1. Revise Section 4.1.4 as follows:

4.1.4 Antifreeze Systems. Antifreeze solutions with concentrations in excess of 50% by volume shall not be permitted.

4.1.4.1 Only Factory premixed solutions shall be permitted.

2. Renumber current 4.1.4 as 4.1.4.2

3. Revise Section 8.3.3 as follows:

8.3.3 Antifreeze Systems.

8.3.3.1 Antifreeze Solutions. Antifreeze solutions with concentrations in excess of 50% by volume shall not be permitted.

8.3.3.1.1 Only Factory premixed solutions shall be permitted.

Renumber remainder of section accordingly.

4. Revise Table 8.3.3.2.3 as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>Solution (by volume)</th>
<th>Specific Gravity at 60°F (15.6°C)</th>
<th>Freezing Point °F</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerine</td>
<td>50% water</td>
<td>1.145</td>
<td>-29.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40% water</td>
<td>1.171</td>
<td>-44.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30% water</td>
<td>1.187</td>
<td>-30.4</td>
<td></td>
</tr>
<tr>
<td>Hydrometer scale 1.000 to 1.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>60% water</td>
<td>1.034</td>
<td>-6.4</td>
<td>-21.1</td>
</tr>
<tr>
<td></td>
<td>50% water</td>
<td>1.041</td>
<td>-26</td>
<td>-32.2</td>
</tr>
<tr>
<td></td>
<td>40% water</td>
<td>1.045</td>
<td>-60</td>
<td>-51.1</td>
</tr>
<tr>
<td>Hydrometer scale 1.000 to 1.200 (subdivisions 0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.P.: Chemically pure. U.S.P.: United States Pharmacopoeia 96.5%. [15: Table 7.6.2.2]

Submitter’s Substantiation. As a result of information obtained through a report from the Fire Protection Research Foundation titled *Antifreeze Solutions in Home Fire Sprinkler Systems* and data compiled in a UL document titled *Fire Test Data Summary for Residential Sprinklers Discharging Antifreeze Mixtures* sufficient technical documentation now exists to highlight safety concerns and knowledge gaps regarding the provisions permitting antifreeze in sprinkler systems protecting dwelling units.

Until such time that additional research is conducted to satisfy the concerns and knowledge gaps the safe use of antifreeze solutions in high concentrations within sprinkler systems protecting dwelling units cannot be assured.
Mandating the use of factory premix solutions is a quality control measure to ensure the concentrations are not used above the established limit.

Emergency Nature:

1. The proposed TIA intends to correct a previously unknown existing hazard.
2. The proposed TIA intends to offer to the public a benefit that would lessen a recognized (known) hazard or ameliorate a continuing dangerous condition or situation.

Attachments:

- Fire Protection Research Foundation titled *Antifreeze Solutions in Home Fire Sprinkler Systems* dated May 28, 2010
- UL document titled *Fire Test Data Summary for Residential Sprinklers Discharging Antifreeze Mixtures* dated May 26, 2010
Antifreeze Solutions in Home Fire Sprinkler Systems

Literature Review and Research Plan

Prepared by:
Code Consultants, Inc.
Automatic sprinkler systems significantly limit the potential for loss of life and property in residential occupancies. When portions of automatic sprinkler systems must be located in spaces subject to freezing and temperatures cannot reliably be maintained at or above 40°F, NFPA 13 requires the use of dry pipe, preaction, or antifreeze sprinkler systems, or other systems specifically listed to protect against freezing. Recent fire incidents have raised questions regarding the effectiveness of sprinkler systems with certain antifreeze solutions in controlling residential fire conditions.

This report describes the results of a literature search on the impact of antifreeze solutions on the effectiveness of home fire sprinkler systems. Suggestions for further research are provided to provide a more complete analysis of currently permitted antifreeze solutions as well as to investigate other antifreeze solutions that could be used in sprinkler systems.

The content, opinions and conclusions contained in this report are solely those of the author.
Home Fire Sprinklers and Antifreeze Solutions Literature Review

Project Technical Panel

Kerry Bell
Underwriters Laboratories, Inc.

Maurice Pilette
Mechanical Designs, Inc. (chair of NFPA 13D)

Scott Franson
The Viking Corporation

Jim Lake
NFPA Staff Liaison

Pete Willse
XL GAPS

Scott Futrell
Futrell Fire Consult and Design, Inc.

Elizabeth Buc
Fire and Materials, LLC

Magnus Arvidson
SP (Sweden)

Project Sponsor

National Fire Protection Association
Literature Review and Research Plan

Antifreeze Solutions in Home Fire Sprinkler Systems

Prepared for:
The Fire Protection Research Foundation
1 Batterymarch Park
Quincy, MA 02169

Prepared by:
CODE CONSULTANTS, INC.
1804 Borman Circle Drive
Saint Louis, MO 63146

CCI Project No. 100138.04.000

May 28, 2010

© 2010 Fire Protection Research Foundation
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>II. Definitions</td>
<td>6</td>
</tr>
<tr>
<td>III. Background</td>
<td>9</td>
</tr>
<tr>
<td>A. NFPA 13 Requirements for Antifreeze Systems</td>
<td>9</td>
</tr>
<tr>
<td>B. Antifreeze Solutions</td>
<td>12</td>
</tr>
<tr>
<td>C. Chemistry of Solutions</td>
<td>14</td>
</tr>
<tr>
<td>D. Residential Sprinkler Systems</td>
<td>15</td>
</tr>
<tr>
<td>E. Approval Standards for Residential Sprinklers</td>
<td>17</td>
</tr>
<tr>
<td>F. Sprinkler Droplet Sizes and Distributions</td>
<td>18</td>
</tr>
<tr>
<td>G. Flammability of Liquids</td>
<td>20</td>
</tr>
<tr>
<td>H. Factors Required for an Explosion</td>
<td>23</td>
</tr>
<tr>
<td>I. Existing Approval Standards and Test Methods for Ignition Properties of Liquids</td>
<td>23</td>
</tr>
<tr>
<td>IV. Existing Fire Incident Reports</td>
<td>27</td>
</tr>
<tr>
<td>A. Monmouth Beach, NJ</td>
<td>27</td>
</tr>
<tr>
<td>B. Truckee, CA</td>
<td>27</td>
</tr>
<tr>
<td>V. Prior Research</td>
<td>29</td>
</tr>
<tr>
<td>A. SP Research</td>
<td>29</td>
</tr>
<tr>
<td>B. FM Research</td>
<td>30</td>
</tr>
<tr>
<td>C. UL Research</td>
<td>31</td>
</tr>
<tr>
<td>1. ESFR Sprinkler Protection of Cold Storage</td>
<td>31</td>
</tr>
<tr>
<td>2. Manufactured Home Sprinkler Protection</td>
<td>31</td>
</tr>
<tr>
<td>VI. Research Plan and Near-Term Testing</td>
<td>35</td>
</tr>
<tr>
<td>A. Near-term Testing on Sprinkler Effectiveness with Antifreeze Solutions</td>
<td>35</td>
</tr>
<tr>
<td>B. Future Research</td>
<td>37</td>
</tr>
<tr>
<td>VII. Summary</td>
<td>40</td>
</tr>
<tr>
<td>VIII. References</td>
<td>42</td>
</tr>
</tbody>
</table>
Executive Summary

NFPA 13, *Standard for the Installation of Sprinkler Systems*, has included guidance on the use of antifreeze solutions in fire sprinkler systems since the 1940 edition.\(^1\) Antifreeze solutions may be used in fire sprinkler systems where the piping system, or portions of the piping system, may be subject to freezing temperatures.\(^2\)

Two compounds, glycerin and propylene glycol, are permitted by NFPA 13 for use as antifreeze solutions with water in sprinkler systems supplied by either potable or nonpotable water connections.\(^3\) This report primarily address glycerin and propylene glycol antifreeze solutions, because they are the only solutions permitted by NFPA 13 for use in sprinkler systems connected to potable water supplies. Both compounds are fully miscible in water, meaning that they will form a solution with water in all proportions. Once in solution, both compounds will remain in solution and do not exhibit settling or separation from the solution.\(^4\)

Propylene glycol and glycerin, in pure form, are Class III B Combustible Liquids having flashpoints of 210°F (99°C) and 390°F (199°C), respectively.\(^5\) Depending on concentration, the addition of water limits the flammability of each compound.\(^6\) Flashpoint, however, is not a reliable indication of the potential for ignition of a liquid when it is divided into droplets.\(^7\)

The potential for ignition of an antifreeze solution spray depends on the type and concentration of antifreeze as well as the size and mass concentration of the droplets.\(^8\) The majority of water from a standard automatic sprinkler is expected to be contained in droplets ranging from 200 to 3,000 micrometers (μm).\(^9\) In referenced studies, measurements of water droplets from residential sprinklers range from an arithmetic mean of 200 to over 500 μm, depending on location. However, droplets with diameters of less than 100 μm were measured.\(^10\) Existing data on droplet sizes expected from residential sprinklers using antifreeze solutions has not been identified; test data for large-orifice sprinklers indicates that antifreeze solutions with higher viscosities than water have little impact on the spray pattern distribution, which contradicts theoretical predictions.\(^11\) Future investigations should address either explicitly or implicitly the influence of antifreeze solutions on the drop size distribution produced.

Combustible liquids in a spray or mist have been found to ignite at temperatures less than their flashpoint.\(^7\) Research on the ignition of mists indicates that droplets of less than 10 μm behave in a similar manner to a vapor of the same concentration.\(^7,8\) Droplets larger than 40 μm may ignite at concentrations below the Lower Flammability Limit (LFL) for an equivalent concentration of vapor.\(^7,8\) The potential for ignition of a solution of propylene glycol or glycerin and water is limited by the need to evaporate water from the solution prior to ignition.\(^6,7\) Limited data has been identified on the ignition potential of droplets of antifreeze solution at concentrations permitted by NFPA 13.\(^5\) However, it is clear from the available literature that the
use of antifreeze solutions in concentrations exceeding those permitted by NFPA 13 must be avoided.

Existing laboratory test data was identified regarding the effectiveness of sprinklers when discharging antifreeze solutions of propylene glycol or glycerin.11,44,45,46 For certain test conditions, an increase in energy released of 18 to 76% has been measured during the time of antifreeze application compared with water alone.11,44 These tests included antifreeze solutions at concentrations permitted by NFPA 13 that were found to contribute to the energy released during a fire condition.

NFPA 13 recognizes that the potential combustibility of antifreeze solutions may be mitigated, because antifreeze solutions will only be discharged for a limited duration upon activation of a sprinkler system and will be followed by the application of water.3 NFPA 13, however, does not provide guidance on the duration of antifreeze solution discharge that is considered acceptable or limit the size of antifreeze sprinkler systems. It is also unclear from the existing research how water spray densities in excess of the minimum required to control a fire condition would impact the contribution of antifreeze solutions to the energy released.

A series of preliminary tests was recently funded and conducted by Underwriters Laboratories to provide initial investigations of antifreeze sprinkler systems in residential applications. A complete report outlining the results of the test series was not available prior to this report being issued, because the tests are very recent. A detailed analysis of the test results should be conducted when the data is available. CCI witnessed several of the tests on behalf of the Foundation. Initial observations from the test series indicate that solutions of 70% glycerin or 60% propylene glycol in water may be ignited when discharged through sprinkler systems, resulting in a substantial fire event. This large-scale ignition of the antifreeze solution results in flames surrounding the majority of the sprinkler spray. Large-scale ignition of the antifreeze solutions did not occur in all of the 70% glycerin or 60% propylene glycol test configurations, or in any of the tests using a 50% glycerin in water solution. Observations from the tests indicate that the potential for large-scale ignition of an antifreeze solution depends on a several factors including, but not limited to, the type of sprinkler, sprinkler operating pressure, initial fire condition, location of the initial fire condition with respect to the sprinkler, and the type and concentration of antifreeze solution. Further investigation of glycerin and propylene glycol antifreeze solutions is necessary to more thoroughly investigate the appropriateness of glycerin and propylene glycol solutions for use in automatic sprinkler systems; however, the preliminary tests conducted by UL indicate the potential for substantial fire events to result from the use of 70% glycerin and 60% propylene glycol solutions in water.

Two fire incident reports have been obtained where the discharge of antifreeze from a sprinkler system was alleged to have contributed to a fire condition.12,13 The discharge of antifreeze solution from a fire sprinkler system was alleged to result in a flash fire in one of the incidents.13
and an explosion in the other incident.12 The flash fire incident was located in an outdoor restaurant seating area and the explosion incident occurred in an indoor residential kitchen. Confinement of a flash fire can lead to an overpressure or what is commonly termed an explosion.14 Although the consequences of a flash fire and an explosion can be significantly different, the occurrence of either a flash fire or an explosion should be avoided, since a flash fire by itself can be hazardous and under the correct conditions can become an explosion.

Although the prior research did not indicate that a flash fire or explosion would be expected to occur for antifreeze solutions at concentrations permitted by NFPA 1311,44,45,46, the recent tests observed at UL indicate that a flash fire and sustained large-scale ignition of antifreeze solution is possible at certain antifreeze concentrations permitted by NFPA 13. Thus, immediate consideration and additional research is recommended to investigate the appropriateness of antifreeze solutions that are currently permitted to be used in sprinkler systems.
I. Introduction

Automatic sprinkler systems significantly limit the potential for loss of life and property in residential occupancies.15 When portions of automatic sprinkler systems must be located in spaces subject to freezing and temperatures cannot reliably be maintained at or above 40°F, NFPA 13 requires the use of dry pipe, preaction, or antifreeze sprinkler systems, or other systems specifically listed to protect against freezing.3

Antifreeze sprinkler systems may be preferable to dry pipe or preaction sprinkler systems in residential applications based on cost, complexity, and reliability. NFPA statistics indicate that wet pipe sprinkler systems, including antifreeze sprinkler systems, operate effectively in a higher fraction of fire conditions where they are present than dry pipe sprinkler systems.15 In addition, NFPA 13 requires that residential sprinklers used in dry pipe systems must be specifically listed for dry pipe applications;3 a listed residential sprinkler for dry pipe applications is not currently available.16 Thus, antifreeze sprinkler systems have had an important role in protecting people and property in instances where portions of sprinkler systems must be located in spaces subject to freezing.

A recent fire incident12 raised questions regarding the effectiveness of antifreeze sprinkler systems in controlling residential fire conditions. The Fire Protection Research Foundation retained Code Consultants, Inc. (CCI) to perform a literature search and develop a research plan to investigate the impact of antifreeze solutions on the effectiveness of home fire sprinkler systems. The literature review has included the following subjects:

1. Antifreeze sprinkler system requirements

2. Mixing and separation of antifreeze compounds commonly used in sprinkler systems

3. Flammability of antifreeze solutions commonly used in sprinkler systems

4. Factors influencing the flammability of liquids, such as dispersion in droplets

5. Characterization of residential sprinkler sprays

6. Factors influencing the potential for flash fires or explosions from liquid sprays

7. Existing fire test data on the effectiveness of antifreeze solutions at controlling fire conditions

8. Fire incident reports involving antifreeze sprinkler systems
A research plan was developed to supplement the literature search in areas where existing information was limited. In addition, CCI observed a series of fire tests conducted by Underwriters Laboratories, Inc. (UL) to investigate the effectiveness of antifreeze sprinkler systems in controlling certain home fire scenarios. Observations of the preliminary UL testing (as witnessed by CCI) are included in this report. Suggestions for further research are provided to provide a more complete analysis of currently permitted antifreeze solutions as well as to investigate other antifreeze solutions that could be used in sprinkler systems.
II. Definitions

Antifreeze Sprinkler System – A wet pipe sprinkler system employing automatic sprinklers that are attached to a piping system that contains an antifreeze solution and that are connected to a water supply. The antifreeze solution is discharged, followed by water, immediately upon operation of sprinklers opened by heat from a fire.

