1.3.1 *.
This standard shall apply to new fire apparatus that, before delivery to the ultimate purchaser, that meet the following criteria:

(1) Have 10,000 lb (4,500 kg) or greater gross vehicle weight rating (GVWR) or are trailers intended to be towed by fire apparatus under emergency response conditions

(2) Are designed for use under emergency conditions to transport personnel and equipment and to support the suppression of fires and mitigation of other hazardous situations

(3) Are contracted for on or after January 1, 2016 after the new edition of this standard is available for public use.

Statement of Problem and Substantiation for Public Comment

The standard does not define new apparatus and does not set boundaries for when an apparatus could be considered new. Further, it is possible for a contract be entered for 1/1/2016 at any time during the course of time. The 2015 edition of this standard may not be available when such contracts are awarded/entered. By changing to the proposed language, a boundary is set for the scope as well as allows for contracts to specify which edition of the standard can be adhered to.

Related Item
First Revision No. 1-NFPA 1901-2013 [Sections 1.3.1, 1.3.2]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 14:06:35 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: manufacturers need a firm date to plan to and the standard 1.3.2 already allows the early use of a new standards document
1.3.1 *

This standard shall apply to new fire apparatus, other than wildland fire apparatus, that meet the following criteria:

1. Have 10,000 lb (4,500 kg) or greater gross vehicle weight rating (GVWR) or are trailers intended to be towed by fire apparatus under emergency response conditions

2. Are designed for use under emergency conditions to transport personnel and equipment and to support the suppression of fires and mitigation of other hazardous situations

3. Are contracted for on or after January 1, 2016

Statement of Problem and Substantiation for Public Comment

This reduces a line item in the standard that states the exclusion of wildland apparatus.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 63-NFPA 1901-2014 [Section No. 1.3.3]</td>
<td></td>
</tr>
<tr>
<td>First Revision No. 1-NFPA 1901-2013 [Sections 1.3.1, 1.3.2]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 14:12:52 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: Already covered in 1.3.3
Public Comment No. 49-NFPA 1901-2014 [Section No. 1.3.2]

1.3.2 – Nothing shall prevent the use of the standard prior to January 1, 2016, or for vehicles with less than 10,000 lb. (4,500 kg) gross vehicle weight rating (GVWR), if the purchaser and the contractor both agree.

Statement of Problem and Substantiation for Public Comment

The standard could not be applied until it is released for publication which generally occurs in the fall before the year it comes into effect. To say nothing would prohibit the use of the standard prior to January 1, 2016 implies there would be no prohibition on the use of the standard at any time which is not the case. Instead, an annex item could be added stating the standard could be applied to fire apparatus less than 10K lbs GVWR, or fire apparatus built before January 1, 2016 so long as the standard is available.

Related Item
First Revision No. 1-NFPA 1901-2013 [Sections 1.3.1, 1.3.2]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 09:08:02 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: manufacturers need a firm date to plan to and the standard 1.3.2 already allows the early use of a new standards document
1.3.3 -
This standard shall not apply to wildland fire apparatus, which are covered by NFPA 1906.

Statement of Problem and Substantiation for Public Comment

This line item would be replaced by language in PC No. 62

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 62-NFPA 1901-2014 [Section No. 1.3.1]</td>
<td>Clarifying boundaries in PC No. 62</td>
</tr>
<tr>
<td>First Revision No. 1-NFPA 1901-2013 [Sections 1.3.1, 1.3.2]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 14:14:45 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: Already covered by 1.3.3
2.2 The current version, or most recent edition, of any document incorporated by reference shall be used.

Statement of Problem and Substantiation for Public Comment

By removing the year of revision, edition, or revision of documents incorporated by reference brings efficiency to future revisions of the standard. Further, it mitigates the need for manufacturers to manage multiple copies of documents incorporated by reference. Lastly, if a technical change occurs within a document incorporated by reference it may require an immediate need for a revision to the standard.

Related Item
First Revision No. 4-NFPA 1901-2013 [Section No. 2.2]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 09:49:39 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: Not permitted by the NFPA manual of style
Public Comment No. 51-NFPA 1901-2014 [Section No. 2.2]

2.2 NFPA Publications.

Statement of Problem and Substantiation for Public Comment

Refer to public input 50

Related Item

First Revision No. 4-NFPA 1901-2013 [Section No. 2.2]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 09:57:06 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: Not permitted by the NFPA manual of style
2.3 Other Publications.

2.3.1 ANSI Publications.
American National Standards Institute, Inc., 25 West 43rd Street, 4th floor, New York, NY 10036.

2.3.2 ASME Publications.
Boiler and Pressure Vessel Code, Section VIII, Division 1, 2013.

2.3.3 ASNT Publications.
2.3.4 ASTM Publications.
ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, www.astm.org.

ASTM E 114, Standard Practice for Ultrasonic Pulse-Echo Straight-Beam Examination by the Contact Method, 2010.

