chantilly, VA 20151-1209.

2.3.76 UL Publications. Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 6062-2096.

2. Revise D.2 and D.10 as follows.

D.2 The hourly designation indicates the duration of the fire test exposure and is known as the fire protection rating.

Fire protection ratings of fire doors meeting this standard should be as determined and reported by a testing agency in accordance with NFPA 252, Standard Methods of Fire Tests of Door Assemblies. (See ASTM E 119, Standard Test Method for Fire Tests of Door Assemblies, Including Positive Pressure Testing of Side-Hinged and Pivoted Swinging Door Assemblies; UL 108, Standard for Safety Fire Tests of Door Assemblies; UL 10C, Standard for Positive Pressure Fire Tests of Door Assemblies; and CAN4-S104-M80, Standard Method for Fire Test of Door Assemblies.)

D.10 The hourly designation indicates the duration of the fire test exposure and is known as the fire protection rating.

Fire protection ratings of windows meeting this standard should be as determined and reported by a testing agency in accordance with NFPA 257, Standard on Fire Test for Window and Glass Block Assemblies. (See ASTM E 119, Standard Test Method for Positive Pressure Fire Tests of Door Assemblies; UL 9, Standard for Safety Fire Tests of Window Assemblies; and CAN4-S106-M80, Standard Method for Fire Test of Window and Glass Block Assemblies.)

3. Revise Annex L to read as follows:

L.1 Referenced Publications. The documents or portions thereof listed in this annex are referenced within the informational sections of this standard and are not part of the requirements of this document unless also listed in
Chapter 2 for other reasons.

L.1.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

“Protection of Openings.”

“Protection of Openings.”

L.1.2 Other Publications.
L.1.2.2 ASME Publications. American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016-5990.

L.1.2.3 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P. O. Box C700, West Conshohocken, PA 19428-2959.

L.1.2.54 ISO Publications. International Organization for Standardization, 1, rue de Varembe, Case postale 56, CH-1211 Geneve 20, Switzerland.
L.1.2.66 NAAMM/HMMA Publications. National Association of Architectural Metal Manufacturers/Hollow Metal Manufacturers Association, 8 South Michigan Avenue, Suite 1000, Chicago, IL 60063.

L.1.2.74 SMACNA Publications. Sheet Metal and Air Conditioning Contractors’ National Association, 4201 Lafayette Center Drive, Chantilly, VA 20151-1209.

L.1.2.87 UL Publications. Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.

L.1.2.95 ULC Publications. Underwriters’ Laboratories of Canada, 7 Underwriters Road, Toronto, Ontario M1R 3B4, Canada.
The following documents or portions thereof are listed here as informational resources only. They are not a part of the requirements of this document.

L.2 Informational References. The following documents or portions thereof are listed here as informational resources only. They are not a part of the requirements of this document.

L.2.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

Substantiation: EMERGENCY NATURE: This TIA updates the references in NFPA 80. The TC’s action on ROP 80-2, which requested that the committee update all references to other organization’s documents, was to complete this task at the ROC stage but it was not addressed. Throughout this current revision process for NFPA 80, Standard for Fire Doors and Other Opening Protective, the Technical Committee overlooked updates to other organization’s references. References to ASTM E2074 and ASTM E 2010 have been withdrawn by ASTM and are removed as references in Annex D. This TIA, which is of emergency nature as defined by the Regulations Governing Committee Projects Section 5.2 (a), updates the references throughout the document.

80- Log #23
(2.3.6)

Submitter: John F. Bender, Underwriters Laboratories Inc.
Recommendation: Revise text to read as follows:

2.3.6 UL Publications. Underwriters Laboratories Inc.,
333 Pfingsten Road, Northbrook, IL 60062-2096.

Substantiation: Add ANSI approval designation to ANSI/UL 10A and ANSI/UL 14C and update referenced standards to most recent revisions.

80- Log #16
(3.3.50 Fire Door Assembly)

Submitter: Kurt A. Roeper, Ingersoll-Rand Security Technologies
Recommendation: Revise text to read as follows:

3.3.50 Fire Door Assembly. Any combination of a fire door, a frame, hardware, and other accessories that together provide a specific degree of fire protection or fire resistance to the opening.