Autoignition Temperature (AIT) – The minimum temperature required to initiate or cause self-sustained combustion of a solid, liquid, or gas independently of the heating or heated element.

Automatic Sprinkler – A fire suppression or control device that operates automatically when its heat-actuated element is heated to its thermal rating or above, allowing water to discharge over a specific area.

Combustible Liquid – Any liquid that has a closed-cup flash point at or above 100°F (37.8°C), as determined by the test procedures and apparatuses set forth in Section 4.4 [of NFPA 30].

Deflagration – Propagation of a combustion zone at a velocity that is less than the speed of sound in the unreacted medium.

Detonation – Propagation of a combustion zone at a velocity that is greater than the speed of sound in the unreacted medium.

Dry-pipe Sprinkler System – A sprinkler system employing automatic sprinklers that are attached to a piping system containing air or nitrogen under pressure, the release of which (as from the opening of a sprinkler) permits the water pressure to open a valve known as a dry pipe valve, and the water then flows into the piping system and out the opened sprinklers.

Explosion – The sudden conversion of potential energy (chemical or mechanical) into kinetic energy with the production and release of gases under pressure, or the release of gas under pressure. These high-pressure gases then do mechanical work such as moving, changing, or shattering nearby materials.

Flammable Liquid – Any liquid that has a closed-cup flash point below 100°F (37.8°C), as determined by the test procedures and apparatus set forth in Section 4.4 [of NFPA 30], and a Reid vapor pressure that does not exceed an absolute pressure of 40 psi (276 kPa) at 100°F (37.8°C), as determined by ASTM D 323, Standard Test Method for Vapor Pressure of Petroleum Products (Reid Method).

Flash Fire – A fire that spreads rapidly through a diffuse fuel, such as dust, gas or the vapors of an ignitable liquid, without the production of damaging pressure.
Flash Point – *The minimum temperature of a liquid at which sufficient vapor is given off to form an ignitable mixture with the air, near the surface of the liquid or within the vessel used, as determined by the appropriate test procedure and apparatus specified in Section 4.4 [of NFPA 30].* \(^{18}\)

Flashover – *A transition phase in the development of a compartment fire in which surfaces exposed to thermal radiation reach ignition temperature more or less simultaneously and fire spreads rapidly throughout the space, resulting in full room involvement or total involvement of the compartment or enclosed space.* \(^{20}\)

Gas – *The state of matter characterized by complete molecular mobility and unlimited expansion; used synonymously with the term vapor.* \(^{19}\)

Hygroscopic – *Descriptive of a substance that has the property of adsorbing moisture from the air.* \(^{21}\)

Lower Flammability Limit (LFL) – *The lowest concentration of a gas or vapor that will just support the propagation of flame away from a pilot ignition source.* \(^{19}\)

Miscibility – *The ability of a liquid or gas to dissolve uniformly in another liquid or gas.* \(^{21}\)

Preaction Sprinkler System – *A sprinkler system employing automatic sprinklers that are attached to a piping system that contains air that might or might not be under pressure, with a supplemental detection system installed in the same areas as the sprinklers.* \(^3\)

Residential Sprinkler – *A type of fast-response sprinkler having a thermal element with an RTI of 50 (meters-second) \^{1/2} or less, that has been specifically investigated for its ability to enhance survivability in the room of fire origin, and that is listed for use in the protection of dwelling units.* \(^3\)

Solution – *A uniformly dispersed mixture at the molecular or ionic level, of one or more substances (the solute) in one or more other substances (solvent).* \(^{21}\)

Upper Flammability Limit (UFL) – *The highest concentration of a vapor or gas that will ignite and burn with a flame in a given atmosphere.* \(^{19}\)

Vapor – *The gas phase of a substance, particularly of those that are normally liquids or solids at ordinary temperatures.* \(^{20}\)

Water-Miscible Liquid – *A liquid that mixes in all proportions with water without the use of chemical additives, such as emulsifying agents.* \(^{18}\)
Wet Pipe Sprinkler System – A sprinkler system employing automatic sprinklers attached to a piping system containing water and connected to a water supply so that water discharges immediately from sprinklers opened by heat from a fire.3
III. Background

This section summarizes relevant background information from the literature search, including NFPA 13 requirements, chemical data on propylene glycol and glycerin, relevant chemistry, residential sprinklers, and factors influencing the flammability of liquids and explosions.

A. NFPA 13 Requirements for Antifreeze Systems

The following are the current versions of NFPA 13 that address the installation of sprinkler systems:

- **NFPA 13**

- **NFPA 13D**
 Standard for the Installation of Sprinkler Systems in One- and Two-Family Dwellings and Manufactured Homes (2010 edition)

- **NFPA 13R**
 Standard for the Installation of Sprinkler Systems in Residential occupancies up to and Including Four Stories in Height (2010 edition)

NFPA 13R requires antifreeze systems to be installed in accordance with NFPA 13, and NFPA 13D includes substantially similar requirements for antifreeze solutions as those found in NFPA 13. Thus, the discussion in the report will be based on NFPA 13, but also addresses NFPA 13D and NFPA 13R.

The purpose of NFPA 13 is, “to provide a reasonable degree of protection for life and property from fire through standardization of design, installation, and testing requirements for sprinkler systems. . . .” The purpose of NFPA 13D is, “to provide a sprinkler system that aids in the detection and control of residential fires and thus provides improved protection against injury and life loss.” The purpose of NFPA 13R is, “to provide a sprinkler system that aids in the detection and control of residential fires and thus provides improved protection against injury, life loss, and property damage.” Automatic sprinkler systems that contain antifreeze-water mixtures have been addressed in NFPA 13 for more than 60 years. Automatic sprinkler systems that incorporate antifreeze solutions are classified as wet pipe systems.

The intent of antifreeze sprinkler systems is to protect sprinkler piping that passes through areas that could be exposed to freezing temperatures. For example, antifreeze sprinkler systems may be used in freezers, loading docks, elevator penthouses, or elevator shafts in commercial buildings. Antifreeze sprinkler systems may also be used in residential areas that are not protected against freezing temperatures. This could include sprinklers protecting unconditioned areas of a residential building or sprinklers serving a conditioned area of a residential building where the pipe passes through an unconditioned area such as an attic.
NFPA 13 outlines several requirements for the proper design and installation of antifreeze sprinkler systems. The requirements are designed to, “minimize the concentration of the solution and, therefore, minimize the potential effect on the extinguishment capabilities of the solution.”

The use of antifreeze solutions in fire sprinkler systems is required to conform to state and local health regulations. NFPA 13 only permits the use of nontoxic antifreeze solutions when the system is connected to a public water supply. NFPA 13 also differentiates antifreeze solution requirements between sprinkler systems supplied by potable and non-potable water connections.

NFPA 13 permits glycerin-water and propylene glycol-water mixtures for use in antifreeze sprinkler systems connected to either potable or nonpotable water supplies. The following tables illustrate the antifreeze solution requirements for potable and non-potable water connections:

<table>
<thead>
<tr>
<th>Material</th>
<th>Solution with Water (by Volume)</th>
<th>Specific Gravity at 60 °F (15.6 °C)</th>
<th>Freezing Point</th>
<th>°F</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerin (C.P. or U.S.P grade)</td>
<td>50% glycerin</td>
<td>1.145</td>
<td>-20.9</td>
<td>-29.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60% glycerin</td>
<td>1.171</td>
<td>-47.3</td>
<td>-44.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70% glycerin</td>
<td>1.197</td>
<td>-22.2</td>
<td>-30.1</td>
<td></td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>40% propylene glycol</td>
<td>1.034</td>
<td>-6</td>
<td>-21.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% propylene glycol</td>
<td>1.041</td>
<td>-26</td>
<td>-32.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60% propylene glycol</td>
<td>1.045</td>
<td>-60</td>
<td>-51.1</td>
<td></td>
</tr>
</tbody>
</table>

C.P.: Chemically pure. U.S.P.: United States Pharmacopoeia 96.5%

Table 1: Adapted from NFPA 13 Table 7.6.2.2 Antifreeze Solution to be Used if Potable Water is Connected to Sprinklers
Material	Solution with Water (by Volume)	Specific Gravity at 60 °F (15.6 °C)	Freezing Point
Glycerin	See Table 1 (NFPA 13 Table 7.6.2.2)		
Diethylene glycol	50% diethylene glycol	1.078	-13
55% diethylene glycol	1.081	-27	
60% diethylene glycol	1.086	-42	
Ethylene glycol	39% ethylene glycol	1.056	-10
54% ethylene glycol	1.063	-20	
49% ethylene glycol	1.069	-30	
53% ethylene glycol	1.073	-40	
Propylene glycol | See Table 1 (NFPA 13 Table 7.6.2.2) | | |

Table 2: Adapted from NFPA 13 Table 7.6.2.3 Antifreeze Solution to be Used if Non-potable Water is Connected to Sprinklers

Antifreeze solutions of glycerin, diethylene glycol, and ethylene glycol were included in NFPA 13 starting in the Appendix of the 1940 edition, known as National Board of Fire Underwriters Pamphlet No. 13 at the time. The 1953 edition of NFPA 13 included requirements for antifreeze sprinkler systems in the body of the standard and permitted the use of propylene glycol or calcium chloride solutions as well as glycerin, diethylene glycol, and ethylene glycol. The antifreeze solutions and concentrations permitted by the 1953 edition of NFPA 13 are the same as those permitted by the current (2010) edition of NFPA 13, with the exception that calcium chloride is no longer permitted.

The exclusive use of premixed antifreeze solutions is not required by NFPA 13; however, it may be required for certain specially listed equipment or systems. The Annex to NFPA 13 cautions against the use of antifreeze solutions that are mixed on-site. When antifreeze solutions are mixed on-site, the concern exists that the antifreeze-water mixture in the fire sprinkler system may not be homogenous. As discussed in detail later in this report, fully mixed antifreeze solutions of miscible liquids, such as glycerin or propylene glycol and water, will not separate on standing. NFPA 13 references NFPA 25 for regular inspection, testing and maintenance requirements of antifreeze sprinkler systems to verify that an antifreeze sprinkler system has the proper concentration of antifreeze solution. NFPA 13D requires antifreeze sprinkler systems to be emptied each year and the specific gravity of the solution to be measured before refilling the system.
NFPA 13 and NFPA 25 require the specific gravity of antifreeze solutions to be tested annually by hydrometer or refractometer as an indication of the concentration and freezing point of the mixture. An antifreeze solution must be prepared with a freezing point below the expected minimum temperature for the locality. Furthermore, the minimum concentration of antifreeze solutions must be limited for the anticipated minimum temperature. High concentrations may increase the potential that the final solution will have a negative effect on the suppression characteristics of the solution. In addition, high concentrations may also increase the freezing point for some antifreeze solutions.

The definition of an antifreeze system in NFPA 13 requires that the system discharge water following the antifreeze solution, and recommends that systems supplied only with antifreeze solution should only be used after consideration of, “issues such as the combustibility of the antifreeze solution and the friction loss in the piping during cold conditions.” Thus, NFPA 13 recognizes that in some instances antifreeze solutions may contribute to a fire condition, but that the supply of water following the antifreeze solution mitigates the contribution to the fire.

B. Antifreeze Solutions

Various antifreeze solutions are available that are designed specifically for use in antifreeze sprinkler systems. The chemicals and concentrations of these products vary by manufacturer; however, there are two main differences: premix (ready-to-go) and concentrate solutions. An example of the properties of several premix antifreeze solutions are illustrated in Table 3:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>LFL/UFL in Air (% by volume)</th>
<th>Flash Point (°F)</th>
<th>Autoignition Temperature (°F)</th>
<th>Boiling Point (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>propylene glycol <75%, dipotassium phosphate <10%</td>
<td>2.4/17.4</td>
<td>228</td>
<td>700</td>
<td>222</td>
</tr>
<tr>
<td>propylene glycol <50%, dipotassium phosphate <10%</td>
<td>2.4/17.4</td>
<td>228</td>
<td>700</td>
<td>217</td>
</tr>
<tr>
<td>1,2,3-Propanetriol (Glycerin Based)</td>
<td>N/A</td>
<td>350</td>
<td>750</td>
<td>554</td>
</tr>
<tr>
<td>propylene glycol, dipotassium phosphate</td>
<td>2.4/17.4</td>
<td>228</td>
<td>700</td>
<td>370</td>
</tr>
</tbody>
</table>

Table 3: Sample Properties of Premix Antifreeze Solutions

The following disclaimer is included in the MSDS for one of the premix antifreeze solutions:

Fire and Explosion Hazards – Heat from fire can generate flammable vapor. When mixed with air and exposed to ignition source, vapors can burn in open or explode if confined. Vapors may travel long distances along the ground before...
igniting and flashing back to vapor source. Fine sprays/mists may be combustible at temperatures below normal flash point. Aqueous solutions containing less than 95% propylene glycol by weight have no flash point as obtained by standard test methods. However aqueous solutions of propylene glycol greater than 22% by weight, if heated sufficiently, will produce flammable vapors. Always drain and flush systems containing propylene glycol with water before welding or other maintenance.29

The disclaimer (above) identifies the potential for vapors of aqueous solutions that contain certain concentrations of propylene glycol to combust. It is important to consider this potential for combustion when dealing with aqueous solutions that contain flammable liquids (e.g. propylene glycol and glycerin). Furthermore, the disclaimer identifies that fine sprays/mists may be combustible at temperatures below their normal flash point. This concept is discussed in detail later in the report.

The premix antifreeze solutions (above) are either propylene glycol or glycerin based. The solutions that contain propylene glycol have a flash point of 228°F and the solution that is glycerin based has a flash point of 350°F. The flash point of the glycerin based solution is more than 100°F higher than that of the propylene glycol based solution.

Another notable difference among the premix solutions is the range in boiling point. The glycerin based solution has a boiling point of approximately 200 to 300°F higher than that of the propylene glycol based solution.