ASTM E 569, Standard Practice for Acoustic Emission Monitoring of Structures During Controlled Stimulation, 2013.

2.3.5 AWS Publications.

2.3.6 CGA Publications.

2.3.7 CSA Publications.
Canadian Standards Association, 5060 Spectrum Way, Mississauga, ON L4W 5N6, Canada, www.csa.ca.

CSA W47.1, Certification of Companies for Fusion Welding of Steel, 2012.

2.3.8 FAMA Publications.
Fire Apparatus Manufacturers Association, P.O. Box 397, Lynnfield, MA 01940-0397, www.fama.org

FAMA TC008, Graphical Symbols for Automotive Fire Apparatus.

2.3.9 ISEA Publications.

2.3.10 ISO Publications.
International Standards Organization, 1 rue de Varembé, Case Postale 56, CH-1211 Genève 20, Switzerland, www.standardsinfo.net.
ISO/IEC 17020, *Conformity Assessment: Requirements for the operation of various types of bodies performing inspection*, 2012.

2.3.11 Parker Hannifin, Racor Division Publications.
Parker Hannifin, Racor Division, Attn: Dan Haggard, 805 West Street, Holly Springs, MS 38634.
2.3.12 SAE Publications.

SAE J541, Voltage Drop for Starting Motor Circuits, 1996.

SAE J551/1, Performance Levels and Methods of Measurement of Electromagnetic Compatibility of Vehicles, Boats (up to 15 m), and Machines (16.6 Hz to 18 GHz), 2010.

SAE J554, Electric Fuses (Cartridge Type), 1987.

SAE J560, Primary and Auxiliary Seven Conductor Electrical Connector for Truck-Trailer Jumper Cable, 2009.

SAE J575, Test Methods and Equipment for Lighting Devices and Components for Use on Vehicles Less Than 2032 mm in Overall Width, 2012.

SAE J683, Tire Chain Clearance — Trucks, Buses (Except Suburban, Intercity, and Transit Buses), and Combinations of Vehicles, Stabilized 2011.

SAE J1127, Low Voltage Battery Cable, 2012.

SAE J1128, Low Voltage Primary Cable, 2012.

SAE J1690, Flashers, 1996.

SAE J2077, Miniature Blade Type Electrical Fuses, 1990.

SAE J2174, Heavy-Duty Wiring Systems for Trailers 2032 mm or More in Width, 2009.

SAE J2180, A Tilt Table Procedure for Measuring the Static Rollover Threshold for Heavy Trucks, Stabilized 2011.

SAE J2394, Seven-Conductor Cable for ABS Power — Truck and Bus, 2013.

SAE J2422, Cab Roof Strength Evaluation — Quasi-Static Loading Heavy Trucks, 2010.

2.3.13 TRA Publications.

Tire and Rim Association — Year Book, 2015.
2.3.14 UL Publications.

2.3.15 UNECE Publications.
ECE Regulation number 29, Uniform Provisions Concerning the Approval of Vehicles with Regard to the Protection of the Occupants of the Cab of a Commercial Vehicle, 2011.

2.3.16 U.S. Government Publications.
Title 49, Code of Federal Regulations, Part 393.94, “Interior noise levels in power units, paragraph (c), Test procedure.” 49 CFR 393.94.

2.3.17 Other Publications.

Statement of Problem and Substantiation for Public Comment

See Public Comment 50

Related Item
First Revision No. 4-NFPA 1901-2013 [Section No. 2.2]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 09:59:17 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: Not permitted by the NFPA manual of style
Public Comment No. 133-NFPA 1901-2014 [Section No. 2.3.4]

2.3.4 ASTM Publications.
ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, www.astm.org.
ASTM E 114, Standard Practice for Ultrasonic Pulse-Echo Straight-Beam Examination by the Contact Method, 2010.

Statement of Problem and Substantiation for Public Comment

Update year dates

Related Item
First Revision No. 1-NFPA 1901-2013 [Sections 1.3.1, 1.3.2]

Submitter Information Verification

Submitter Full Name: Steve Mawn
Organization: ASTM International
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 16:07:02 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
<table>
<thead>
<tr>
<th>Resolution</th>
<th>SR-52-NFPA 1901-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>Updating reference editions.</td>
</tr>
</tbody>
</table>
2.3.16 U.S. Government Publications.

Title 49, Code of Federal Regulations, Part 393.94, "Interior noise levels in power units, paragraph (c), Test procedure." 49 CFR 393.94.