Substantiation: Fire door assemblies provide either fire protection or fire resistance, depending upon the application. Revising the definition as proposed clarifies this fact.
80- Log #4
(3.3.114 Smoke Damper)

Final Action:

Submitter: Glossary of Terms Technical Advisory Committee,
Recommendation: Adopt the preferred definition of Smoke Damper from NFPA 5000.
Smoke Damper. A device within an operating (dynamic) air distribution system to control the movement of smoke.
Substantiation: This definition is the preferred definition from the Glossary of Terms.
Your technical committee has the following options:
a) Adopt the preferred definition
b) Modify the term to make it unique
c) Request that the Standards Council reassign responsibility for the term
d) Request that the standards council authorize a second preferred definition

80- Log #17
(4.3.3)

Final Action:

Submitter: Kurt A. Roeper, Ingersoll-Rand Security Technologies
Recommendation: Revise text to read as follows:
4.3.3 Fire doors furnished with or prepared for fire exit hardware shall bear a label stating “Fire Door to Be Equipped with Fire Exit Hardware.”
Substantiation: Section 4.3.2 recognizes that fire doors and builders hardware are permitted to be supplied separately, yet 4.3.3 only covers situations where fire exit hardware is ‘furnished with’ fire exit hardware. The proposed language reflects the current industry practice as well as the provisions of manufacturers labeling procedures.

80- Log #11
(4.4.3.1 and A.4.4.3.1)

Final Action:

Submitter: Thomas Zaremba, Roetzel and Andress
Recommendation: Add at the end of current section 4.4.3.1:
Vision panel kits consisting of multiple pieces (stick kits) shall be installed by the manufacturer of the door or a distributor with inspection service procedure under label service. Installation of two piece metal vision panel kits shall be permitted in the field.
Revise Appendix A.4.4.3.1:
The 2010 version of NFPA 80 has been modified to now require that stick kits containing multiple parts be installed by the door manufacturer. Otherwise, two piece metal vision panels in new wood fire doors may be have the glazing and light kits installed in the field at the door manufacturer or under their manufacturer's label service. This ensures that all components of complex stick kits the glazed assembly in the new wood door have been properly installed per the manufacturer's follow-up service procedure.
Substantiation: As currently, written, this provision is unduly restrictive in limiting installation of all light kits in new wood doors to the door manufacturer. Installation by the door manufacturer or a distributor under label service is important when “stick kits” involving multiple parts, including special clips or tapes, are involved. However, it is totally unnecessary when two piece metal kits are involved since those are made to fit only the cutout in the door and when glass is furnished, it can only fit those kits. The installation of two piece metal kits are routinely and properly installed in the field without special training or qualifications.
Where fusible links are installed on both sides of the wall, a sleeve shall be installed through the wall to provide an open pathway for the cable/chain connecting the fusible links. The sleeve shall be a ½-in. (13-mm) diameter galvanized steel conduit or pipe, with ends de-burred, and fitted with a collar or bushing at each end to secure the sleeve around the wall and allow free movement of the cable/chain through the sleeve upon fusing of the links.

Wall sleeves required for the installation of fire door fusible links on both sides of a wall are unlike many other wall penetrations for pipes, conduits, ducts and the like. Such sleeves must remain open and unobstructed for free movement of the fusible link cable/chain upon fusing of the links. Firestopping or other sealants should not be used on sleeves because they can encumber movement and prevent automatic closing of a fire door in a fire event.

Substantiation: Rolling steel fire door manufacturers have become aware of an increasing trend towards more frequent and recurring questions from AHJ’s regarding the correct installation of wall sleeves for through-wall fusible links. Sleeves are referred to, but the method of installing such wall sleeves is inadequately documented in NFPA 80. AHJ’s are reluctant to accept manufacturers’ installation instructions, even though such instructions are referenced throughout NFPA 80. This matter is also outside the scope of listing agencies, as they regulate the manufacturing – but not the installation – of fire door products.

Emergency Nature: The incorrect installation of a sleeve, or the misguided attempt to seal it, can create the potential for a life threatening condition resulting from a fire door being prevented from automatically closing.

Substantiation: The existing section specifies a clearance of 3/4 in under the door, which is inconsistent with the NFPA 252 (2008) test assembly clearance of 3/8 in. under the bottom of the door, as well as the 2001 and earlier California Building Code (CBC) Standard 7-2 for Fire Door Tests, which also specify a 3/8 in. bottom gap. Similarly, the 2007 CBC (and 2006 IBC) reference both NFPA 252 and 80 almost interchangeably throughout Chapter 7.