An example of the properties of concentrate antifreeze solutions are illustrated in Table 4:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>LFL/UFL in Air (% by volume)</th>
<th>Flash Point (°F)</th>
<th>Autoignition Temperature (°F)</th>
<th>Boiling Point (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3-Propanetriol (Glycerin Based)</td>
<td>N/A</td>
<td>350</td>
<td>750</td>
<td>554</td>
</tr>
<tr>
<td>propylene glycol >95%, water <3%, dipotassium hydrogen phosphate <3%</td>
<td>2.6/12.5</td>
<td>219</td>
<td>700</td>
<td>306</td>
</tr>
</tbody>
</table>

Table 4: Sample Properties of Concentrate Antifreeze Solutions30,31

Similar to the examples of the premix antifreeze solutions from Table 3, the concentrate solutions are either propylene glycol or glycerin based. The glycerin based solution has a higher flash point than the propylene glycol based solution by over 100°F. The boiling point of the glycerin solution is approximately 200°F higher than that of the propylene glycol based solution.
C. Chemistry of Solutions

Common antifreeze compounds used in fire sprinkler systems, such as propylene glycol and glycerin, form a solution with water. In chemistry, a solution is a homogenous (uniform throughout) mixture of at least two components. The particles in a solution can be characterized as having diameters in the range of 0.0001 to 0.002 μm, the size of a typical ion or small molecule. Other types of mixtures, such as colloids and suspensions, can be characterized by larger particle diameters. An important property of solutions is that they do not separate on standing.4

The component of a solution in the greater proportion is known as the solvent (the dissolving medium) while the lesser component is known as the solute (the substance being dissolved). For example, a gram of salt completely dissolved in a glass of water illustrates a solution that consists of two components; the solute (salt) and the solvent (water).4

Solutions and solvents can be mixed in a variety of concentrations. A solution is said to be concentrated if it contains a relatively large amount of solute per unit volume of solution. For mixtures of certain substances, however, there is a limit to the amount of solute that can be dissolved in any given solvent. This is known as solubility.

The solubility of a substance in a given solvent is a physical property characteristic of that substance. For a liquid-liquid mixture, the solubility depends on the chemical make-up of the substances involved and whether they will dissolve in each other. Two liquids are said to be miscible if they are mutually soluble in all proportions and will remain mixed under normal conditions. For example, propylene glycol and glycerin are miscible in water.32,33

The molecular structures of glycerin and propylene glycol are illustrated in Figure 1, below. Both glycerin and propylene glycol include hydroxyl (OH) groups that bond with water. Thus, in addition to being miscible with water, they are also hygroscopic and bond even with water from the surrounding air.21
Liquid-liquid mixtures may be miscible (capable of being mixed), partially miscible or immiscible (not capable of being mixed). Changes in temperature and pressure may change the solubility of liquids partially miscible in one another; however, miscible liquids are expected to be mutually soluble in all proportions over a complete range of temperatures and pressures.

Because both glycerin and propylene glycol are miscible in water, antifreeze solutions of water mixed with either glycerin or propylene glycol would form solutions at any proportions. For example, solutions can be formed of 99% glycerin and 1% water, 1% glycerin and 99% water, or any other combination of glycerin and water. Note that density differences between either glycerin or propylene glycol and water do not prevent them from forming a solution. Because both propylene glycol and glycerin form solutions with water, any such mixture of propylene glycol or glycerin and water would not separate on standing.

D. Residential Sprinkler Systems

Automatic sprinkler systems have been used in industrial and commercial occupancies for more than 100 years. However, the use of automatic sprinkler systems in residential occupancies is not very common in the United States. According to recent research, 80% of U.S. fire deaths occur in residences.

New developments in residential sprinkler system technology continually reduce the cost of installation while maintaining the effectiveness and reliability of the system. These new developments are intended to increase the number of residential sprinkler systems installed in
the U.S. It is estimated that less than three percent of all residential occupancies in the U.S.
have fire sprinkler systems installed.35

The impact that fire sprinkler systems have on reducing deaths and injuries in residential fires
was assessed by the United States Fire Administration (USFA) from 1979 into the late 1990s.36
The USFA worked in conjunction with NFPA, UL, and Factory Mutual Research Corporation
(FM). Together with the USFA, these organizations evaluated the design, installation, practical
use, water discharge rate, response sensitivity and design criteria of residential sprinkler
systems.36 Research concluded that sprinklers with higher sensitivity (lower RTI) performed
better than lower sensitivity (higher RTI) sprinklers in residential fire applications. This research
conducted by FM suggested that a more sensitive sprinkler would respond faster to both
smoldering and fast-developing home fires. As a result, the quick-response sprinkler was
developed to quickly control fires and help prevent the development of lethal conditions in small
home compartments.36

In addition to fast-response characteristics, residential sprinklers have special water distribution
patterns. The spray pattern is designed to deliver a portion of the water high on walls to prevent
a fire from getting "above" the sprinklers and to cool gases at the ceiling level.37

The upper spray distribution delivers water close to the ceiling not only to protect the area of the
wall close to the ceiling but also to increase the capacity of the spray to cool hot layer gases at
the ceiling level. The cooling of these gases helps reduce the probability of excessive sprinkler
activations. Excessive sprinkler activation may overload the hydraulic design of the sprinkler
system and reduce the water density of the spray distribution. As a result, this could limit the
ability of the sprinkler system to suppress a fire.

Unlike traditional sprinklers, the quick-response sprinkler expanded the goal of sprinklers to
protect not just property but also to increase life safety. Design parameters for quick-response
sprinklers were studied by the applicable NFPA technical committees and were used to
establish criteria for the 1980 edition of NFPA 13D Standard for the Installation of Sprinkler
Systems in One- And Two-Family Dwellings and Manufactured Homes.

Similar to NFPA 13D, NFPA 13R Standard for the Installation of Sprinkler Systems in
Residential Occupancies up to and Including Four Stories in Height is designed with respect to
life safety and property protection. NFPA 13R is designed to be more conservative than NFPA
13D, because there is greater risk associated with multifamily occupancies.36

The purpose of NFPA 13R is to provide a sprinkler system that aids in the detection and control
of residential fires. Therefore providing improved protection against injury, life loss and property
damage.22
The minimum requirements for spacing, location and position of sprinklers are based on the following principles:

1. Sprinklers must be installed throughout the premises (certain areas are permitted to remain unsprinklered).

2. Sprinklers must be located so as not to exceed maximum protection area per sprinkler.

3. Sprinklers must be positioned and located so as to provide satisfactory performance with respect to activation time and distribution.

E. Approval Standards for Residential Sprinklers

Due to their differences compared to standard pendent sprinklers, residential sprinklers are listed using a different standard. Product evaluation organizations have developed specialized standards such as UL 1626, *Standard for Safety for Residential Sprinklers for Fire-Protection Service*. FM global developed Approval Standard FM 2030, *Research Approval Standard for Residential Automatic Sprinklers*, for residential sprinklers. Both standards include a plunge test with specific sensitivity requirements. In addition, both standards include a distribution test that checks the spray pattern in the vertical and horizontal planes. Both UL 1626 and FM 2030 also include a fire test that is intended to simulate a residential fire in the corner of a room containing combustible materials representative of a living room environment. 36

The UL 1626 test procedures include a fuel package with three varying test configurations. The fuel package is composed of several different components: a wood crib, two simulated furniture ends covered with foam, two sheets of ¼ inch Douglas fir plywood, a pan with heptane, and two heptane-soaked cotton wicks. The various test configurations are used to test pendent, upright, flush, recessed pendent, concealed and sidewall sprinklers. 36

To meet the UL 1626 fire control criteria, residential sprinklers, installed in a fire test enclosure with an 8-ft ceiling, are required to control a fire for 10 minutes with the following limits:

1. The maximum gas or air temperature adjacent to the sprinkler 3 inches below the ceiling at two locations within the room must not exceed 600°F.

2. The maximum temperature 5 feet 3 inches above the floor at a specified location within the room must be less than 200°F during the entire test. This temperature must not exceed 130°F for more than a 2 minute period.

3. The maximum temperature ¼ inch behind the finished surface of the ceiling material directly above the test fire must not exceed 500°F.

4. No more than two residential sprinklers in the test enclosure can operate. 36
To meet the UL 1626 water distribution requirements, the water spray distributions are collected in both the vertical and horizontal planes. The quantity of water collected on both the horizontal and vertical surfaces is measured and recorded. Sprinklers being tested are required to discharge a minimum of 0.02 gpm/ft² over the entire horizontal design area, with the exception that a limited area is permitted to be less than 0.02 gpm/ft² as long as it is at least 0.015 gpm/ft². The sprinklers must also wet the walls of the test enclosure to a height not less than 28 inches below the ceiling with one sprinkler operating. Each wall surrounding the coverage area is required to be wetted with a minimum of five percent of the sprinkler flow.

F. Sprinkler Droplet Sizes and Distributions

Droplet sizes and distributions produced by automatic sprinklers have been studied using a variety of techniques including Phase Doppler Interferometry (PDI) and Particle Tracking Velocimetry and Imaging (PTVI). New research techniques are being developed to analyze the atomization (e.g. sheet breakup locations and initial drop sizes) and dispersion (e.g. volume density and local drop size profiles) in sprinkler sprays. This research primarily focuses on droplet sizes greater than 200 μm but may focus on smaller droplet sizes in the future. Measurements of the droplet sizes produced by automatic sprinklers are relatively complex, because the droplet size distribution measured is expected to vary with several factors including:

1. Position with respect to the sprinkler in 3-dimensions
2. Sprinkler model
3. Operating pressure/flow rate
4. Liquid supplied to the sprinkler, e.g. water or antifreeze solution
5. Surrounding air currents, including fire induced flows

Even with all of the variables above held constant, measurements include a range of droplet sizes and not a single uniform droplet size. In addition, very limited information is available on the droplet distributions for sidewall sprinklers.

Putorti analyzed existing fire sprinkler droplet size and velocity measurement methods and identified limitations of the existing methods. Putorti’s research included the development of the PTVI technique to provide large-scale, simultaneous, non-intrusive measurement of droplet size and velocity in two phase flows.

The PTVI testing apparatus used by Putorti illuminates a 0.5 m by 0.5 m region of the spray field with two consecutive laser sheet pulses of different wavelengths. Dyes in the water fluoresce in
two different colors, resulting in two differentiable color images for each drop, which are recorded by high-speed camera. Drop velocity is determined from the distance traveled in the time between the pulses, and size from the areas of the droplet images.

Putorti found that droplet sizes from standard orifice, pendent spray fire sprinklers are between approximately 200 and 3,000 μm with velocities on the orders of 1 m/s and 10 m/s. This approximation agreed with existing research which indicated that droplets larger than approximately 5,500 μm in diameter are unstable and break up into smaller droplets, predominantly in the range of 1,000 to 2,000 μm. Putorti had already discovered from previous research that while a large number of very small drops are present, they comprise a small portion of the total water volume. Data indicates that 98% of the water from standard orifice fire sprinklers is contained in droplets larger than 200 μm in diameter.

The PTVI method enabled Putorti to measure droplet size and velocity distributions with a low level of uncertainty. Unlike the PDI technique, which only measured data at a single point, the PTVI method allowed data measurement over a larger area (0.5m x 0.5m) simultaneously. Based on this data, large scale unsteady behaviors could be studied and directly compared with water sheet breakup predictions to verify droplet trajectories predicted by computer modeling.

The PDI technique measures drop size and velocity. Droplets are illuminated by two incident laser beams and the scattered light signals are detected and analyzed. The scattered light signals form fringe patterns. The spatial frequencies of the fringe patterns are inversely related to the drop diameter. This measurement technique works well for spherical droplets. However, sprinkler droplets are not always spherical.

Widmann used the PDI technique to measure droplet size distributions from a residential sprinkler. The sprinkler investigated had a k-factor of 5.6 gpm/psi and was supplied with water at a pressure of 19 psig ± 1 psig during the testing. Measurements were taken at 1.12 m below the sprinkler and the results were found to vary depending on if measurements were taken near or far from the axis of the sprinkler. Measurements of water droplet sizes ranged from an arithmetic mean of 200 to over 500 μm, depending on location. However, droplets with diameters of less than 100 μm were measured near the axis of the sprinkler.

The PDI technique involves point measurements made at various locations in the sprinkler flow (results are temporally and spatially averaged). This technique for determining attributes of sprays from fire sprinklers is limited by several factors. First, sprays generated by fire sprinklers are unsymmetrical and unsteady. Certain areas of the spray distribution are denser than others. Furthermore, some areas of the spray distribution contain different drop sizes than the statistical average. Since the PDI technique involves point measurement, the results obtained by this method may vary dependent on where the point measurements are taken within the spray distribution. These limitations are relevant to all point measurement techniques.
Factory Mutual (FM) studied the spray distribution characteristics of antifreeze-water solutions for use in Early Suppression Fast Response (ESFR) sprinklers.11 Specifically, FM sought to determine if a fluid, with a greater density and viscosity, had a significantly different spray distribution than that of water. Theoretical analyses were conducted followed by experimental analyses.

FM theorized that the mean drop size is directly dependent on the orifice diameter of the sprinkler type in addition to the system pressure and fluid properties of the solution being discharged. Specific fluid properties included surface tension, dynamic viscosity and density. According to the report, droplet formation is governed by surface tension, which causes the breakdown of water sheets into droplets. FM further predicted that fluid viscosity is directly related to a droplet’s oscillation activity. Droplets with high oscillation activity and low fluid viscosity tend to break apart and form smaller droplets. Inversely, liquids with high oscillation activity and high fluid viscosity tend to not break apart. This dampening in oscillations will theoretically lessen the probability that larger droplets will breakdown into smaller droplets.

It is important to note that sprinkler spray patterns entrain large amounts of air which carry small drops toward the inner spray axis. It can be observed in this phenomenon that the majority of larger droplets fly towards the outer regions of the spray pattern. This correlation suggests that high viscosity fluids (antifreeze) will have fewer small drops and a lower spray density near the inner spray axis.

Following their theoretical predictions, FM conducted experimental tests for water and antifreeze fluids that included: 60\% potassium lactate, 60\% potassium acetate, and 28.5\% calcium chloride. Spray distribution was observed for each fluid at ambient temperature. A single K-25 ESFR sprinkler was supplied with approximately 175 gpm of fluid. The antifreeze fluids had higher densities than that of water and higher pressures at the sprinkler were required to achieve the same volumetric flow rates.

The spray patterns were observed both photographically and visually. A series of two tests were performed for each fluid. FM concluded that the spray patterns for both the water and antifreeze fluids were virtually identical. This observation contradicts the theoretical predictions that antifreeze fluids with higher viscosities would have distinctively different spray patterns to that of water alone. Further research is required to characterize the effect of the fluid characteristics on droplet size distributions from residential sprinklers.

G. Flammability of Liquids

Liquids are substances whose vapor pressure at a reference temperature (commonly 25°C) is less than 1 atm. However, the actual state of a substance (gas, solid or liquid) is dependent on both its pressure and its temperature. For example, nitrogen is a gas at room temperature;
however, it is commonly sold in liquid form. This phenomenon occurs when nitrogen gas is compressed in a container. In this example, the liquefaction of nitrogen occurs when nitrogen gas is compressed.

NFPA 30, *Flammable and Combustible Liquids Code*, defines a liquid as any material that (1) has a fluidity greater than that of 300 penetration asphalt when tested in accordance with ASTM D 5, *Standard for Penetration of Bituminous Materials*, or (2) is a viscous substance for which a specific melting point cannot be determined but that is determined to be a liquid in accordance with ASTM D 4359, *Standard Test for Determining Whether a Material is a Liquid or a Solid*.