Statement of Problem and Substantiation for Public Comment

The standard is not being referenced as the section referencing it was deleted. In Public Input 383 I recommended that, at least, a reference should be included that the standard fire test in FMVSS 302 is worthless as was shown by abundant research (and by the work indicated in NFPA 556). If the committee chooses not to protect firefighters appropriately, it should at least note that fact in the standard.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 103-NFPA 1901-2014 [New Section after 14.1.4]</td>
<td>Related Item</td>
</tr>
<tr>
<td>Public Input No. 383-NFPA 1901-2013 [Section No. 14.1.4]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Marcelo Hirschler
Organization: GBH International
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 02 10:49:47 EDT 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-5-NFPA 1901-2014
Statement: The standard is not being referenced as the section referencing it was deleted.
Public Comment No. 53-NFPA 1901-2014 [Section No. 3.3.80]

3.3.80 GAWR (Gross Axle Weight Rating).
The final stage manufacturer's specified maximum load value specified by the vehicle as the load-carrying capacity of an axle system, as measured at the tire-ground interfaces.

Statement of Problem and Substantiation for Public Comment

The definition in the standard deviates from the definition found in 49 C.F.R. 571.3. It implies the final stage manufacturer identifies the rating. Pursuant to 49 C.F.R. 567, the incomplete vehicle has that responsibility in the case of vehicles manufacturered in two more stages.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 59-NFPA 1901-2014 [Section No. 3.3.108]</td>
<td>Related Item</td>
</tr>
<tr>
<td>First Revision No. 19-NFPA 1901-2013 [Section No. 3.3.87]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 10:15:56 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: CFR places that responsibility on the final stage manufacturer under 49CFR 567.5B
Public Comment No. 55-NFPA 1901-2014 [Section No. 3.3.81]

3.3.81 GCWR (Gross Combination Weight Rating).
The final stage manufacturer’s specified maximum value specified by the manufacturer as the loaded weight for of a combination (articulated) vehicle consisting of a tow vehicle and one or more towed units.

Statement of Problem and Substantiation for Public Comment

The current definition in the standard is inconsistent with that in 49 C.F.R. 571.3. Further it implies the final stage manufacturer has the responsibility of assigning such value but in the case of vehicles manufactured in two or more stages the incomplete vehicle manufacturer has the responsibility.

Related Item
First Revision No. 19-NFPA 1901-2013 [Section No. 3.3.87]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 11:50:54 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: CFR places that responsibility on the final stage manufacturer under 49CFR 567.5B
Public Comment No. 54-NFPA 1901-2014 [Section No. 3.3.87]

3.3.87 GVWR (Gross Vehicle Weight Rating).
The final stage manufacturer's specified maximum load-carrying capacity of value specified by the manufacturer as the loaded weight of a single vehicle.

Statement of Problem and Substantiation for Public Comment

GVWR is defined in 49 C.F.R 571.3. The definition in the standard deviates from that in the federal regulations. It also implies the final stage manufacturer has the responsibility to assign the value. Pursuant to 49 C.F.R. 567, an incomplete vehicle manufacturer would have that responsibility in the case of vehicles manufactured in two or more stages.

Related Item
First Revision No. 19-NFPA 1901-2013 [Section No. 3.3.87]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 10:22:24 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: CFR places that responsibility on the final stage manufacturer under 49CFR 567.5B
Add new definition:

Maximum discharge gauge pressure capability rating. The maximum permissible discharge gauge pressure at which the fire pump may be operated.

Statement of Problem and Substantiation for Public Comment

The phrase maximum discharge gauge pressure capability rating is used in the standard but is not defined. The proposed definition provides a definition for the phrase.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 115-NFPA 1901-2014 [New Section after 4.20.1]</td>
<td>Refers to same phrase</td>
</tr>
<tr>
<td>Public Comment No. 134-NFPA 1901-2014 [Section No. 16.2.5]</td>
<td>Refers to same phrase</td>
</tr>
<tr>
<td>Public Comment No. 135-NFPA 1901-2014 [Section No. 4.20.1]</td>
<td>Refers to same phrase</td>
</tr>
<tr>
<td>First Revision No. 226-NFPA 1901-2013 [New Section after 16.2.4.2]</td>
<td>Related Item</td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Tom Mettler
Organization: Waterous Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 17:09:13 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-6-NFPA 1901-2014
Statement: Updating definition for ‘manufacturer’ and adding new definition for ‘maximum discharge pressure capability rating’ which is used in the standard but was not previously defined.
Public Comment No. 59-NFPA 1901-2014 [Section No. 3.3.108]

<table>
<thead>
<tr>
<th>3.3.108 Manufacturer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The person or persons, company, firm, corporation, partnership, or other organization responsible for turning raw materials or assembles components into a finished product.</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