Because NFPA 80 provides no information or guidance as to why the clearance at the bottom of a door is allowed to be twice that which was tested, these apparent anomalies cause enforcement issues in the field.

It is proposed to make the installed door bottom clearance consistent with the test condition, while adding a practical tolerance to account for field conditions (uneven floor, etc.).
Figure A.4.7.5.1 Sleeve Installation for Fusible Links on Both Sides of Wall.
4.9.1 Upon completion of installation, all fire door and fire window assemblies shall be tested to confirm operation of the automatic closing device and full closure and inspected in accordance with 5.2 Inspections.

As currently worded, 4.9.1 does not require newly installed fire doors and fire windows to be inspected to the same level of detail as required under 5.2. Since 4.9.1 specifically addresses the closing device and the unit's ability to reach full closure, newly installed fire door and fire windows are not thoroughly scrutinized to ensure they fully comply with NFPA 80 immediately upon installation.

Now that annual inspections of fire door assemblies are beginning to take place around the country, it makes sense to make sure the fire doors and fire windows are initially installed correctly.

In cases where a field modification to a fire door or a fire door assembly is desired, the laboratory with which the product or component being modified is listed shall be contacted and a written or graphic document description of the modifications shall be presented to that laboratory.

The current language does not allow for any means to track the modification that has been proposed if the contact and description is only communicated verbally. Because this section permits an alteration without field verification by the laboratory, some record of the modification needs to be maintained.

If the laboratory finds that the field modifications that have been determined will not compromise the integrity and fire resistance capabilities of the assembly, the modifications shall be permitted to be authorized by the laboratory without a field visit from the laboratory upon written authorization from that laboratory.

The present language has no means of verification by the authority having jurisdiction over inspections of a facility unless written documentation is provided. This change will provide a mechanism to track those changes that do not require a field verification from the laboratory.
80- Log #18 Final Action:
(5.2.3.1)

Submitter: Kurt A. Roeper, Ingersoll-Rand Security Technologies
Recommendation: Revise text to read as follows:
5.2.3.1 Functional testing of fire door and window assemblies shall be performed by a qualified person individuals with knowledge and understanding of the operating components of the type of door being subject to testing.
Substantiation: I have been asked by many AHJ’s how it is to be determined if an individual has sufficient “knowledge and understanding” and who is empowered to make this judgment. Use of ‘qualified person’ as defined in 3.3.95 is one method to clarify this situation.

80- Log #24 Final Action:
(7.4.3.1.2)

Submitter: John F. Bender, Underwriters Laboratories Inc.
Recommendation: Revise text to read as follows:
7.4.3.1.2 The design and construction of typical fire door hardware for swinging fire doors shall be as illustrated in ANSI/UL 14C, Swing Hardware for Tin-Clad Fire Doors Mounted Singly and in Pairs.
Substantiation: Add ANSI approval designation to ANSI/UL 14C.

80- Log #25 Final Action:
(8.2.4.1.1)

Submitter: John F. Bender, Underwriters Laboratories Inc.
Recommendation: Revise text to read as follows:
8.2.4.1.1 Each tin-clad door formed of 14 in. × 20 in. (360 mm × 510 mm) sheets shall be provided with 3 in. (76.2 mm) diameter vent holes that shall be permitted to be field or factory cut and shall be located as shown in ANSI/UL 10A, Standard for Tin-Clad Fire Doors.
Substantiation: Add ANSI approval designation to ANSI/UL 10A.

80- Log #7 Final Action:
(9.4.1.1)

Recommendation: Revised text to read as follows:
Closing devises shall be listed in accordance with UL 864, Standard for Control Units and Accessories for Fire Alarm Systems.
Substantiation: When this language was originally published, 864 was the standard established by UL for the motor/control system driving the horizontal sliding fire door assembly. UL 864, Standard for Control Units and Accessories for Fire Alarm Systems is a nationally recognized standard that provides appropriate tests and guidelines to assure compatibility. It further deals with critical functions such as alarm verification, endurance, life safety networks, notification, power supplies, resets, risk of electrical shock, risk of fire, standby power sources, storage batteries, dual power source systems, supervisory signals, and trouble signals. In order to ensure the fire protection integrity and operational reliability of this product category, it is imperative that the closing devices be labeled to a signaling standard. Because the 864 standard is not stated in NFPA, it leaves open a standard against which to do the testing. Holding said closing devices to a nationally recognized standard ensures consistency and reliability for Special Purpose Horizontally Sliding Accordion Style Opening Protectives.
80- Log #8
(9.4.2.1)