Liquids have many quantifiable properties that vary depending on the type of liquid and the environment it is exposed to. An example of these properties are a liquid’s upper flammability limit (UFL) and lower flammability limit (LFL). These properties of a liquid stem from the phenomenon of concentration gradients around liquids in an open container. For liquids in containers open to the atmosphere, there is a continuous loss of liquid through evaporation. As such, a concentration gradient may exist above the liquid. This concentration gradient will vary based on factors such as height, pressure and air motion. Essentially, the UFL is the highest concentration of a gas or vapor in air capable of producing a flash fire in the presence of an ignition source. The LFL is the lowest concentration capable of producing a flash fire.7

If an ignition source is brought near an open vessel of a flammable liquid, ignition will only be possible at certain distances from the surface of the liquid. At distances far from the surface of the liquid, the concentration of vapors will be below the LFL. As the ignition source approaches the surface of the liquid, there will be a region where ignition is possible because the concentration of vapors is between the UFL and LFL. Finally, as an ignition source is brought even closer to the surface of the liquid, ignition will no longer be possible again. At this point, the concentration of vapors will be above the UFL.7

The flash point is the temperature at which a liquid must be raised in order to produce sufficient vapors for flash ignition. The flash point can be measured by one of many standardized test apparatuses. These devices are usually characterized as open-cup or closed-cup arrangements.7

Maintaining a liquid at a temperature below its measured flash point does not guarantee that ignition will be prevented. There are many factors that may influence a liquid’s actual flash point. This is because the flash point of a liquid, as measured by test apparatus, is not necessarily the flash point of a liquid in its end-use environment. Liquids with flash point temperatures greater than the temperature of the environment of the liquid may sometimes be ignited by spraying, wicking or other means. Liquids that are mixtures, as opposed to pure substances, may demonstrate a tendency for vaporization of one component and not the other. The flash point of the remaining liquid may be different than that of the mixture when it was originally tested.7
At some temperature above a liquid’s flash point temperature, an ignitable liquid’s vapor (that accumulates in a closed space) can ignite without the presence of an ignition source. This is known as the autoignition temperature (AIT). There is no known relation between a liquid’s flash point and its AIT. The AIT is primarily determined by a liquid’s reactivity (rate of oxidation) while the flash point is determined by a liquid’s volatility (rate of evaporation). Many factors may affect a liquid’s AIT. Some known factors are the concentration of the vapor given off by the liquid, the shape and size of the container, the rate and duration of heating and the testing method.7

Critical to this report is the combustion of atomized liquids (mists, vapors or sprays) produced during the operation of an automatic sprinkler system. Typically in a condensed mist, the diameter of most of the droplets is less than 10 μm. Aerosols that have been produced by the atomization of a liquid by mechanical force typically have a droplet diameter of greater than 100 μm.8 As indicated above, testing shows that 98% of the droplet sizes from standard orifice pendent spray fire sprinklers are between approximately 200 and 3,000 μm in diameter.

A suspension of finely divided droplets of flammable liquid in air can yield a flammable mixture that has many of the characteristics of a flammable gas/air mixture. These droplets have the potential to burn or explode. Researchers have observed that a 10 μm diameter droplet of flammable liquid behaves like a vapor with respect to burning velocity and LFL. Droplets with diameters larger than 40 μm behave differently.8

Flame propagation can occur at average concentrations well below the LFL. A flammable mixture can also form at temperatures below the flash point of a liquid combustible when atomized into air. Testing shows that with fine mists and sprays (particles less than 10 μm) the combustible concentration at the lower limit is about the same as that in uniform vapor-air mixtures. However, as the droplet diameter increases, the lower limit appears to decrease. It was observed that coarse droplets tend to fall towards the flame front in an upward propagating flame, and as a result the concentration at the flame front actually approached the value found in lower limit mixtures of fine droplets and vapors.41

Mists made up of coarser aerosols are capable of sustaining a flame at considerably lower fuel-air ratios than fine aerosols (vapors). The reason for this lies in the ability of the droplets to move in relation to the ambient air. Mists made up of coarser aerosols prove to be more responsive to acceleration and random movement than that of finer aerosols. As such, coarser aerosols communicate flame more readily.8

In the case of water-glycols, flash points will not exist until the excessive water has been removed. Research indicates that a high-temperature environment is required to realize a flash point hazard with the vapors of these fluids at normal pressure conditions.6
H. Factors Required for an Explosion

In a fuel-air cloud, flame can propagate in two modes: a deflagration or a detonation. A deflagration involves subsonic flame speeds from a few meters per second up to 1,000 m/s. This magnitude of flame speed results in overpressures from near zero up to several bar. A detonation involves supersonic (relative to the speed of sound in the unburned gas ahead of the wave) combustion waves. In this case, the shock wave and combustion wave are coupled. These waves will propagate at a velocity of 1,500 to 2,000 m/s and cause explosion pressures with magnitudes of 15-20 bar. 14

If ignition occurs before a fully mixed fuel-air cloud has been formed, a flash fire or deflagration will occur instead of a detonation. Furthermore, it is important to understand that when a cloud of flammable vapor (fuel-air) burns, the combustion may or may not give rise to an overpressure. In a flash fire, there is no overpressure. In an explosion, there is overpressure.8

Large combustible premixed fuel-air clouds that have been formed in the presence of an ignition source are the most dangerous. If ignition occurs, the pressure generated by the combustion wave is directly related to the speed of flame propagation and the nature of pressure expansion away from the fuel-air cloud. This relationship is governed by confinement.14

The pressure build up associated with gas explosions is a relation of the pressure generation by the flame and the relief of the pressure, through venting. Furthermore, an explosion in a compartment is a very complex process that involves several parameters that include: type of fuel, size and concentration of the fuel cloud, ignition and geometrical layout (i.e. confinement, venting and obstructing objects). In a small compartment with no to very little venting, even slow burning can cause pressure build up. In extreme cases, it has been observed that a slow flame can cause pressures up to 8 bar in a compartment that remains closed. Vent openings are of major importance in keeping explosion pressure down.14

I. Existing Approval Standards and Test Methods for Ignition Properties of Liquids

Flammability characteristics of liquids are measured using a variety of test methods. The following are common measures of the flammability of a liquid.

Flash Point

Several test standards exist for measuring flash point. The Cleveland open-cup test method, ASTM D 92, is commonly used for products that have a flash point between approximately 174°F and 750°F. The test uses a cup with 70mL of test liquid. Temperature uniformity across the bottom of the cup is regulated by a metal plate. The metal plate can be heated by either a
gas burner or an electric resistance heater. The test liquid is heated at a rate of approximately 41°F to 43°F per minute. The purpose of the test is to measure the flash point of the test liquid.

Another method to test a liquid’s flash point is the Pensky-Martens closed-cup (PMCC) tester, ASTM D 93, is limited to testing substances with a viscosity greater than 5.5 cSt at 104°F. The tester utilizes a heated stirrer (intended to maintain temperature uniformity) inserted into the test liquid. The test liquid is heated at a rate of approximately 41°F to 43°F per minute. The PMCC is used to measure the flash point of liquids between 174°F and 750°F.

Autoignition Temperature

The AIT is highly dependent on the test method used. Some of the variables known to affect the AIT are the shape and size of the testing volume, the concentration of the gas or vapor in the mixture and the duration and rate of heating, based on the ignition source. Since there are many different testing methods that have been developed to measure the AIT of liquids, it is not uncommon to find different AIT values for the same material.

ASTM E 659 is an example of a test method used to measure AIT of liquids. In this method, the testing vessel is a glass flask surrounded by an electrically heated oven equipped with several thermocouples. To conduct a test, a 0.1 mL sample of liquid is injected into the glass flask. The flask is heated to a constant temperature and is observed for 10 minutes (in a fully darkened room) for indications of ignition. If ignition does not occur, the temperature of the electric oven is raised and the process is repeated. Once the AIT is observed, both larger and smaller amounts of the liquid are analyzed to determine the overall lowest AIT.

ASTM E 659 replaced older versions of ASTM AIT tests such as ASTM D 286 and ASTM D 2155 (both withdrawn from ASTM recommended testing methods). Results obtained from ASTM E 659 are typically lower than that from ASTM D 2155, and the differences are greater for more volatile fuels. Similar to ASTM E 659, ASTM D 2155 involves the heating of the sample liquid in a glass vessel. This vessel is observed for AIT for only five minutes (five minutes less than ASTM E 659). ASTM D 286 did not allow for visual observation of AIT and, as such, the apparatus was criticized on a practical basis.

Flammability of Fluid Sprays

As discussed above, flash point measurements are not a reliable indication of the potential for ignition of a liquid dispersed into droplets. FM Global Class Number 6930 Approval Standard for Flammability Classification of Industrial Fluids, was developed to evaluate the ignition potential of industrial fluid sprays. For example, in industrial applications the failure of a pressurized hose could allow potentially combustible fluids to spray onto nearby ignition sources. Approval Standard 6930 classifies the flammability of industrial fluids based on a series of tests and criteria.
of tests that are design to characterize the spray flame hazard of an industrial fluid.43 Because the potential for ignition of a liquid spray differs from a pool of the same liquid, Approval Standard 6930 may provide a more reliable method of characterizing the flammability of antifreeze solutions used in sprinkler systems than more common measurements such as flash point.

The approval standard requires industrial fluids to be screen tested to determine a flash point or verify that the fluid will boil prior to obtaining a flash point. The screening test required by this approval standard is the Cleveland open-cup test, ASTM D92.

Industrial fluids submitted for testing (having a flash point) must satisfy each of the following performance criteria to be eligible for FM Approval:

- Determination of the flash point by Cleveland open-cup;
- Determination of the chemical heat release rate (HRR) of a highly atomized spray of the industrial fluid;
- Determination of the industrial fluid density per ASTM D1480 or ASTM D4052;
- Calculation of the critical heat flux for ignition of the industrial fluid;
- Calculation of the Spray Flammability Parameter of the industrial fluid.

The Spray Flammability Parameter (SFP) calculated as part of the approval process is intended as an indication of the potential for ignition of a hydraulic fluid dispersed as droplets. The value of the SFP combines the chemical heat release rate from spray fires and the volatility of fluids in terms of a critical heat flux for ignition.43 The chemical heat release rate used in the equation is measured from the FMRC Fire Products Collector and fluid spray setup. In this test, fluids are sprayed vertically upward in the open from an 80 degree hollow cone nozzle with an exit diameter of 0.38 mm. The tip of the nozzle is in the same plane as a propane ring burner. All of the combustion products (along with the ambient air) are captured in a sampling duct that is equipped with instrumentation for oxygen consumption calorimetry. In the sampling duct measurements are made for the total volumetric flow rate of the mixture of fire products and air; gas temperature; generation rates of carbon monoxide and carbon dioxide; and the consumption rate of oxygen. The chemical heat release rate used to calculate the SFP is the average steady state values measured by the calorimeter.43

The value of the SFP depends on the initial temperature of the fluid, the degree of atomization, and the temperature of air entrained into the jet. The SFP is a measure of the degree of spray flame hazard for hydraulic fluids. Fluids associated with higher SFP values have a higher burning rate while fluids with lower SFP values have lower burning rates.43
Additional requirements exist for industrial fluids that do not have a flash point. Since propylene glycol and glycerin both have measured flash points, the other requirements are not outlined in this report.
IV. Existing Fire Incident Reports

Two existing fire incident reports have been obtained that involve fires related to automatic sprinkler systems containing antifreeze solutions. After a fire incident, fire investigators are often called to the scene to conduct a fire analysis. Investigators collect data, analyze the data and develop a hypothesis based on the research conducted. A fire investigator’s hypothesis outlines the suspected cause of the fire and identifies other critical factors relating to the fire incident. It is important to note that while a fire investigator’s hypothesis is based on the best available information and evidence, it is not necessarily a truly provable hypothesis.20

A. Monmouth Beach, NJ

In October of 2001, a fire occurred in a restaurant located in Monmouth Beach, New Jersey. The fire originated in an outside enclosed deck/porch area at the ceiling level. The Fire Marshal of the County of Monmouth conducted the fire investigation and prepared the investigation report dated March 14, 2002.13

According to the report, the restaurant was protected by an automatic sprinkler system that contained an antifreeze-water solution (propylene glycol-water). Located on the ceiling of the porch were nine Sun Pak Heaters rated at 25,000 Btu each. The heaters were natural gas fired and in use at the time of the incident. Located on the wall to the rear of the row of ceiling heaters were sidewall mounted sprinkler heads. The sidewall sprinklers installed had an activation temperature of 155°F, which are recommended for locations with a maximum temperature of 100°F.

After analysis of the incident, it was the opinion of the investigator that the heaters caused the ceiling temperature in the outdoor porch area to rise above the nominal temperature rating of the sidewall sprinklers, thus causing sprinkler activation. Upon activation, the vapors from the sprayed propylene glycol-water solution (contained in the sprinkler system) resulted in a flash fire upon interaction with the heaters. This flash fire resulted in flames that traveled across the ceiling and continued into the inside of the restaurant. When all of the propylene glycol-water solution had been discharged, the plain water followed and the fire was extinguished. The building sustained very limited fire damage and several restaurant patrons received medical treatment for smoke inhalation and thermal skin burns.

B. Truckee, CA

On August 18, 2009, a fire and explosion occurred at the Henness Flats Apartment Complex in Truckee, California.12 The following information is from a report developed by Stephen Hart. Mr Hart was asked by the California Office of the State Fire Marshal (OSFM) to assist as a subject matter expert through the local government request for fire investigation assistance from the OSFM.
The Henness Flats Apartment Complex is a 92-unit multi-building apartment complex. There are 12 individual apartment buildings within the complex. Building #6, where the fire and explosion occurred, was a 2-story structure that consisted of 12 apartment units. The unit where the fire and explosion occurred was located on the first floor and was on the east end of the building.

The automatic fire sprinkler system riser, which served the 12-unit apartment building, was located on the exterior wall adjacent to this unit. According to Mr. Hart’s observations, the force of the explosion caused window glass in the unit to be blown more than 86 feet across the adjacent parking area and caused an interior door frame and attached door to an adjacent bathroom to be separated by approximately 3 inches.

Mr. Hart’s report notes that, according to the submitted fire sprinkler drawings, the overhead fire sprinkler piping was supplied by a 4-inch main that runs the length of the building and stubs up with a 2-1/2-inch riser that feeds the two units on the first and second floor levels. The report also notes that the fire sprinkler drawings indicate that the antifreeze sprinkler system had a capacity of 256.2 gallons and used a 50% solution of glycerin and water designed to have a freezing point of -20.9°F.

It is the opinion of Mr. Hart that the tenant was cooking onions in a frying pan over the electric stove when the contents of the pan caught fire. The tenant turned around (180 degrees) to the kitchen sink with the flaming frying pan to put water on the fire and the fire sprinkler activated directly over him. Upon sprinkler activation, a discharge of glycerin based antifreeze was ignited by the flames coming from the burning onions in the frying pan and an explosion resulted. As a result of the fire and explosion, it was noted that eight of the ten residential sprinklers within the unit activated. The fire sprinkler over the kitchen sink was reported to be a residential pendant sprinkler with a k-factor of 4.9 gpm/psi^{1/2} and an activation temperature of 155°F.
V. Prior Research

Research studies have been conducted by SP Technical Research Institute of Sweden (SP), Factory Mutual (FM), and Underwriters Laboratories (UL) to evaluate the use of antifreeze solutions in sprinkler systems. This section summarizes the prior research and testing as it relates to the use of antifreeze solutions in residential sprinkler systems.

A. SP Research

SP investigated the effect of antifreeze-water mixtures upon interaction with intermediate-scale wood crib fires. The tests analyzed antifreeze-water mixtures of calcium chloride, potassium acetate, ethanol, urea, methanol, propylene glycol and glycerin. The tests specifically focused on the potential contribution of the combustion energy of such agents to a fire.