The current definition implies the responsible party "turns" a component into a finish product. This clarifies the action of assembling components results in a finished product. In this case, a completed apparatus.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 53-NFPA 1901-2014 [Section No. 3.3.80]</td>
<td>Proposal in definition changes</td>
</tr>
<tr>
<td>First Revision No. 109-NFPA 1901-2013 [Section No. 21.9.1.3.1]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

- **Submitter Full Name:** Wesley Chestnut
- **Organization:** Spartan Motors, Inc.
- **Submittal Date:** Sat Mar 15 13:36:39 EDT 2014

Committee Statement

- **Committee Action:** Rejected but see related SR
- **Resolution:** SR-6-NFPA 1901-2014
- **Statement:** Updating definition for 'manufacturer' and adding new definition for 'maximum discharge pressure capability rating' which is used in the standard but was not previously defined.
3.3.34.1 Charging Rate
The rating of compressor volume as the time it takes to fill a cylinder of a known, calibrated volume from 0 to the maximum working pressure of the compressor, after the compressor’s purification system has satisfied its pressure maintaining value.

Statement of Problem and Substantiation for Public Comment
The use of SCFM ratings for compressors would be confusing and lead to misinterpretation of manufacturers data. Therefore Charging Rate should be defined within NFPA 1901.

Related Item
Public Input No. 117-NFPA 1901-2013 [New Section after 14.1.10.3]

Submitter Information Verification
Submitter Full Name: GEORGE MARPLE
Organization: EAGLE COMPRESSORS
Street Address:
City:
State:
Zip:
Submittal Date: Mon May 12 14:39:23 EDT 2014

Committee Statement
Committee Action: Rejected
Resolution: See action on Public Comment 117 in A.3.3.166 as it was rejected making this proposal irrelevant.
4.3.1 It shall be the responsibility of the purchaser to specify the following details of the apparatus:

1. Its required performance, including where operations at elevations above 2000 ft (600 m) or on extreme humidity in the environment or on grades greater than 6 percent are required.

2. The maximum number of fire fighters to ride within the apparatus.

3. Specific electrical loads that are to be part of the minimum continuous electrical load defined in 13.3.3.

4. Any hose, ground ladders, or equipment to be carried by the apparatus that exceed the minimum requirements of this standard.

5. If a trailer for the purpose of transporting fire rescue response equipment, whether it is a Type I, Type II, or Type III configuration.

Statement of Problem and Substantiation for Public Comment

Some trucks go out USA, where the extreme humidity in the environment affects some devices like: compressors, pneumatic valves, etc.

Related Item

Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: OSCAR SALAZAR BOTTA
Organization: Ecuador

Street Address:
City:
State:
Zip:
Submittal Date: Tue Feb 18 14:24:25 EST 2014

Committee Statement

Committee Action: Rejected
Resolution: Extreme is not a measurable value
Public Comment No. 66-NFPA 1901-2014 [Section No. 4.3.1]

4.3.1 *
It shall be the responsibility of the purchaser to specify the following details of the apparatus:

1. Its required performance, including where operations at elevations above 2000 ft (600 m) or on grades greater than 6 percent are required
2. The maximum number of fire fighters to ride within the apparatus
3. Specific electrical loads that are to be part of the minimum continuous electrical load defined in 13.3.3
4. Any hose, ground ladders, or equipment to be carried by the apparatus that exceed the minimum requirements of this standard
5. If a trailer for the purpose of transporting fire rescue response equipment, whether it is a Type I, Type II, or Type III configuration
6. The function of the fire apparatus
7. Specify requirements associated with state, provincial, and local regulations.

Statement of Problem and Substantiation for Public Comment

The current requirement in the standard does not identify who defines the function of the fire apparatus or state, provincial, and local statutes. In chapters 5 through 11, there are "if" statements relating to how the apparatus is to function but the standard does not require who defines the function. Further, manufacturers generally manage to federal regulations. There may be statutes, or more local ordinances, manufacturers do not monitor, manage to, or are aware of. By adding the proposed language, the responsibility is defined to ensure the manufacturer meets the appropriate requirements.

Related Item
First Revision No. 17-NFPA 1901-2013 [Section No. 3.3.65]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 16 08:57:58 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Statement: This text clarifies the purchaser's responsibilities as it pertains to specifying the details of the apparatus such as type and features. Revise existing text and edit annex A material as seen in attachment A.4.3.1.
The independent third-party organization shall witness all required tests by an in-person representative(s) at the test site or by use of verifiable automated data collection and image recording equipment. The third-party organization shall refuse to certify any test results for a system if all components of that system requiring testing do not pass the testing required by this standard.

4.7.4.1* Verifiable Automated Data Collection. The equipment for securing verifiable automated data collection and image recording shall be designed to monitor, collect, and transmit data from a fire apparatus and test pit to a microprocessor and compatible software.