Recommendation: Revised text to read as follows:
Only labeled power operators listed for use with the door shall be used on fire doors and, when used in a means of egress, only labeled power operators listed in a category intended to facilitate safe egress of persons in case of emergency shall be used. The power operator shall be rated for continuous use with unlimited duty cycle.

Substantiation: The lack of specificity leaves open a standard against which to do testing of power operators. As written, a door operator investigated from an electrical and casualty viewpoint only could conceivably be used as part of a door assembly without detection by the authority having jurisdiction. Historically the power operator for this product category was required to be listed under UL’s SZNT. Releasing Devices, so that the operator and associated components were required to signal the fire alarm system. A lesser standard would compromise the integrity and reliability of the product category. This revision would exclude the use of operators listed in the FDDR category which does not cover fire door operators or systems/assemblies intended to facilitate safe egress of persons in case of emergency. Further, it would ensure that the power operator is sized properly to meet the 50 cycle standard stated in Section 9.4.2.2.2 and 9.4.2.2.3.

80- Log #13
(20.7.3.1)

Submitter: Jaewook Kwon, Arup
Recommendation: Delete “fusible link” in Section 20.7.3.1 and subsequent relative provisions:
The fire safety curtain assembly shall be activated by manual emergency operation, fusible link, and rate-of-rise heat detection located above the stage.

Substantiation: The current Section 20.7.3.1 requires that an emergency control line located against a proscenium wall shall be fitted with fusible links.
Recently the computational fluid dynamics (CFD) study entitled Fire Safety in Theatres – A New Design Approach was carried out to identify when automatic fire protection systems provided in a stagehouse activate. This study had been supervised and reviewed by the Fire Protection Research Foundation (FPRF), and posted on the NFPA website (http://www.nfpa.org/assets/files/PDF/Research/theatre.pdf).
In this study, temperature sensors were placed at locations corresponding to potential positions of fusible links in both the vertical and horizontal portions of the emergency control line. In all simulated fire scenarios (i.e., three different fire locations in the three different sized theatres studied), the sensors indicated that rate of rise heat detectors located above the stage, also required in 20.7.3.1, responded much more quickly than the fusible links (a minimum of 2-5 minutes quicker) and would have deployed the curtain before any of the fusible links were activated. The study showed that rate-of-rise heat detectors responded even more quickly once they were placed under the ceiling as opposed to against the proscenium wall.
Gas velocities and gas temperatures play a major role in heating the fusible links. The higher the gas temperature is, the faster the heating of the fusible links. The faster the gas around the fusible links is, the faster the heating of the fusible links. The fusible links placed at the walls experienced relatively low gas velocities and temperatures. Additionally, a fusible link tends to have a relatively large (thermal) mass compared to other heating elements (e.g., quick response sprinklers), resulting in more delayed response.
Base on the results of the aforementioned study and the reasons described above, a fire safety curtain would likely be deployed due to actuation of the required rate-of-rise heat detectors will in advance of the fusible links. Consequently, the fusible links would do little in deploying the fire safety curtain in the event of a stage fire. The fusible links are unnecessary; they can be provided but should not be required.
<table>
<thead>
<tr>
<th>80- Log #14</th>
<th>Final Action:</th>
</tr>
</thead>
</table>

Submitter: Jaewook Kwon, Arup
Recommendation: Add the following sentence in Section 20.7.3.1:

The fire safety curtain assembly shall be activated by manual emergency operation, fusible link, and rate-of-rise heat detection located above the stage. The rate-of-rise heat detection shall be provided at the ceiling.

Substantiation: The current Section 20.7.3.1 is ambiguous with respect to the locations of rate-of-rise heat detectors as it simply states “above the stage”. Typical practice often finds the rate-of-rise heat detectors against the proscenium wall above the proscenium opening.