The fire tests were conducted in an intermediate scale. The fire source was a burning wood crib (approximately 730 x 730 x 360 mm). A liquid fuel was applied to the crib that upon ignition would last for three minutes. It was measured that after the igniter fluid was consumed, the free-burn chemical heat release rate of the fire quickly reached a steady heat release rate (HRR) of approximately 800 kW. Furthermore, at four minutes after ignition the antifreeze solution was evenly distributed with spray nozzles (volumetric flow rate of 2.95 L/min) above the wood crib. The antifreeze solution was applied for ten minutes at which time the test was terminated.

The application rate was selected so that the heat release rate of the fire was reduced, but the fire was never actually extinguished with water. The test report notes that antifreeze solution was completely vaporized and consumed in the flames with little runoff of liquid.

Table 5: SP Test Results, below, outlines the SP test results for propylene glycol, glycerin, and water.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Freezing Point (°F)</th>
<th>Mass Fraction (%)</th>
<th>Density @ 20°C (kg/L)</th>
<th>Total Chemical Energy Released (MJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>32</td>
<td>---</td>
<td>0.998</td>
<td>357</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>5</td>
<td>33.5</td>
<td>1.039</td>
<td>493</td>
</tr>
<tr>
<td>Glycerin</td>
<td>5</td>
<td>39.0</td>
<td>1.098</td>
<td>545</td>
</tr>
<tr>
<td>Glycerin</td>
<td>-22</td>
<td>57.0</td>
<td>1.146</td>
<td>596</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>-22</td>
<td>49.0</td>
<td>1.062</td>
<td>629</td>
</tr>
</tbody>
</table>

Table 5: SP Test Results
The conclusions of the SP Report are as follows:

- The contribution of energy to a fire by the antifreeze solution may be a factor that needs to be considered for some sprinkler system applications.
- Antifreeze agent solutions of propylene glycol and glycerin resulted in a significant increase in the heat release rate of the fire relative to the water only tests.

B. FM Research

FM’s research was, in part, a continuation of research conducted by SP. FM conducted a series of tests similar to those of SP. The FM tests compared the effectiveness of various antifreeze-water mixtures by steadily dripping a small amount of these mixtures onto a well established wood crib fire. Similar to the SP experiments, the reduction in the fire’s heat release rate was recorded.

The wood cribs were approximately 600 grams and were consumed in approximately 10 minutes under free-burn conditions. The cribs were ignited by 50 grams of acetone (igniter fluid) and allowed to free-burn for 4.75 minutes before the antifreeze-water mixture was applied via four drip nozzles (total rate of 0.522 ml/s). The test report notes that there was negligible antifreeze-water runoff while the cribs were burning.

Table 6: FM Test Results, below, summarizes the results of these experiments. The results were later analyzed to evaluate whether antifreeze solutions could be used with ESFR sprinkler systems. Data from the SP fire tests is also included in the table.

<table>
<thead>
<tr>
<th>Agent</th>
<th>FM Moisture Content (%)</th>
<th>Avg. HRR 285-570 s (kW)</th>
<th>Avg. HRR (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Burn</td>
<td>3.7</td>
<td>10.18</td>
<td>800</td>
</tr>
<tr>
<td>Water</td>
<td>5.4</td>
<td>7.72</td>
<td>600</td>
</tr>
<tr>
<td>50% Propylene Glycol</td>
<td>5.8</td>
<td>10.18</td>
<td>1050</td>
</tr>
<tr>
<td>35% Propylene Glycol</td>
<td>3.3</td>
<td>9.12</td>
<td>825</td>
</tr>
</tbody>
</table>

Table 6: FM Test Results

The conclusions of the FM Report were as follows:

- Accounting for the moisture content of the cribs, a 50% propylene glycol solution with water mixture raised the fire’s HRR above that of the free-burn fire.
Antifreeze Solutions in Home Fire Sprinkler Systems

May 28, 2010

1. ESFR Sprinkler Protection of Cold Storage

UL conducted a series of tests to evaluate the effectiveness of ESFR sprinklers in suppressing fires involving Standard Class II commodity using antifreeze solutions.45 Tests were conducted under a 40 ft ceiling with rack storage heights ranging from 30 to 35 feet. A 50% solution of propylene glycol in water was used in all tests.

Unlike the prior SP and FM research efforts, the UL tests used actual sprinklers and set criteria based on suppression of the fire, instead of comparing the performance of the antifreeze agent to the performance of water. The results of the tests are summarized in the following table.

<table>
<thead>
<tr>
<th>Test</th>
<th>Sprinkler k-factor (gpm/psi^{1/2})</th>
<th>Discharge Rate (gpm)</th>
<th>Storage Height (feet)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.0</td>
<td>119</td>
<td>30</td>
<td>Uncontrolled</td>
</tr>
<tr>
<td>2</td>
<td>25.2</td>
<td>160</td>
<td>30</td>
<td>Suppressed</td>
</tr>
<tr>
<td>3</td>
<td>25.2</td>
<td>160</td>
<td>35</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Table 7: UL ESFR Cold Storage Test Results

The UL Report indicates the following:

- It is believed that the discharge rate of the sprinkler system must be sufficient to compensate for the combustion energy released by the antifreeze mixture.
- Suppression of the Standard Class II commodity fire with antifreeze solution was achieved by increasing the flow rate of the sprinkler system.

2. Manufactured Home Sprinkler Protection

UL conducted a series of tests for the Federal Emergency Management Agency to investigate sprinkler protection of manufactured (mobile) homes and rural housing.46
The research focused on controlling fire conditions using limited water supplies. Total available water supplies of 50 and 100 gallons were investigated. This research was conducted with a sprinkler having a nominal K-factor of 2.0 gpm/psi^{1/2}.

The project considered the impact of 6% wetting agent, 0.3% Class A foam, and 50% glycerin on the effectiveness of a residential sprinkler system. Although rarely used in residential sprinkler systems, the wetting agent and Class A foam were investigated for their ability to improve the effectiveness of the sprinkler system, because faster extinguishment of a fire could reduce the quantity of water needed. Certain tests added glycerin alone or in combination with the wetting agent or foam to investigate the impact of antifreeze on the effectiveness of the sprinkler system for conditions where the water supply may be located in spaces subject to freezing.

Ten fire tests were conducted in a living room/kitchen area measuring 13 feet by 23 feet with a vaulted ceiling. The room was protected with six residential style sprinklers.

A UL 1626 residential fuel package was located in a corner of the room and consisted of a 12 to 13 lb. wood crib with dimensions of 12-inches by 12-inches by 12-inches along with simulated furniture using two 3-inch thick foam cushions measuring 36 inches by 40 inches over wood frames. Instrumentation included the following:

- Temperature at 12 locations throughout the home;
- Activation times of each sprinkler;
- Sprinkler system inlet pressure;
- Smoke density; and
- Carbon monoxide and carbon dioxide concentrations.

Test results were evaluated based on number of sprinklers operated, temperature, carbon monoxide, and carbon dioxide, as well as the following criteria based on UL 1626:

- The maximum temperature 3 inches below the ceiling directly above the wood crib not exceeding 600°F;
- The temperature 63 inches above the floor and 46 inches from the end wall closest to the wood crib not exceeding 200°F at any time and 130°F continuously for more than 2 minutes; and
• The temperature measured ¼-inch behind the ceiling surface, directly above the wood crib not exceeding 500°F.

The results of the UL Manufactured Home tests are outlined in the table below.

<table>
<thead>
<tr>
<th>Test</th>
<th>Solution</th>
<th>Sprinkler Measurements in Center of Room of Origin during first 5 minutes</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type</td>
<td>Quantity (gallons)</td>
<td>Temp. Rating (°F)</td>
</tr>
<tr>
<td>1</td>
<td>Water</td>
<td>100</td>
<td>286</td>
</tr>
<tr>
<td>2</td>
<td>Water</td>
<td>100</td>
<td>286</td>
</tr>
<tr>
<td>3</td>
<td>Water</td>
<td>50</td>
<td>175</td>
</tr>
<tr>
<td>4</td>
<td>50% Glycerin</td>
<td>100</td>
<td>286</td>
</tr>
<tr>
<td>5</td>
<td>0.3% Class A Foam/50% Glycerin</td>
<td>50</td>
<td>286</td>
</tr>
<tr>
<td>6</td>
<td>6% Wetting Agent/50% Glycerin</td>
<td>50</td>
<td>286</td>
</tr>
<tr>
<td>7</td>
<td>0.3% Class A Foam</td>
<td>50</td>
<td>175</td>
</tr>
<tr>
<td>8</td>
<td>0.3% Class A Foam</td>
<td>50</td>
<td>286</td>
</tr>
<tr>
<td>9</td>
<td>6% Wetting Agent</td>
<td>50</td>
<td>286</td>
</tr>
<tr>
<td>10</td>
<td>6% Wetting Agent</td>
<td>50</td>
<td>286</td>
</tr>
</tbody>
</table>

Table 8: Results of UL Manufactured Home Tests

The conclusions of the UL Manufactured Home test report are as follows:

• Acceptable test results were obtained for tests using 100 gallons of water and the test using 100 gallons of 50% glycerin solution.

• Unacceptable test results were obtained for the test using 50 gallons of water.

• Acceptable tests results were obtained for tests using 50 gallons of 6% wetting
agent and 0.3% Class A foam solution.

- The addition of glycerin to the wetting agent and Class A foam solutions produced unacceptable results.
- It appeared that the glycerin did not permit the wetting agent and Class A foam solutions to spread and penetrate the fire surface as well as in the tests without glycerin.

The following observations are based on comparing the results of the test with a 50% concentration of glycerin in water (Test 4) to the two equivalent tests with water alone (Tests 1 and 2):

- All three tests met the performance criteria for the project.
- Unsteady pump pressures were noted during the test with glycerin that may or may not influence the results.
- The test with glycerin has a measured temperature in the center of the room of fire origin that was comparable to one of the tests with water alone.
- The test with glycerin had measured carbon monoxide and carbon dioxide concentrations in the center of the room of fire origin that were more than double those measured during the tests with water alone.
- The test with glycerin had a measured light transmission near zero, while the two comparable tests with water alone each had a measured light transmission of more than 30 percent.
VI. Research Plan and Near-Term Testing

A research plan was developed to investigate the effectiveness of glycerin and propylene glycol antifreeze solutions in residential fire sprinkler systems. The research plan focuses on three primary areas of concern:

1. The impact of various concentrations of propylene glycol and glycerin antifreeze solutions on the effectiveness of residential sprinkler systems over a range of system pressures and residential fire scenarios.

2. The potential for a flash fire from residential sprinklers supplied with propylene glycol or glycerin under rare conditions.

3. The development of alternative antifreeze solutions for conditions where glycerin and propylene glycol are not found to be suitable.

Fire tests were conducted by Underwriters Laboratories during the development of this report that preliminarily investigated the first two items. Observations from the UL tests and recommendations for future testing are provided below.

A. Near-term Testing on Sprinkler Effectiveness with Antifreeze Solutions

A series of preliminary tests were sponsored and conducted by Underwriters Laboratories during the development of this report. Tests were conducted in UL’s large scale test facility in Northbrook, IL and several of the tests were witnessed by CCI on behalf of the Foundation. This report provides a general summary of observations from the test series. A complete report of the testing is not available at this time and further analysis of the test results should be conducted when the test report is available.

Initial tests were conducted with a small ceiling above an elevated pan of heptane using residential pendant sprinklers with nominal k-factors of 3.1 and 4.9 gpm/psi$^{1/2}$. The tests used premixed solutions of 70% glycerin and 60% propylene glycol with water. The tests indicated the potential for large-scale ignition of a 70% glycerin solution using a 3.1 k-factor sprinkler at an operating pressure of 100 psi. This large-scale ignition resulted in flames surrounding the majority of the sprinkler spray. A similar large-scale ignition did not occur for initial tests with 60% propylene glycol solutions or tests using a 4.9 k-factor sprinkler at an operating pressure of 50 psi. Analysis of the contribution, if any, of antifreeze solutions to each fire condition should be conducted when the test data is available.

Further tests were conducted in a three sided room measuring approximately 12 feet by 12 feet with a ceiling height of 8 feet. A single sprinkler with a k-factor of 3.1 was located in the center of the ceiling for each test. The majority of the room tests were conducted using a nominal 12-
inch cast-iron pan with cooking oil as the initial fire source. An electric cooktop was used to heat the pan and ignite the cooking oil. One room test was conducted with a pan of heptane as the initial fire instead of the cooking oil. In various tests, the sprinkler was supplied with water only as well as premixed solutions of 70% glycerin, 50% glycerin, and 60% propylene glycol in water. Sprinkler operating pressures of 20, 100, and 150 psi were investigated.

Test results in the room configuration ranged from extinguishment of the fire to large-scale, sustained ignition of the antifreeze solution. Preliminary observations during the tests indicate that the results depend, at a minimum, on a combination of the following factors:

- Location of the initial fire with respect to the sprinkler
- Initial fire source
- Type of sprinkler and operating pressure
- Type and concentration of antifreeze solution

Large-scale, sustained ignition of the 70% glycerin solution supplied at 100 psi occurred when the initial fire was in close proximity to the sprinkler, but the initial fire was controlled using the same concentration of antifreeze at the same operating pressure when the initial fire was located farther from the sprinkler. Large-scale ignition of the 60% propylene glycol solution occurred in the room configuration during a cooking oil fire, but did not occur in the open configuration during a heptane fire. Large-scale ignition of the antifreeze solution did not occur in any of the tests with the 50% glycerin solution. Further investigation of the contribution, if any, of the antifreeze solutions to each fire condition should be conducted when the test data is available.

Preliminary observations during the UL testing indicate the following:

- Large-scale ignition of antifreeze solutions occurred in certain tests for 70% solutions of glycerin and 60% solutions of propylene glycol with water.
- Large-scale ignition of antifreeze solutions of 50% glycerin with water did not occur for any of the tested configurations; further investigation should be conducted for a variety of initial fire sources and test configurations.

Further analysis of the tests should be conducted when the results are available. Preliminary observations from the tests highlight the need for further research into the effectiveness of currently permitted antifreeze solutions and consideration of their suitability for use in sprinkler systems.
B. Future Research

Potential Contribution of Antifreeze Solutions to Fire Conditions

The existing research as well as the recent near-term testing conducted by UL indicate the urgent need for further research into the effectiveness of currently permitted antifreeze solutions. This is based on two concerns:

1. The potential for large-scale ignition of antifreeze solutions; and
2. The potential for antifreeze solutions to reduce the effectiveness of sprinkler systems.

The potential for the large-scale ignition of antifreeze solutions supplied by sprinkler systems involves the following research topics:

- Droplet combustion of a solution of water and propylene glycol or glycerin.
 - Impact of the droplet size distribution, concentration, and spatial distribution on the potential for ignition.
 - Impact of ignition sources on the potential for ignition.
 - Influence of concentration on the potential for ignition and the need to remove water from the solution.

- Residential sprinkler droplet distributions over a range of locations, sprinkler types, liquid types, and operating pressures.

- Potential for an explosion resulting from a flash fire in a confined space.

Existing research into each of these topics has been identified and summarized as part of the literature search. From the discussion above, it is clear that each of the topics is a complicated and contemporary research topic on its own.