4.7.4.1.1 The software shall be capable of calculations and data collection to automatically populate applicable test data forms that meet the requirements of this standard.

4.7.4.1.2 Electronic components shall merge pitot pressure and/or flowmeter input, chassis information input, and video recording to a microprocessor for data storage and output.

4.7.4.1.3 The equipment shall be designed for operation in exterior locations and wet conditions, with waterproof connections and enclosures.

4.7.4.1.4 Electronic equipment shall be have wiring and cables protected from mechanical damage and moisture entry.

4.7.4.1.5 The hardware, software, and data output shall be configured into a ‘tamper free' design and operation.

4.7.4.2 Hardware

4.7.4.2.1 Master Pressure/Vacuum Test Gauges Fire Apparatus. Two (2) analog test gauges shall be connected pressure transducers for communication purposes to testing hardware.

4.7.4.2.2* Flow Test Gauges. Two (2) or more analog pitot test gauges shall be connected pressure transducers for communication purposes to testing hardware.

4.7.4.2.3 Clocks. Two (2) digital clocks with time and date displays shall be provided and recorded or be part of the camera display.

4.7.4.2.4 GPS Integration. GPS recording provisions shall be provided within the operating system.

4.7.4.2.5 Water Temperature and Ambient Air Temperature Monitoring. The test pit water temperature and test area ambient air temperature shall be continuously monitored and recorded continuously during the test period.

4.7.4.2.6 Video Equipment. Master apparatus pressure/vacuum test gauges and pitot/flowmeter readouts and corresponding clock shall be video recorded.

4.7.4.2.6.1 The video output shall be saved within the microprocessor memory.

4.7.4.2.6.2 The video equipment shall be suitable for exterior operations and be third party 'listed' or certified for verifiable test recording.

4.7.4.2.6.3 The cameras shall operate continuously during all sequences of water flow testing, including water tank flow test and priming test.

4.7.4.2.6.4* The entire test video shall be available on request by the third-party testing organization.

4.7.4.2.7 Keyboard. A keyboard shall be provided for manual entry of required information prior to commencement of testing.

4.7.4.2.8 Video monitor shall have the following electronic displays:

a) Master pump pressure
b) Master vacuum (inches of HG)

c) Fire pump drive engine RPM – tachometer
d) Pitot pressure and/or flowmeter display(s)
e) Calculation display of total GPM (LPM)
f) Time and date (day, hour, minute, second)
g) Flow test display at: 100% of capacity at 150PSI, 70% of capacity at 200PSI, 50% of capacity at...
250PSI, 100% of capacity at 165PSI

h) Water temperature of test pit and ambient temperature during entire test sequence, in addition to a warning light and alarm to operator.

i) Coolant temperature from the fire pump drive engine radiator during entire test sequence, in addition to a warning light and alarm to operator.

j) Oil pressure monitoring from fire pump drive engine during entire test sequence, in addition to a warning light and alarm to operator.

k) Low voltage monitoring during entire test sequence, in addition to a warning light and alarm to operator.

l) Line voltage monitoring and recording provisions shall be provided. (frequency, voltage, amps, and ambient temperature in the generator area)

4.7.4.3 Data Entry and Supplementary Tests

4.7.4.3.1 Manual Entry of required information. Prior to the commencement of testing, the test operator shall manually enter required information specific to the purchaser, chassis, OEM manufacturer, vertical suction lift distance, no-load governed speed, altitude, barometric pressure and other required test documentation.

4.7.4.3.2 No-load RPM test. Required information shall be manually entered. Software shall show "error" if the engine RPM exceeds the No-Load RPM during the testing period

4.7.4.3.4 Vacuum test. The software shall indicate "pass" or "fail" based on the vacuum lost at the end of the test period.

4.7.4.3.5 Tank to Pump Test. Required information shall be manually entered prior to performance flow testing. Software shall be capable of calculating the GPM (LPM) flow rate and 80% of tank capacity discharged in the required time period.

4.7.4.3.6* The software shall include provisions for the attachment of supplemental information.

A.4.7.4.3.6 These provisions allow for attaching information such as fire pump manufacturer testing information, engine manufacturer performance curve with No-Load RPM, fire pump manufacturer and OEM hydrostatic test, and other information.

4.7.4.4 Software.

4.7.4.4.1* Unsafe Conditions. The software shall automatically warn the operator on the video screen, record any un-safe or un-acceptable conditions, and the test shall be automatically terminated at a pre-determined timeframe after the alarm and operator notification has occurred.

A.4.7.4.4.1 Un-safe or un-acceptable conditions can include loss of oil pressure, high engine temperature, loss of pressure, low flow condition, high ambient air temperature or high test pit water temperatures.