Recently the computational fluid dynamics (CFD) study entitled Fire Safety in Theatres – New Design Approach was carried out to identify when automatic fire protection systems provided in a theatre stagehouse activate. This study had been supervised and reviewed by the Fire Protection Research Foundation (FPRF), and posted on the NFPA website (http://www.nfpa.org/assets/files//PDF/Research/theatre.pdf).

This study showed that ceiling mounted rate of rise heat detectors responded more quickly than (proscenium) wall mounted rate-of-rise heat detectors in most simulated fire scenarios.

Directing the placement of rate-of-rise heat detectors under the ceiling would result in faster detection times and, accordingly, more rapid deployment of the fire safety curtain and notification of alarm.
Principally, the IFC has two concerns with the proposed language which was included via the TIA. Firstly, the Annex note focuses solely on firestopping materials as being prohibited from being installed. In reality, any materials that can encumber movement and prevent automatic closing of a fire door in a fire event should not be installed in sleeves. Firestopping systems should be evaluated to ensure they will not impact the credited operation of the fusible link mechanism.

Substantiation: **Problem:** TIA 1001 (80) was issued in October 2010 but created a situation where the information provided in the Annex does not completely clarify the application of the article. The intent of the TIA was to allow the free movement of the chain or cable needs to move freely through the sleeve during the operation of the fusible links to close the door. By design, this should occur at the early stages of a fire event occurring in the vicinity of the door. Therefore, unprotected openings will continue to pose a significant ongoing hazard to the building and/or its occupants if not effectively sealed.

The need for effective firestopping is well established in Building and Fire Codes around the world. Rolling steel fire doors are commonly used in buildings where interior firewalls have been constructed to separate areas within buildings and contain potential fires. The International Firestop Council wishes to identify the fact that numerous options are available in the marketplace today to properly firestop the chain or cable pathways that are required for fire door release arrangements (as shown in NFPA 80), thus fully maintaining the fire rating of the wall. Properly chosen firestop solutions will allow free movement of the cable/chain through the wall.

Section 4.7 of NFPA 80-2010 goes to great lengths to describe the placement and installation of detectors to initiate the quick release of fire doors. Typical intumescent firestopping materials activate at in the range of 350°F, which is a substantially higher temperature than the temperature at which fusible links or heat detectors actuate, and in the stage of a fire where sufficient smoke would be produced to actuate smoke alarms. Since, automatic-closing devices on Rolling Steel Fire Doors are designed to activate long before the intumescent firestopping materials begin to intumesce at approximately 350°F, any chains or cables are free to move through the opening, and will have performed their intended function before the intumescent material begins to seal the opening.

There are numerous conventional intumescent firestop devices available from every firestop system manufacturer, which both ensure that the hole for the cable pathway conduit can be sealed to prevent fire spread, and allow the rolling steel fire door to perform its intended function during automatic closing. The proper solution to this firestop application would be through the use of recessed wrap strips or oversized firestop collar devices. The collar devices are similar to the “sleeves” described in the proposed TIA except that these are also firestop devices. These devices are configured to be secured into a wall-breaching hole through which a utility conveying item is to be passed. These sleeves typically have a tubular barrel with a flange attached perpendicularly at one or both ends and a series of screw holes formed through the flange. The inner and outer surfaces of the barrel, as well as the wall-facing surface of the flange are lined with intumescent material. In case of fire, once the temperatures reach the 350°F range, the intumescent material expands to completely seal the opening between the flanges and the wall surfaces, between the barrel outer surface and the wall hole and between the barrel inner surface and the conduit. All passages are thus effectively sealed so that fire and smoke cannot pass between compartments. The use of either an oversized firestop collar or of intumescent wrap strips can allow free movement of the cable/chain prior to their activation, thus not interfering with the operation of the fire door. Some representative drawings of the Intumescent Firestop Collars and Firestop Wrap Strip installations.
are provided below to illustrate the applications. Again, you will note that it is the IFC’s assertion that these can be configured and installed so as not interfere with the operation of the cable or chain either before or during the period of operation of the fusible links or detectors.

****Insert Artwork here****
Illustration 1
Firestop Collar Installation

****Insert Artwork here****
Illustration 2
Firestop Wrap Strip Installation

Building Codes require firestopping for openings created through fire resistance rated walls and floors. There should be no need to allow an exception to the requirements for firestopping to accommodate a condition for which multiple commercially available solutions already exist. These firestop solutions are widely and effectively used for a variety of other penetrating items. They can be installed to accommodate free movement under these conditions, and still provide the critical protection against the spread of fire.