Because antifreeze sprinkler systems are currently in use, a practical approach is needed to investigate the potential for large-scale ignition of antifreeze solutions without waiting for the development of each of the research topics identified above.

Although rare, existing research demonstrates the possibility that a large-scale ignition of antifreeze solution may occur under certain circumstances. Factors to be considered include:
- The impact of antifreeze type and concentration.
- Sprinkler type and operating pressures.
- The type, location and duration of the ignition source.
- Potential for an explosion resulting from a flash fire in a confined space.

FM Global Class Number 6930, *Approval Standard for Flammability Classification of Industrial Fluid*, is intended to investigate the suitability of industrial fluids. This includes an investigation of the flammability of liquid sprays. This standard test method could provide an indication of the potential for ignition of propylene glycol and glycerin antifreeze solutions at various concentrations.

More detailed research specifically addressing the analysis of sprays from residential sprinklers could also be developed, although no standard test method exists for that purpose. The testing program should include an actual residential sprinkler over a range of operating pressures and antifreeze concentrations. This would simulate the range of droplet size distributions and concentrations provided by residential sprinklers. Based on observations from the testing at UL, it is important to test minimum system pressures and higher system pressures due to the complexities in the spray distribution patterns.

Testing should also investigate the impact of antifreeze solutions on maintaining tenable conditions during a fire condition. Standard test methods such as UL 1626, the *Standard for Safety for Residential Sprinklers for Fire-Protection Service*, could be used to provide criteria for future testing. The testing plan should include a range of operating pressures, sprinklers, and antifreeze concentrations.

A strong ignition source should be used to increase the potential for ignition and the ignition source should be moved to a variety of locations with respect to the sprinkler. Care should be taken in conducting such testing, as the purpose of the testing is to investigate whether a flash fire or deflagration could occur. Multiple ignition sources should be considered including, solid fuel fires, combustible liquids and hot surfaces (e.g. electric burners and heaters).

Other Antifreeze Solutions Permitted by NFPA 13

Antifreeze solutions other than propylene glycol and glycerin were not included in this literature review. However, NFPA 13 also permits the use of diethylene glycol and ethylene glycol in certain sprinkler systems. These additional antifreeze solutions have similar properties to those of propylene glycol and glycerin.
Table 9, below, outlines properties of all of the antifreeze solutions permitted by NFPA 13. One notable comparison is the flashpoint of diethylene glycol (255°F) to that of propylene glycol (210°F) and glycerin (390°F). It was observed during the recent preliminary fire tests conducted by UL that a solution of 70% glycerin with water under certain circumstances may result in large-scale ignition of the antifreeze solution. Given that the flash point of diethlyene glycol is less than the flash point of glycerin, additional research should be conducted to analyze the combustibility of diethylene glycol solutions supplied through sprinkler systems.

Another notable comparison is that the autoignition temperature of diethylene glycol (435°F) is significantly lower than that of the other antifreeze solutions permitted by NFPA 13. Because the flash points and autoignition temperatures of diethylene glycol and ethylene glycol are similar to those of propylene glycol and glycerin, additional research should be conducted to analyze the combustibility of diethylene glycol and ethylene glycol solutions supplied through sprinkler systems.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Flammable Limits in Air (% by volume) Lower/Upper</th>
<th>Flash Point (°F)</th>
<th>Autoignition Temperature (°F)</th>
<th>Boiling Point (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propylene Glycol</td>
<td>2.6 / 12.5</td>
<td>210</td>
<td>700</td>
<td>370</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Not Provided / Not Provided</td>
<td>390</td>
<td>698</td>
<td>340</td>
</tr>
<tr>
<td>Diethylene Glycol</td>
<td>Not Provided / Not Provided</td>
<td>255</td>
<td>435</td>
<td>472</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>3.2 / Not Provided</td>
<td>232</td>
<td>748</td>
<td>387</td>
</tr>
</tbody>
</table>

Table 9: Properties of Pure Antifreeze Solutions Permitted by NFPA 13

Alternative Antifreeze Solutions

In consideration of the potential limitations of antifreeze solutions currently permitted by NFPA 13, alternative antifreeze solutions should be researched as a potential replacement for the existing options. Ideally, the new antifreeze solution would be non-combustible, provide an adequate freezing point, be non-toxic, not be cost prohibitive, and not have material compatibility issues.
VII. Summary

NFPA 13, 13D and 13R permit the use of antifreeze solutions in fire sprinkler systems that are exposed to freezing conditions. In pure form, propylene glycol and glycerin (both permitted by NFPA 13, 13D and 13R) are Class IIIB Combustible Liquids. A literature search has been conducted to investigate impact of antifreeze solutions on the effectiveness of residential sprinkler systems.

Existing research and testing suggests that the combustibility characteristics of antifreeze-water mixtures in droplet form are not completely characterized by standardized test methods for flash point or autoignition temperature. Under certain conditions, atomized antifreeze-water mixtures can combust when sprayed onto an ignition source. Increasing the concentration of the antifreeze in the antifreeze-water solution increases the combustibility of the solution. Additionally, existing research indicates that under certain conditions, the energy release rate of some fires increases upon interaction with antifreeze-water mixtures.

Recent testing conducted at UL indicates that under certain conditions a large-scale ignition is possible from the discharge of a sprinkler system containing solutions of 70% glycerin or 60% propylene glycol in water onto certain ignition sources. This result is dependent on the characteristics of the fuel source, the spray distribution pattern of the antifreeze-water mixture, the pressure of the system, the type of sprinkler, the location of the fire relative to the sprinkler and the concentration of the antifreeze solution in the mixture. Future testing is recommended to analyze the ignition of antifreeze-water mixtures in droplet form. This is important due to the unique combustibility characteristics of antifreeze-water mixtures when atomized during sprinkler discharge.

Research is also recommended to investigate the combustibility of diethylene glycol and ethylene glycol solutions with water (antifreeze solutions also permitted by NFPA 13, 13D and 13R). The flash points and autoignition temperatures of diethylene glycol and ethylene glycol are comparable to those of propylene glycol and glycerin. As such, the combustibility of these solutions should also be addressed.

Existing research indicates that under certain conditions the energy released during a fire condition could increase upon interaction with certain antifreeze solutions currently permitted by NFPA 13, 13D and 13R. Further research is recommended to investigate the effectiveness of antifreeze solutions used in sprinkler systems. Specifically, the ability of antifreeze solutions to control a fire and maintain tenable conditions should be investigated. Additionally, the recent testing conducted by UL demonstrates that, under certain conditions, a large-scale sustained ignition is possible from the discharge of certain sprinkler systems containing antifreeze solutions. Further testing is required to more completely investigate the potential for large-scale ignition or flash fires from antifreeze solutions. Based on the known characteristics of ethylene
glycol and diethylene glycol, additional research should also address their suitability for use in sprinkler systems. An alternative antifreeze solution should also be investigated for conditions where the solutions that are currently permitted are not found to be suitable.
VIII. References

1 National Board of Fire Underwriters, *NBFU Pamphlet No. 13: Standards of the National Board of Fire Underwriters for the Installation of Sprinkler Equipments as recommended by the National Fire Protection Association*, Chicago (1940 ed.).

Fire Test Data Summary for Residential Sprinklers Discharging Antifreeze Mixtures

Project Number: SR5882864
File Number: Subject 1626

Underwriters Laboratories Inc.
333 Pfingsten Road, Northbrook, IL 60062

May 26, 2010

Prepared by:
Daniel Steppan
Staff Engineer
Building Materials & Systems

Reviewed by:
Kerry M. Bell
Primary Designated Engineer
Fire Sprinkler & Pump Equipment

Underwriters Laboratories Inc. (UL) its trustees, employees, sponsors, and contractors, make no warranties, express or implied, nor assume and expressly disclaim any legal liability or responsibility to any person for any loss or damage arising out of or in connection with the interpretation, application, or use of or inability to use, any information, data, apparatus, product, or processes disclosed in this Report. This Report cannot be modified or reproduced, in whole or part, without the prior written permission of Underwriters Laboratories Inc.

Copyright © 2010 Underwriters Laboratories Inc.
General

This fire test data summary is intended for distribution to the National Fire Protection Association (NFPA) Technical Correlating Committee (TCC) on Automatic Sprinkler Systems solely for their use related to the consideration of requirements referenced in the applicable NFPA design, installation and maintenance standards.

This UL funded research effort was intended to generate fire test data on residential style sprinklers discharging water compared to glycerin and propylene glycol antifreeze mixtures using two different fire sources, heptane and canola oil, in an open area and semi-enclosed structure.

Acknowledgements

UL wishes acknowledge and express deep appreciation for the contributions of The Viking Corporation who provided the portable pump system and the antifreeze mixtures that were used for this test series. Also, Mr. Shawn Orr and Mr. Scott Franson of The Viking Corporation provided extraordinary assistance in the planning and execution of these tests.
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Open Area Elevation View (Tests 1 – 4, 16 and 17)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Open Area Plan View (Tests 1 – 4, 16 and 17)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Enclosure Testing Elevation View (Tests 5 through 15)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Enclosure Testing Plan View (Test 5)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Enclosure Testing Plan View (Tests 6 through 13)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Enclosure Testing Plan View (Tests 14 through 15)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Test 5 Sprinkler and Ignition Temperatures</td>
<td>18</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Test 5 SE Tree</td>
<td>18</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Test 5 SW Tree</td>
<td>19</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Test 5 W Center Tree</td>
<td>19</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Test 5 NW Tree</td>
<td>20</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Test 5 NE Tree</td>
<td>20</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Test 6 Sprinkler and Ignition Temperatures</td>
<td>21</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Test 6 SE Tree</td>
<td>21</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Test 6 SW Tree</td>
<td>22</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Test 6 W Center Tree</td>
<td>22</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Test 6 NW Tree</td>
<td>23</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Test 6 NE Tree</td>
<td>23</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Test 7 Sprinkler and Ignition Temperatures</td>
<td>24</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Test 7 SE Tree</td>
<td>24</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Test 7 SW Tree</td>
<td>25</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Test 7 W Center Tree</td>
<td>25</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Test 7 NW Tree</td>
<td>26</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Test 7 NE Tree</td>
<td>26</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Test 8 Sprinkler and Ignition Temperatures</td>
<td>27</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Test 8 SE Tree</td>
<td>27</td>
</tr>
<tr>
<td>Figure 27</td>
<td>Test 8 SW Tree</td>
<td>28</td>
</tr>
<tr>
<td>Figure 28</td>
<td>Test 8 W Center Tree</td>
<td>28</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Test 8 NW Tree</td>
<td>29</td>
</tr>
<tr>
<td>Figure 30</td>
<td>Test 8 NE Tree</td>
<td>29</td>
</tr>
<tr>
<td>Figure 31</td>
<td>Test 9 Sprinkler and Ignition Temperatures</td>
<td>30</td>
</tr>
<tr>
<td>Figure 32</td>
<td>Test 9 SE Tree</td>
<td>30</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Test 9 SW Tree</td>
<td>31</td>
</tr>
<tr>
<td>Figure 34</td>
<td>Test 9 W Center Tree</td>
<td>31</td>
</tr>
<tr>
<td>Figure 35</td>
<td>Test 9 NW Tree</td>
<td>32</td>
</tr>
<tr>
<td>Figure 36</td>
<td>Test 9 NE Tree</td>
<td>32</td>
</tr>
<tr>
<td>Figure 37</td>
<td>Test 10 Sprinkler and Ignition Temperatures</td>
<td>33</td>
</tr>
<tr>
<td>Figure 38</td>
<td>Test 10 SE Tree</td>
<td>33</td>
</tr>
<tr>
<td>Figure 39</td>
<td>Test 10 SW Tree</td>
<td>34</td>
</tr>
<tr>
<td>Figure 40</td>
<td>Test 10 W Center Tree</td>
<td>34</td>
</tr>
<tr>
<td>Figure 41</td>
<td>Test 10 NW Tree</td>
<td>35</td>
</tr>
<tr>
<td>Figure 42</td>
<td>Test 10 NE Tree</td>
<td>35</td>
</tr>
</tbody>
</table>
Table of Figures (cont.)

Figure 43 – Test 11 Sprinkler and Ignition Temperatures..........................36
Figure 44 – Test 11 SE Tree ...36
Figure 45 – Test 11 SW Tree ...37
Figure 46 – Test 11 W Center Tree ..37
Figure 47 – Test 11 NW Tree ...38
Figure 48 – Test 11 NE Tree ...38
Figure 49 – Test 12 Sprinkler and Ignition Temperatures..........................39
Figure 50 – Test 12 SE Tree ...39
Figure 51 – Test 12 SW Tree ...40
Figure 52 – Test 12 W Center Tree ..40
Figure 53 – Test 12 NW Tree ...41
Figure 54 – Test 12 NE Tree ...41
Figure 55 – Test 13 Sprinkler and Ignition Temperatures..........................42
Figure 56 – Test 13 SE Tree ...42
Figure 57 – Test 13 SW Tree ...43
Figure 58 – Test 13 W Center Tree ..43
Figure 59 – Test 13 NW Tree ...44
Figure 60 – Test 13 NE Tree ...44
Figure 61 – Test 14 Sprinkler and Ignition Temperatures..........................45
Figure 62 – Test 14 SE Tree ...45
Figure 63 – Test 14 SW Tree ...46
Figure 64 – Test 14 W Center Tree ..46
Figure 65 – Test 14 NW Tree ...47
Figure 66 – Test 14 NE Tree ...47
Figure 67 – Test 15 Sprinkler and Ignition Temperatures..........................48
Figure 68 – Test 15 SE Tree ...48
Figure 69 – Test 15 SW Tree ...49
Figure 70 – Test 15 W Center Tree ..49
Figure 71 – Test 15 NW Tree ...50
Figure 72 – Test 15 NE Tree ...50
Table 1
Summary of Open Area Fire Tests