4.7.4.4.2 Manual Entry. After the required information is entered and test sequences are started, manual entry of data shall be prevented by the software.

4.7.4.4.3 Chassis Information. The hardware and software shall have the capability of receiving chassis engine and transmission information via a SAE #J1939 or mechanical/analog means for required logging chassis operating information.

4.7.4.4.4 Flow Calculations. The software shall be automatically linked to standard flow-chart (nozzle tip/pitot PSI) for a "total" GPM (LPM) reading on the monitor so the pump operator can adjust the drive engine RPM. Flowmeters shall automatically supply the flow data to the microprocessor.

4.7.4.4.5 *
Test Protocols and Manufacturer's Record of Apparatus Construction. The required manually entered information fields and automatically populated test fields shall be combined into a test document.

4.7.4.4.1 Test protocol forms shall comply with the requirements of this standard and the manufacturer's record of apparatus construction.

4.7.4.4.2 Software shall permit recording of test information in Metric and US measurement units.

4.7.4.4.6 Pump testing sequence. The software shall be pre-programmed for a pre-determined sequence of pump testing to be completed.

4.7.4.4.6.1 If the pump operator does not follow the required sequence of events, a test failure indicator shall be displayed.

4.7.4.4.6.2 If the flow test is not started in a pre-determined period a time delay warning shall be displayed.

A.4.7.4.4.6.2 Time delays can result from a variety of issues including changing nozzles and hoses.

4.7.4.4.6.3 If the time delay is over 5 minutes between tests, a test failure indicator shall be displayed.

4.7.4.4.6.3 The test sequence and time test points shall comply with the requirements of this standard.

4.7.4.4.7 Backup and Transfer of Test Data. The software shall automatically back-up information each minute of data recording.

4.7.4.4.7.1 Test form and video shall be downloadable to an external USB port, local network or Internet connection.

4.7.4.4.7.2 There shall be automatic storage of data during each test, with no loss of data caused by power supply interruption.

4.7.4.4.7.3 Data storage of the microprocessor shall be sufficient for up to three pumper tests and video monitoring.

4.7.4.4.7.4 The pump test shall be automatically and uniquely numbered within the software for each apparatus test.

A.4.7.4.4.7.1 (*)

Third Party Certification of Electronic Testing. Following the OEM apparatus test, the test data sheet and video/photo segment may be transmitted via Internet (Cloud), USB, or CD with photo/video data and test data to a third party accredited organization in compliance with the requirements of this standard as it pertains to review and certification.

A.4.7.4.4.5 (*)

Additional Electronic Testing Inputs and Alternate Testing. Connections for line voltage testing and foam equipment testing can be provided in the electronic hardware and software. The software and hardware can also permit testing of apparatus built in accordance with the requirements of NFPA 1906, skid type pumping units, and other OEM testing which may or may not be third-party certified.

Training and Recording Applications. Additional video and voice equipment can be used for supplemental apparatus training or test documentation purposes by the OEM manufacturer and could be supplied to the purchaser.

Statement of Problem and Substantiation for Public Comment

The added requirements clarify and formalize remote third party testing with the controls and information needed to do a certification

Related Item

First Revision No. 146-NFPA 1901-2013 [Section No. 4.7.4]

Submitter Information Verification

Submitter Full Name: Gary Handwerk
<table>
<thead>
<tr>
<th>Committee Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee Action:</td>
</tr>
<tr>
<td>Resolution:</td>
</tr>
<tr>
<td>Statement:</td>
</tr>
</tbody>
</table>
4.9.4.3 Safety Light(s)
Each type of apparatus shall have at least one amber (yellow) light on the left rear (drivers side) at the highest point. Departments may place amber (yellow) lights on both sides.
The purpose of this light is to provide safety to the vehicle and occupants as the vehicle travels and is parked along the side of a road from vehicles approaching from the rear.

Statement of Problem and Substantiation for Public Comment
I have seen many departments place the amber (yellow) light on the left (drivers) side as this is the side that most often is to the on coming lane or outside lane. When the amber light(yellow) light is on the right side (officer) it does not provide the same level of safety. Also if the vehicle is used as a blocker during highway incidents the drier side is facing the oncoming traffic so the D/O can assist with watching for any potential traffic issues. By placing the amber(yellow) light on the Drivers side it ensures that this light is more visible to the public. This will also standardize the placement of the light.
This may also or either fit in Chapter 13.