80- Log #5
(A.5.2)

Final Action:

Submitter: Robert Bourke, Northeastern Regional Fire Code Development Committee
Recommendation: Revise to read: A.5.2

… A periodic inspection and maintenance program should be implemented and should be the responsibility of the property management.

Substantiation: Indicating that the program “should” be implemented implies that it is a suggestion, yet the inspection is required in 5.2.1 of the Standard.
Illustration 1
Firestop Collar Installation

- FIRESTOP COLLAR
- SASH CHAIN OR STEEL CABLE
- 1/2" EMT CONDUIT OR PIPE
- SET COLLAR OR BUSHING WITH (OPTIONAL - NOT SHOWN) WASHER
- CONCRETE, MASONRY, OR APPROVED NON-MASONRY
Illustration 2
Firestop Wrap Strip Installation

FIRESTOP WRAP STRIP

SASH CHAIN OR STEEL CABLE

1-1/2" EMT CONDUIT OR PIPE

SET COLLAR OR BUSHING WITH (OPTIONAL - NOT SHOWN) WASHER

CONCRETE, MASONRY, OR APPROVED NON-MASONRY
A.5.2.3.1 Visual inspection and functional testing of fire door and fire window assemblies require the persons performing the inspections and testing to be thoroughly knowledgeable of the various components and systems that are used to create fire-rated assemblies. In the case of swinging doors with builders hardware, these assemblies are comprised of labeled and listed components from several manufacturers. Often, the listing of the door leaf determines which products are permitted to be installed on an assembly. Inspectors of swinging doors with builders hardware need be able to recognize which components can or cannot be used on specific assemblies, which requires training and experience on behalf of the persons performing the inspections. Additionally, AHJs need to be able to rely on the competency, expertise, experience, and knowledge of the fire door inspectors in their jurisdiction.

Professional training and certification programs, such as Intertek's Certified Fire Door Inspector program (through its Warnock Hersey Mark) and the Door and Hardware Institute's Fire and Egress Door Assembly Inspection training program are designed to provide inspectors with the knowledge they need to accurately assess the condition of swinging doors with builders hardware.

Substantiation: Now that NFPA 80's inspection requirements are beginning to be enforced around the country, AHJs are seeking to determine what a minimum level of knowledge is acceptable in their jurisdictions. 5.2.3.1 states that the functional testing and visual inspections are to "be performed by individuals with knowledge and understanding of the operating components of the type of door being subjected to testing." While 5.2.3.1 recognizes the fact that the inspectors need to be "knowledgeable," it stops short of defining what constitutes an acceptable level of knowledge might be, thereby leaving the AHJ community to sort this out for themselves.

Understanding that at the time the inspection requirements where published in the 2007 edition of NFPA 80 there were no training programs in place, that is no longer the case. Intertek's Certified Fire Door Inspector program in partnership with the Door and Hardware Institute's training program, was the first program to be released. As of November 2010, nearly 300 individuals have completed the DHI training program and approximately 80 of those individuals have entered the Intertek certification program.

The AHJ office of Clark County Nevada (per Jim Arnold) will very likely be the first jurisdiction in the United States to formally require inspectors of fire door assemblies to be Intertek certified. In part, their decision to require Intertek certification is based on the third-party periodic auditing of inspection records and continuing education requirements, as well as the educational components that the inspectors are required to pass.

The hourly designation indicates the duration of the fire test exposure and is known as the fire protection rating. Fire protection ratings of fire doors meeting this standard should be as determined and reported by a testing agency in accordance with NFPA 252, Standard Methods of Fire Tests of Door Assemblies. (See ANSI/UL 10B, Standard for Safety Fire Tests of Door Assemblies; ANSI/UL 10C, Standard for Positive Pressure Fire Tests of Door Assemblies; and CAN/ULC-S104-M09 CAN/ULC-S104-10, Standard Method for Fire Tests of Door Assemblies.)
Security fire doors and frame assemblies are available in two types of security applications. The institutional type is for use in detention and correctional facilities where prevention against escape, unauthorized movement among secure areas, and vandalism by inmates are of primary concern (see NAAMM/HMMA-863, Guide Specifications for Detention Security Hollow Metal Doors and Frames). The commercial type is used to protect the rear entrances of commercial establishments, interior secure areas, electric-generating stations, data processing centers, and security control areas of office buildings and other building types, including those impacted by homeland security, where protection of life and assets against unlawful entrance, theft, vandalism, and terror attacks is of primary concern (see NAAMM/HMMA-862, Guide Specifications for Commercial Security Hollow Metal Doors and Frames). Security doors are available with bullet-resistant capabilities. These doors are tested in accordance with the standard fire test of door assemblies and additionally might be tested in accordance with UL 752, Standard for Safety Bullet-Resisting Equipment, which specifies bullet-resistant ratings for medium-power small arms, high-power small arms, super-power small arms, and highpower rifles. Hardware is provided with the door assembly in the case of doors tested in accordance with ANSI/UL 752.