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Date 1</th>
<th>Test Date 2</th>
<th>Test Date 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel for Fire</td>
<td>Heptane</td>
<td>Heptane</td>
<td>Heptane</td>
</tr>
<tr>
<td>Test Configuration</td>
<td>Figures 1 & 2</td>
<td>Figures 1 & 2</td>
<td>Figures 1 & 2</td>
</tr>
<tr>
<td>Liquid Discharged from Sprinkler</td>
<td>Factory Mixed Glycerin</td>
<td>Factory Mixed Glycerin</td>
<td>Factory Mixed Propylene Glycol</td>
</tr>
<tr>
<td>Antifreeze Concentration, %</td>
<td>70/30</td>
<td>70/30</td>
<td>60/40</td>
</tr>
<tr>
<td>Nominal Dimensions of Steel Pan for Fuel, cm (in)</td>
<td>69 by 69 by 30 high (27 by 27 by 12)</td>
<td>69 by 69 by 30 high (27 by 27 by 12)</td>
<td>69 by 69 by 30 high (27 by 27 by 12)</td>
</tr>
<tr>
<td>Nominal Depth of Water, mm (in)</td>
<td>102 (4)</td>
<td>102 (4)</td>
<td>102 (4)</td>
</tr>
<tr>
<td>Nominal Depth of Heptane, mm (in)</td>
<td>51 (2)</td>
<td>51 (2)</td>
<td>51 (2)</td>
</tr>
<tr>
<td>Nominal Ceiling Height, m (ft)</td>
<td>2.4 (8)</td>
<td>2.4 (8)</td>
<td>2.4 (8)</td>
</tr>
<tr>
<td>Ceiling Dimensions, m by m (ft by ft)</td>
<td>3.1 by 3.7 (10 by 12)</td>
<td>3.1 by 3.7 (10 by 12)</td>
<td>3.1 by 3.7 (10 by 12)</td>
</tr>
<tr>
<td>Top of Pan to Ceiling, m (in)</td>
<td>1.7 (46)</td>
<td>1.7 (46)</td>
<td>1.7 (46)</td>
</tr>
<tr>
<td>Horizontal Distance from Sprinkler to Pan Edge, cm (in)</td>
<td>61 (24)</td>
<td>61 (24)</td>
<td>61 (24)</td>
</tr>
<tr>
<td>Sprinkler Orientation</td>
<td>Recessed Pendent</td>
<td>Recessed Pendent</td>
<td>Recessed Pendent</td>
</tr>
<tr>
<td>Temperature Rating, °C (°F)</td>
<td>68 (155)</td>
<td>68 (155)</td>
<td>68 (155)</td>
</tr>
<tr>
<td>Sprinkler Type</td>
<td>Residential</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Nominal K-factor, lpm/bar (gpm/psi)</td>
<td>72 (4.9)</td>
<td>45 (3.1)</td>
<td>45 (3.1)</td>
</tr>
<tr>
<td>Nominal Discharge Pressure, bar (psig)</td>
<td>3.4 (50)</td>
<td>6.9 (100)</td>
<td>6.9 (100)</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Results</th>
<th>Test Date 1</th>
<th>Test Date 2</th>
<th>Test Date 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprinkler Operation After Ignition, min:s</td>
<td>0:10</td>
<td>0:08</td>
<td>0:10</td>
</tr>
<tr>
<td>Duration of Sprinkler Discharge, min:s</td>
<td>5:55</td>
<td>1:25</td>
<td>1:56</td>
</tr>
</tbody>
</table>

Visual Observations of Fire Behavior

- **Test Date 1**: The fire size at sprinkler operation increased somewhat and then remained relatively steady throughout the test. After termination of sprinkler discharge, the heptane fire continued to burn until manually extinguished.
- **Test Date 2**: After sprinkler operation, the antifreeze mixture was observed to ignite and create a large spray type fire from the sprinkler discharge. This fire was sustained until the sprinkler discharge was terminated. After termination of sprinkler discharge, the heptane fire continued to burn until manually extinguished.
- **Test Date 3**: The size of the fire plume size varied after sprinkler operation. Occasionally, it appeared that portions of the antifreeze mixture discharged from the sprinkler ignited for brief time periods, but the fire was eventually extinguished at 72 sec after the start of sprinkler discharge.
TABLE 1 (Cont.)
SUMMARY OF OPEN AREA FIRE TESTS

<table>
<thead>
<tr>
<th>TEST DATE</th>
<th>5/17/10</th>
<th>5/24/10</th>
<th>5/25/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE TEST NUMBER</td>
<td>4</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>PARAMETERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel for Fire</td>
<td>Heptane</td>
<td>Heptane</td>
<td>Heptane</td>
</tr>
<tr>
<td>Test Configuration</td>
<td>Figures 1 & 2</td>
<td>Figures 1 & 2</td>
<td>Figures 1 & 2</td>
</tr>
<tr>
<td>Liquid Discharged from Sprinkler</td>
<td>Factory Mixed Glycerin</td>
<td>Factory Mixed Glycerin</td>
<td>Water</td>
</tr>
<tr>
<td>Antifreeze Concentration, %</td>
<td>70/30</td>
<td>50/50</td>
<td>N/A</td>
</tr>
<tr>
<td>Nominal Dimensions of Steel Pan for Fuel, cm (in)</td>
<td>69 by 69 by 30 high (27 by 27 by 12)</td>
<td>69 by 69 by 30 high (27 by 27 by 12)</td>
<td>69 by 69 by 30 high (27 by 27 by 12)</td>
</tr>
<tr>
<td>Nominal Depth of Water, mm (in)</td>
<td>102 (4)</td>
<td>102 (4)</td>
<td>102 (4)</td>
</tr>
<tr>
<td>Nominal Depth of Heptane, mm (in)</td>
<td>51 (2)</td>
<td>51 (2)</td>
<td>51 (2)</td>
</tr>
<tr>
<td>Nominal Ceiling Height, m (ft)</td>
<td>2.4 (8)</td>
<td>2.4 (8)</td>
<td>2.4 (8)</td>
</tr>
<tr>
<td>Ceiling Dimensions, m by m (ft by ft)</td>
<td>3.1 by 3.7 (10 by 12)</td>
<td>3.1 by 3.7 (10 by 12)</td>
<td>3.1 by 3.7 (10 by 12)</td>
</tr>
<tr>
<td>Top of Pan to Ceiling, m (in)</td>
<td>1.7 (46)</td>
<td>1.7 (46)</td>
<td>1.7 (46)</td>
</tr>
<tr>
<td>Horizontal Distance from Sprinkler to Pan Edge, cm (in)</td>
<td>61 (24)</td>
<td>61 (24)</td>
<td>61 (24)</td>
</tr>
<tr>
<td>Sprinkler Orientation</td>
<td>Recessed Pendent</td>
<td>Recessed Pendent</td>
<td>Recessed Pendent</td>
</tr>
<tr>
<td>Temperature Rating, °C (°F)</td>
<td>68 (155)</td>
<td>68 (155)</td>
<td>68 (155)</td>
</tr>
<tr>
<td>Sprinkler Type</td>
<td>Residential</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Nominal K-factor, lpm/bar ½ (gpm/psi ½)</td>
<td>45 (3.1)</td>
<td>45 (3.1)</td>
<td>45 (3.1)</td>
</tr>
<tr>
<td>Nominal Discharge Pressure, bar (psig)</td>
<td>6.9(100)</td>
<td>6.9 (100)</td>
<td>6.9 (100)</td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprinkler Operation After Ignition, min:s</td>
<td>0:11</td>
<td>0:08</td>
<td>0:10</td>
</tr>
<tr>
<td>Duration of Sprinkler Discharge, min:s</td>
<td>1:52</td>
<td>2:00</td>
<td>2:00</td>
</tr>
<tr>
<td>Visual Observations of Fire Behavior</td>
<td>After sprinkler operation, the antifreeze mixture was observed to ignite and create a large spray type fire from the sprinkler discharge. This fire was sustained until the sprinkler discharge was terminated. After termination of sprinkler discharge, the heptane fire continued to burn until manually extinguished.</td>
<td>After sprinkler operation, the fire was pushed in a direction away from the sprinkler discharge. The size of the fire then remained relatively steady throughout the test. No sustained ignition of the antifreeze discharge was observed. After termination of sprinkler discharge, the heptane fire continued to burn until manually extinguished.</td>
<td>After sprinkler operation, the fire was pushed in a direction away from the sprinkler discharge. The size of the fire then remained relatively steady throughout the test. After termination of sprinkler discharge, the heptane fire continued to burn until manually extinguished.</td>
</tr>
</tbody>
</table>
Table 2
SUMMARY OF 12 FT by 12 FT by 8 FT. HIGH, 3-SIDED ENCLOSURE FIRE TESTS

<table>
<thead>
<tr>
<th>TEST DATE</th>
<th>5/18/10</th>
<th>5/19/10</th>
<th>5/19/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE TEST NUMBER</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

PARAMETERS

<table>
<thead>
<tr>
<th>Fuel for Fire</th>
<th>Canola Cooking Oil</th>
<th>Canola Cooking Oil</th>
<th>Heptane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Configuration</td>
<td>Figures 3 & 4</td>
<td>Figures 3 & 5</td>
<td>Figures 3 & 5</td>
</tr>
<tr>
<td>Liquid Discharged from Sprinkler</td>
<td>Factory Mixed Glycerin</td>
<td>Factory Mixed Glycerin</td>
<td>Factory Mixed Glycerin</td>
</tr>
<tr>
<td>Antifreeze Concentration, %</td>
<td>70/30</td>
<td>70/30</td>
<td>50/50</td>
</tr>
<tr>
<td>Fuel Vessel Description and Dimensions, cm (in)</td>
<td>30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop</td>
<td>30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop</td>
<td>30 (12) by 30 (12) by 10.2 (4) high steel pan</td>
</tr>
<tr>
<td>Nominal Depth of Water, cm (in)</td>
<td>N/A</td>
<td>N/A</td>
<td>25.4 (1)</td>
</tr>
<tr>
<td>Nominal Depth of Fuel, mm (in)</td>
<td>25.4 (1)</td>
<td>25.4 (1)</td>
<td>25.4 (1)</td>
</tr>
<tr>
<td>Nominal Ceiling Height, m (ft)</td>
<td>2.4 (8)</td>
<td>2.4 (8)</td>
<td>2.4 (8)</td>
</tr>
<tr>
<td>Top of Skillet to Ceiling, m (in)</td>
<td>1.6 (63)</td>
<td>1.6 (63)</td>
<td>1.6 (63)</td>
</tr>
<tr>
<td>Horizontal Distance from Sprinkler to Skillet Edge, cm (in)</td>
<td>137 (54)</td>
<td>61 (24)</td>
<td>61 (24)</td>
</tr>
<tr>
<td>Sprinkler Orientation</td>
<td>Recessed Pendent</td>
<td>Recessed Pendent</td>
<td>Recessed Pendent</td>
</tr>
<tr>
<td>Temperature Rating, °C (°F)</td>
<td>68 (155)</td>
<td>68 (155)</td>
<td>68 (155)</td>
</tr>
<tr>
<td>Sprinkler Type</td>
<td>Residential</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Nominal K-factor, lpm/bar (gpm/psi)</td>
<td>45 (3.1)</td>
<td>45 (3.1)</td>
<td>45 (3.1)</td>
</tr>
<tr>
<td>Nominal Discharge Pressure, bar (psig)</td>
<td>6.9 (100)</td>
<td>6.9 (100)</td>
<td>6.9 (100)</td>
</tr>
</tbody>
</table>

RESULTS

Oil Temperature at Auto Ignition, °C (°F)	371 (700)	370 (698)	N/A
Sprinkler Operation After Ignition, min:sec	2:20	2:00	0:45
Duration of Sprinkler Discharge, min:sec	4:56	1:00	2:30
Maximum Temperature at 76 mm (3 in) Below Ceiling	108 (227) @ NE Corner	693 (1279) @ NW Corner	62 (144) @ NW Corner
Maximum Temperature at 61 cm (24 in) Below Ceiling	36 (97) @ SE Corner	850 (1562) @ NW Corner	50 (122) @ SE Corner
Maximum Temperature at 1.6 m (63 in) Above Floor	34 (93) @ SE Corner	732 (1350) @ NW Corner	49 (120) @ SE Corner

Visual Observations of Fire Behavior

- **The fire size was reduced after sprinkler discharge and was extinguished within 30 sec prior to the end of sprinkler discharge.**
- **A small area of thermal damage on the plywood near the skillet was observed.**
- **After sprinkler operation, the antifreeze mixture was observed to ignite and create a large spray type fire from sprinkler discharge that extended outside the room lintel.**
- **The flash fire was sustained until the sprinkler discharge was terminated.**
- **The canola oil fire was extinguished during sprinkler discharge.**
- **The fire size at sprinkler operation remained controlled and relatively steady throughout the test.**
- **No ignition of the antifreeze was observed.**
- **After the sprinkler discharge was terminated, the heptane fire was manually extinguished.**
TABLE 2 (Cont.)

SUMMARY OF 12 FT by 12 FT BY 8 FT. HIGH, 3-SIDED ENCLOSURE FIRE TESTS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST DATE</th>
<th>FIRE TEST NUMBER</th>
</tr>
</thead>
</table>
| **Fuel for Fire** | 5/19/10 | 8
| | 5/20/10 | 9
| | 5/20/10 | 10
| **Test Configuration** | Canola Cooking Oil
| | Canola Cooking Oil
| | Canola Cooking Oil
| **Liquid Discharged from Sprinkler** | Figures 3 & 5
| | Figures 3 & 5
| | Figures 3 & 5
| **Antifreeze Concentration, %** | Factory Mixed Glycerin
| | Water
| | Factory Mixed Propylene Glycol
| **Fuel Vessel Description and Dimensions, cm (in)** | 30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop
| | 30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop
| | 30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop
| **Nominal Depth of Water, cm (in)** | N/A
| | N/A
| | N/A
| **Nominal Depth of Fuel, mm (in)** | 25.4 (1)
| | 25.4 (1)
| | 25.4 (1)
| **Nominal Ceiling Height, m (ft)** | 2.4 (8)
| | 2.4 (8)
| | 2.4 (8)
| **Top of Skillet to Ceiling, m (in)** | 1.6 (63)
| | 1.6 (63)
| | 1.6 (63)
| **Horizontal Distance from Sprinkler to Skillet Edge, cm (in)** | 61 (24)
| | 61 (24)
| | 61 (24)
| **Sprinkler Orientation** | Recessed Pendent
| | Recessed Pendent
| | Recessed Pendent
| **Temperature Rating, °C (°F)** | 68 (155)
| | 68 (155)
| | 68 (155)
| **Sprinkler Type** | Residential
| | Residential
| | Residential
| **Nominal K-factor, lpm/bar (gpm/psi)** | 45 (3.1)
| | 45 (3.1)
| | 45 (3.1)
| **Nominal Discharge Pressure, bar (psig)** | 6.9 (100)
| | 6.9 (100)
| | 6.9 (100)

RESULTS

<table>
<thead>
<tr>
<th>RESULT</th>
<th>TEST DATE</th>
<th>FIRE TEST NUMBER</th>
</tr>
</thead>
</table>
| **Oil Temperature at Auto Ignition, °C (°F)** | 364 (687)
| | 365 (689)
| | 365 (689)
| **Sprinkler Operation After Ignition, min:sec** | 2:12
| | 2:10
| | 2:03
| **Duration of Sprinkler Discharge, min:sec** | 1:05
| | 1:20
| | 1:28
| **Maximum Temperature at 76 mm (3 in) Below Ceiling** | 172 (342) @ SW Corner
| | 138 (280) @ NE Corner
| | 450 (842) @ SW Corner
| **Maximum Temperature at 61 cm (24 in) Below Ceiling** | 52 (126) @ NE Corner
| | 46 (115) @ SE Corner
| | 276 (529) @ SE Corner
| **Maximum Temperature at 1.6 m (63 in) Above Floor** | 50 (122) @ NE Corner
| | 45 (113) @ SE Corner
| | 280 (536) @ SE Corner
| **Visual Observations of Fire Behavior** | After sprinkler operation, an initial increase in the size of the fire was observed for limited duration of approximately 10 sec. No flames were observed to extend beyond the room lintel. Fire extinguishment occurred at approximately 53 seconds after the start of sprinkler discharge.
| | After sprinkler operation, an initial increase in size of the fire was observed for limited duration of approximately 14 sec. No flames were observed to extend beyond the room lintel. Fire extinguishment occurred at approximately 20 seconds after the start of sprinkler discharge.
| | After sprinkler operation, the antifreeze mixture was observed to ignite and create a large spray type fire from the sprinkler discharge that extended outside the room lintel for approximately 20 sec. The oil fire appeared to be extinguished close to the same time as the spray fire ceased.
<table>
<thead>
<tr>
<th>TEST DATE</th>
<th>5/20/10</th>
<th>5/21/10</th>
<th>5/21/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE TEST NUMBER</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