Related Item
Public Input No. 48-NFPA 1901-2013 [New Section after 13.8.14.3.3]

Submitter Information Verification
Submitter Full Name: Donald Turno
Organization: Savannah River Nuclear Solution
Street Address:
City:
State:
Zip:
Submittal Date: Tue Mar 18 08:17:32 EDT 2014

Committee Statement
Committee Action: Rejected
Resolution: There is no science to substantiate adding of the requirement presented within this comment and NFPA does not require an amber light on the rear of an apparatus.
Public Comment No. 56-NFPA 1901-2014 [Sections 4.11.2, 4.11.3, 4.11.4, 4.11.5, 4.11.6, 4.11.7, 4.11.8]

4.11.2 -

The VDR shall be capable of recording the data shown in Table 4.11.2 in that order at least once per second.

Table 4.11.2 VDR Data

<table>
<thead>
<tr>
<th>Data Unit of Measure</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle speed</td>
<td>mph</td>
</tr>
<tr>
<td>Acceleration (from speedometer)</td>
<td>mph/sec</td>
</tr>
<tr>
<td>Deceleration (from speedometer)</td>
<td>mph/sec</td>
</tr>
<tr>
<td>Engine speed</td>
<td>rpm</td>
</tr>
<tr>
<td>Engine throttle position</td>
<td>% of full throttle</td>
</tr>
<tr>
<td>Anti-lock braking system event</td>
<td>On/off</td>
</tr>
<tr>
<td>Seat occupied status</td>
<td>Occupied: Yes/No by position</td>
</tr>
<tr>
<td>Seat belt status</td>
<td>Buckled: Yes/No by position</td>
</tr>
<tr>
<td>Master optical warning device-switch</td>
<td>On/off</td>
</tr>
<tr>
<td>Time</td>
<td>24-hour clock</td>
</tr>
<tr>
<td>Date</td>
<td>Year/month/day</td>
</tr>
</tbody>
</table>

4.11.3 -

Data shall be stored at the sampling rate in a 48-hour loop.

4.11.4 -

Memory shall be sufficient to record 100 engine hours' worth of minute-by-minute summary showing the data in Table 4.11.4.

Table 4.11.4 VDR Summary Data

<table>
<thead>
<tr>
<th>Data Unit of Measure</th>
<th>Unit of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum vehicle speed</td>
<td>mph</td>
</tr>
<tr>
<td>Maximum acceleration (from speedometer)</td>
<td>mph/sec</td>
</tr>
<tr>
<td>Maximum deceleration (from speedometer)</td>
<td>mph/sec</td>
</tr>
<tr>
<td>Maximum engine speed</td>
<td>rpm</td>
</tr>
<tr>
<td>Maximum engine throttle position</td>
<td>% of full throttle</td>
</tr>
<tr>
<td>Anti-lock braking system event</td>
<td>On/off</td>
</tr>
<tr>
<td>Seat occupied with seat belt unbuckled</td>
<td>Yes/no by position at 30 sec into minute</td>
</tr>
<tr>
<td>Master optical warning device-switch</td>
<td>On/off at 30 sec into minute</td>
</tr>
<tr>
<td>Time</td>
<td>24-hour clock</td>
</tr>
<tr>
<td>Date</td>
<td>Year/month/day</td>
</tr>
</tbody>
</table>

4.11.5 -

When the memory capacity is reached, the system shall erase the oldest data first.

4.11.6 -

All data stored in the VDR shall be uploadable by the user to a computer and importable into a data management software package.

4.11.7 -

Data shall be password protected with access controlled by the purchaser.

4.11.8 -

Software shall be delivered with the apparatus that will run on both Windows® and Apple® operating systems and produce the following formatted reports from the uploaded data:

1. Raw second-by-second data over a specified data/time range
2. Daily log for the time the engine is running for a given date (minute-by-minute output of all values)
3. Weekly summary (maximum values each hour for each day of the week)
4. Monthly summary (maximum values each day for each day of the month)

meet the requirements of 49 C.F.R. 563 Event Data Recorders

Statement of Problem and Substantiation for Public Comment

The committee's responses to original PI's related to the VDR do not address the public's concern. There is inconsistency in the responses by the committee. The committee response indicates the public comment period closed on the alleged NPRM in May 2013 with final rule expected to be released in Q1 2013. (Note: May 2013 would have been in Q2) There does not appear to be activity with the NHTSA or FMCSA to mandate vehicles be equipped with E/VDR's. Federal rule 49 C.F.R 563 specifies the criteria for information, sampling, etc... for E/VDR's. The rule also specifies requirements for information to be included in the owner's manual which seems to be a short coming of the standard in requirements for VDR's. By making this change, the standard would be better...
aligned with federal requirements thus making a transition to future rulemakings that may impact fire apparatus.

Related Item

Public Input No. 152-NFPA 1901-2013 [Section No. 4.11]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.