Substantiation: Add ANSI approval designation to ANSI/UL 752.

Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.
Substantiation: Add ANSI approval designation to ANSI/UL 752 and update referenced standards to most recent revisions.

Underwriters' Laboratories of Canada, ULC Standards, 7 Underwriters Road, Toronto, ON, M1R 3B4, Canada.
Substantiation: Update ULC address and postal code. Update referenced standard to most recent revision. Update title of standard number and add an "s" to the word "Tests".
105- Log #CP1
(Entire Document) Final Action:

Submitter: Technical Committee on Fire Doors and Windows,
Recommendation: Review entire document to: 1) Update any extracted material by preparing separate proposals to do so, and 2) review and update references to other organizations documents, by preparing proposal(s) as required.
Substantiation: To conform to the NFPA Regulations Governing Committee Projects.

105- Log #6
(2.3.1) Final Action:

Submitter: John F. Bender, Underwriters Laboratories Inc.
Recommendation: Revise text as follows:
Substantiation: Reason: Update referenced standards to most recent revisions.

105- Log #2
(5.2.1.2) Final Action:

Submitter: Robert Bourke, Northeastern Regional Fire Code Development Committee
Recommendation: Revise to read and add a new section.
5.2.1.2 Doors shall be operated to confirm operability of the self closing mechanism and full closure.
5.2.1.2.1 Where a door is required to latch, it shall be inspected to confirm that the door does latch.
Substantiation: It is one thing to confirm the door will close. It another thing to see that the door will fully closes on its own...i.e., self close. If it is important enough to require that doors latch, it should be equally important that the latch is confirmed as being operable.

105- Log #3
(6.2.1) Final Action:

Submitter: Robert Bourke, Northeastern Regional Fire Code Development Committee
Recommendation: Delete section 6.2.1
6.2.1 Smoke Damper. A device within an air distribution system to control the movement of smoke.
Substantiation: Not needed as it appears in, and contains same wording as, Chapter 3 with all definitions.

105- Log #4
(6.2.2) Final Action:

Submitter: Robert Bourke, Northeastern Regional Fire Code Development Committee
Recommendation: Delete 6.2.2
6.2.2 Combination Fire/Smoke Damper. A device that meets both the fire damper and smoke damper requirements.
Substantiation: Not needed as it appears in, and contains same wording as, Chapter 3 with all definitions.
Submitter: Robert Bourke, Northeastern Regional Fire Code Development Committee

Recommendation: Revise to read:

6.3.2.2 A smoke damper access panel shall be labeled with the words “Smoke Damper” in letters not less than 1 in. (25.4 mm) in height with the principal strokes of letters not less than \(\frac{3}{16}\) in. (4.8 mm) in width. External insulation….

Substantiation: A 1-inch high letter as wide as a pen/pencil stroke may be unnoticeable. The proposed letter width to height proportion is similar to the proportion used with EXIT signs.

Submitter: Robert Bourke, Northeastern Regional Fire Code Development Committee

Recommendation: Revise to read:

6.5.2 Each damper shall be tested and inspected one year after installation. The test and inspection frequency shall then be every 4 years, except in hospitals, where the frequency shall be every 6 years.

6.5.2.1 In all occupancies other than hospitals, each damper shall be tested and inspected every 4 years.

6.5.2.1.1 In hospitals, each damper shall be tested and inspected every 6 years.

Substantiation: The present section contains three specific requirements. Breaking it up into one section for hospitals and one for non-hospitals allows the language to seem less clumsy.