PARAMETERS

Fuel for Fire	Canola Cooking Oil	Canola Cooking Oil	Canola Cooking Oil
Test Configuration	Figures 3 & 5	Figures 3 & 5	Figures 3 & 5
Liquid Discharged from Sprinkler	Factory Mixed Glycerin	Factory Mixed Glycerin	Water
Antifreeze Concentration, %	50/50	50/50	N/A
Fuel Vessel Description and Dimensions, cm (in)	30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop	30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop	30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop

Nominal Depth of Water, cm (in)	N/A	N/A	N/A
Nominal Depth of Fuel, mm (in)	25.4 (1)	25.4 (1)	25.4 (1)
Nominal Ceiling Height, m (ft)	2.4 (8)	2.4 (8)	2.4 (8)
Top of Skillet to Ceiling, m (in)	1.6 (63)	1.6 (63)	1.6 (63)
Horizontal Distance from Sprinkler to Skillet Edge, cm (in)	61 (24)	61 (24)	61 (24)
Sprinkler Orientation	Recessed Pendent	Recessed Pendent	Recessed Pendent
Temperature Rating, °C (°F)	68 (155)	68 (155)	68 (155)
Sprinkler Type	Residential	Residential	Residential
Nominal K-factor, lpm/bar ½ (gpm/psi ½)	45 (3.1)	45 (3.1)	45 (3.1)
Nominal Discharge Pressure, bar (psig)	10.3 (150)	1.4 (20)	1.4 (20)

RESULTS

Oil Temperature at Auto Ignition, °C (°F)	366 (691)	366 (691)	365 (689)
Sprinkler Operation After Ignition, min:sec	2:06	2:05	2:02
Duration of Sprinkler Discharge, min:sec	1:26	4:00	3:00
Maximum Temperature at 76 mm (3 in) Below Ceiling @ NE Corner	79 (174)	104 (219)	101 (214) @ NE Corner
Maximum Temperature at 61 cm (24 in) Below Ceiling @ SE Corner	51 (124)	33 (92)	35 (95) @ SE Corner
Maximum Temperature at 1.6 m (63 in) Above Floor @ NE Corner	50 (122)	29 (84)	32 (90) @ NE Corner

Visual Observations of Fire Behavior

- After sprinkler operation, an initial increase in the size of the fire was observed for limited duration of approximately 15 sec. No flames were observed to extend beyond the room lintel. Fire extinction occurred at approximately 75 seconds after the start of sprinkler discharge.
- The fire size at sprinkler operation was visually observed to increase slightly upon sprinkler discharge and then remain controlled with a stable or decreasing intensity until extinguishment occurred at approximately 180 sec after sprinkler operation.
- The fire size at sprinkler operation was observed to increase slightly upon sprinkler discharge and then remain controlled with a stable or decreasing intensity until the oil was consumed. Fire extinguishment occurred at the time the oil was fully consumed which was 132 sec after the start of discharge.
TABLE 2 (Cont.)
SUMMARY OF 12 FT by 12 FT BY 8 FT. HIGH, 3-SIDED ENCLOSURE FIRE TESTS

<table>
<thead>
<tr>
<th>TEST DATE</th>
<th>5/21/10</th>
<th>5/24/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE TEST NUMBER</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

PARAMETERS

<table>
<thead>
<tr>
<th>Fuel for Fire</th>
<th>Canola Cooking Oil</th>
<th>Canola Cooking Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Configuration</td>
<td>Figures 3 & 6</td>
<td>Figures 3 & 6</td>
</tr>
<tr>
<td>Liquid Discharged from Sprinkler</td>
<td>Factory Mixed Glycerin</td>
<td>Water</td>
</tr>
<tr>
<td>Antifreeze Concentration, %</td>
<td>50/50</td>
<td>N/A</td>
</tr>
<tr>
<td>Fuel Vessel Description and Dimensions, cm (in)</td>
<td>30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop</td>
<td>30 (12) diameter by 5.1 (2) high cast iron skillet heated by a coil-type electric stovetop</td>
</tr>
<tr>
<td>Nominal Depth of Water, cm (in)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nominal Depth of Fuel, mm (in)</td>
<td>25.4 (1)</td>
<td>25.4 (1)</td>
</tr>
<tr>
<td>Nominal Ceiling Height, m (ft)</td>
<td>2.4 (8)</td>
<td>2.4 (8)</td>
</tr>
<tr>
<td>Top of Skillet to Ceiling, m (in)</td>
<td>1.6 (63)</td>
<td>1.6 (63)</td>
</tr>
<tr>
<td>Horizontal Distance from Sprinkler to Skillet Edge, cm (in)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>Sprinkler Orientation</td>
<td>Recessed Pendent</td>
<td>Recessed Pendent</td>
</tr>
<tr>
<td>Temperature Rating, °C (°F)</td>
<td>68 (155)</td>
<td>68 (155)</td>
</tr>
<tr>
<td>Sprinkler Type</td>
<td>Residential</td>
<td>Residential</td>
</tr>
<tr>
<td>Nominal K-factor, lpm/bar ½ (gpm/psi ½)</td>
<td>45 (3.1)</td>
<td>45 (3.1)</td>
</tr>
<tr>
<td>Nominal Discharge Pressure, bar (psig)</td>
<td>10.3 (150)</td>
<td>10.3 (150)</td>
</tr>
</tbody>
</table>

RESULTS

Oil Temperature at Auto Ignition, °C (°F)	362 (684)	369 (696)
Sprinkler Operation After Ignition, min:sec	2:06	1:40
Duration of Sprinkler Discharge, min:sec	0:55	1:12
Maximum Temperature at 76 mm (3 in) Below Ceiling	127 (261) @ NE Corner	153 (307) @ SE Corner
Maximum Temperature at 61 cm (24 in) Below Ceiling	57 (135) @ SE Corner	60 (140) @ NE Corner
Maximum Temperature at 1.6 m (63 in) Above Floor	55 (131) @ SE Corner	57 (135) @ SE Corner

Visual Observations of Fire Behavior

- **After sprinkler operation, an initial increase in the size of the fire was observed during the first 10 seconds of discharge that caused flames to extend beyond the room lintel on two occasions each lasting for approximately 1 second. Fire extinguishment occurred at approximately 30 sec after the start of sprinkler discharge.**
- **After sprinkler operation, an initial increase in intensity and size of the fire was observed for limited duration of approximately 30 sec. No flames were observed to extend beyond the room lintel. Fire extinguishment occurred at approximately 36 seconds after the start of sprinkler discharge.**
Figure 1 – Open Area Elevation View (Tests 1 – 4, 16 and 17)
TEST DIAGRAMS (Cont.)

3.05 m by 3.69 m (10 ft. by 12 ft.) ceiling, suspended 2.4 m (8 ft.) off the ground.

Recessed Pendent Residential Sprinkler - Centered on Ceiling

0.61 m (2 ft.) gap between sprinkler and pan centerline

UL 711; 2-B Flammable Liquid Test Pan 0.47 m² (5 ft²) Positioned 0.97 m (38 inches) off test room floor

Heptane Pan

Figure 2 – Open Area Plan View (Tests 1 – 4, 16 and 17)
Figure 3 – Enclosure Testing Elevation View (Tests 5 through 15)
TEST DIAGRAMS (Cont.)

3.66 m by 3.66 m (12 ft. by 12 ft.),
3 sided enclosure with 2.4 m (8 ft.) high
ceiling and 0.2 m (8 in.) lintel at open wall
(top of Figure)

Figure 4 – Enclosure Testing Plan View (Test 5)
TEST DIAGRAMS (Cont.)

3.66 m by 3.66 m (12 ft. by 12 ft.),
3 sided enclosure with 2.4 m (8 ft.) high
ceiling and 0.2 m (8 in.) lintel at open wall
(top of Figure)

Figure 5 – Enclosure Testing Plan View (Tests 6 through 13)
TEST DIAGRAMS (Cont.)

3.66 m by 3.66 m (12 ft. by 12 ft.),
3 sided enclosure with 2.4 m (8 ft.) high
ceiling and 0.2 m (8 in.) lintel at open wall
(top of Figure)

Figure 6 – Enclosure Testing Plan View (Tests 14 through 15)
TEMPERATURE DATA FROM IGNITION TO NEAR TERMINATION OF SPRINKLER DISCHARGE FOR TESTS USING 3-SIDED ENCLOSURE (TESTS 5 THROUGH 15)
70 / 30 Glycerin and Water - 6.9 bar (100 psig), K=3.1
Skillet 1.37m (4.5 ft.) from Sprinkler

Figure 7 – Test 5 Sprinkler and Ignition Temperatures

Figure 8 – Test 5 SE Tree
Figure 9 – Test 5 SW Tree

Figure 10 – Test 5 W Center Tree
Figure 11 – Test 5 NW Tree

70 / 30 Glycerin and Water - 6.9 bar (100 psig), K=3.1
Skillet 1.37m (4.5 ft.) from Sprinkler

Figure 12 – Test 5 NE Tree

70 / 30 Glycerin and Water - 6.9 bar (100 psig), K=3.1
Skillet 1.37m (4.5 ft.) from Sprinkler
Figure 13 – Test 6 Sprinkler and Ignition Temperatures

Figure 14 – Test 6 SE Tree
Figure 15 – Test 6 SW Tree

70 / 30 Glycerin and Water - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 16 – Test 6 W Center Tree

70 / 30 Glycerin and Water - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler
Figure 17 – Test 6 NW Tree

Figure 18 – Test 6 NE Tree
Figure 19 – Test 7 Sprinkler and Ignition Temperatures

Figure 20 – Test 7 SE Tree
Figure 21 – Test 7 SW Tree

Figure 22 – Test 7 W Center Tree
50 / 50 Glycerin and Water - 6.9 bar (100 psig), K=3.1
0.098 m² (1 ft²) Heptane Pan; 0.61 m (2 ft.) from Sprinkler

Figure 23 – Test 7 NW Tree

Figure 24 – Test 7 NE Tree
Figure 25 – Test 8 Sprinkler and Ignition Temperatures

Figure 26 – Test 8 SE Tree
Figure 27 – Test 8 SW Tree

Figure 28 – Test 8 W Center Tree
Figure 29 – Test 8 NW Tree

50 / 50 Glycerin and Water - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 30 – Test 8 NE Tree

50 / 50 Glycerin and Water - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler
Figure 31 – Test 9 Sprinkler and Ignition Temperatures

Figure 32 – Test 9 SE Tree
Figure 33 – Test 9 SW Tree

Water Only - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 34 – Test 9 W Center Tree

Water Only - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler
Figure 35 – Test 9 NW Tree

Figure 36 – Test 9 NE Tree
Figure 37 – Test 10 Sprinkler and Ignition Temperatures

Figure 38 – Test 10 SE Tree
Figure 39 – Test 10 SW Tree

60 / 40 Propylene Glycol and Water - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 40 – Test 10 W Center Tree

60 / 40 Propylene Glycol and Water - 6.9 bar (100 psig), K=3.1
Skillet 0.61m (2 ft.) from Sprinkler
Figure 41 – Test 10 NW Tree

Figure 42 – Test 10 NE Tree
Figure 43 – Test 11 Sprinkler and Ignition Temperatures

50 / 50 Glycerin and Water at 10.3 bar (150 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 44 – Test 11 SE Tree

50 / 50 Glycerin and Water at 10.3 bar (150 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler
Figure 45 – Test 11 SW Tree

50 / 50 Glycerin and Water at 10.3 bar (150 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 46 – Test 11 W Center Tree

50 / 50 Glycerin and Water at 10.3 bar (150 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler
50 / 50 Glycerin and Water at 10.3 bar (150 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 47 – Test 11 NW Tree

50 / 50 Glycerin and Water at 10.3 bar (150 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 48 – Test 11 NE Tree
Figure 49 – Test 12 Sprinkler and Ignition Temperatures

Figure 50 – Test 12 SE Tree
Figure 51 – Test 12 SW Tree

50 / 50 Glycerin and Water at 1.4 bar (20 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler

Figure 52 – Test 12 W Center Tree

50 / 50 Glycerin and Water at 1.4 bar (20 psig) - K = 3.1
Skillet 0.61m (2 ft.) from Sprinkler
Figure 53 – Test 12 NW Tree

50 / 50 Glycerin and Water at 1.4 bar (20 psig) - \(K = 3.1 \)
Skillet 0.61m (2 ft.) from Sprinkler

![Temperature vs. Time Graph for NW Tree](image1)

Figure 54 – Test 12 NE Tree

50 / 50 Glycerin and Water at 1.4 bar (20 psig) - \(K = 3.1 \)
Skillet 0.61m (2 ft.) from Sprinkler

![Temperature vs. Time Graph for NE Tree](image2)
Figure 55 – Test 13 Sprinkler and Ignition Temperatures

Figure 56 – Test 13 SE Tree
Water Only at 1.4 bar (20 psig) - \(K = 3.1 \)
Skillet 0.61m (2 ft.) from Sprinkler

Figure 57 – Test 13 SW Tree

Temperature (°C) vs. Time (min)

- **SW Tree - 3 in. down**
- **SW Tree - 12 in. down**
- **SW Tree - 24 in. down**
- **SW Tree - 5 ft. 3 in. off ground**

Figure 58 – Test 13 W Center Tree

Temperature (°C) vs. Time (min)

- **W Center Tree - 3 in. down**
- **W Center Tree - 12 in. down**
- **W Center Tree - 24 in. down**
- **W Center Tree - 5 ft. 3 in. off ground**
Water Only at 1.4 bar (20 psig) - $K = 3.1$
Skillet 0.61m (2 ft.) from Sprinkler

Figure 59 – Test 13 NW Tree

Temperature (°C) vs. Time (min)

- NW Tree - 3 in. down
- NW Tree - 12 in. down
- NW Tree - 24 in. down
- NW Tree - 5 ft. 3 in. off ground

Figure 60 – Test 13 NE Tree

Temperature (°C) vs. Time (min)

- NE Tree - 3 in. down
- NE Tree - 12 in. down
- NE Tree - 24 in. down
- NE Tree - 5 ft. 3 in. off ground
Figure 61 – Test 14 Sprinkler and Ignition Temperatures

Figure 62 – Test 14 SE Tree
50 / 50 Glycerin and Water at 10.3 bar (150 psig) - $K = 3.1$
Skillet 0.46 m (1.5 ft.) from Sprinkler

Figure 63 – Test 14 SW Tree

Figure 64 – Test 14 W Center Tree
Figure 65 – Test 14 NW Tree

Figure 66 – Test 14 NE Tree
Figure 67 – Test 15 Sprinkler and Ignition Temperatures

Figure 68 – Test 15 SE Tree
Water Only at 10.3 bar (150 psig) - $K = 3.1$
Skillet 0.46 m (1.5 ft.) from Sprinkler

Figure 69 – Test 15 SW Tree

Figure 70 – Test 15 W Center Tree
Figure 71 – Test 15 NW Tree

Water Only at 10.3 bar (150 psig) - $K = 3.1$
Skillet 0.46 m (1.5 ft.) from Sprinkler

Figure 72 – Test 15 NE Tree

Water Only at 10.3 bar (150 psig) - $K = 3.1$
Skillet 0.46 m (1.5 ft.) from Sprinkler