Committee Statement

Committee Action: Rejected
Resolution: Current requirements make provisions to establish VDR parameters specific to emergency vehicles not required in 49 C.F.R 563
The apparatus shall not exceed the chassis manufacturer's maximum allowable vertical center of gravity for a completed vehicle and shall meet the criteria defined in either of the following:

1. The apparatus shall remain stable to 26.5 degrees in both directions when tested on a tilt table in accordance with SAE J2180, A Tilt Table Procedure for Measuring the Static Rollover Threshold for Heavy Trucks.

2. The calculated or measured center of gravity (CG) shall be no higher than 80 percent of the rear axle track width.

Statement of Problem and Substantiation for Public Comment

the 80% rule allows the OEM maximum CG for complete vehicles to be exceeded for vehicles under 19,500 GVWR

Related Item
Public Input No. 14-NFPA 1901-2013 [Section No. 1.3.2]

Submitter Information Verification

Submitter Full Name: John McDonald
Organization: US General Services Administration
Street Address:
City:
State:
Zip:
Submittal Date: Fri Apr 18 13:16:28 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-55-NFPA 1901-2014
Statement: the 80% rule allows the OEM maximum CG for complete vehicles to be exceeded for vehicles under 19,500 GVWR
Public Comment No. 35-NFPA 1901-2014 [Section No. 4.15.2]

4.15.2 *

The maximum top speed of fire apparatus with a GVWR over 26,000 lb (11,800 kg) shall not exceed either 68 mph (109 km/hr) or the manufacturer’s maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

Statement of Problem and Substantiation for Public Comment

There may be a conversion error on the speed from MPH to KPH 68mph equals 109.43 KPH.

Related Item

Public Input No. 161-NFPA 1901-2013 [Section No. 4.15]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE
Street Address:
City:
State:
Zip:
Submittal Date: Wed Feb 26 23:36:05 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-8-NFPA 1901-2014
Statement: There may be a conversion error on the speed from MPH to KPH 68mph equals 109.43 KPH.
4.15.2* The maximum top speed of fire apparatus with a GVWR over 26,000 lb (11,800 kg) shall not exceed either 68 mph (105 km/hr) or the manufacturer's maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

Statement of Problem and Substantiation for Public Comment

I agree with the two previous respondents regarding vehicle top speed. there is no scientific correlation between speed and apparatus accidents. I live and work in an area where some posted speed limits (Montana and Alberta) are higher than the apparatus speed limits specified in the document. This forces us to purchase non 1901 compliant apparatus just to go the speed limit. Our response areas are vast and travel distances are sometimes long when responding to our second due areas. the difference between 100kph and 120kph over 50kms is about 9 minutes faster that is a difference of help arriving in 21 minutes instead of 30 minutes.

Related Item
Public Input No. 405-NFPA 1901-2013 [Sections 4.15.2, 4.15.3]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE
Street Address:
City:
State:
Zip:
Submittal Date: Wed Feb 26 23:54:01 EST 2014

Committee Statement

Committee Action: Rejected
Resolution: Doesn't state a specific change
4.15.2* The maximum top speed of fire apparatus with a GVWR over 26,000 lb (11,800 kg) shall not exceed either 68 mph (105 km/hr) or the manufacturer's maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

Statement of Problem and Substantiation for Public Comment

The top speed of the fire apparatus should be regulated by the tire rating and associated components. There is no proof that limiting the "top speed" of fire apparatus has reduced the number of accidents or fatalities. If you review the NIOSH reports for the past 20 years you'll find that nearly all of the fatal incidents that referenced "excessive speed" as a cause were not related to an excessive "top" speed, but more specifically a speed excessive for the roadway or conditions. An overwhelming majority of these incidents involved an apparatus entering a curve and travelling at a speed to fast for the curve, limiting the top speed to 60 mph or 68 mph does not correct this situation/problem. Furthermore, putting a 60 mph limitation on apparatus that travel on interstate roadways causes the apparatus to be more of a hazard on the road.

Related Item
Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Jason Witmier
Organization: Pottsville Fire Department
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 03 13:10:27 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The committee feels the current standards limitations is an acceptable balance between speed and safety.
Public Comment No. 114-NFPA 1901-2014 [Sections 4.15.2, 4.15.3]

Sections 4.15.2, 4.15.3

4.15.2
The maximum top speed of fire apparatus with a GVWR over 26,000 lb (11,800 kg) shall not exceed either 68 mph (105 km/hr) or the manufacturer's maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

4.15.3
If the combined water tank and foam agent tank capacities on the fire apparatus exceed 1250 gal (4732 L), or the GVWR of the vehicle is over 50,000 lb (22,680 kg), the maximum top speed of the apparatus shall not exceed either 60 mph (85 km/hr) or the manufacturer's maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

The weights and speeds cited in Section 4.15.2 and 4.15.3 are inconsistent with the laws of physics. The cited speeds and weights should be reconciled based on the fact that it is the speed squared (multiplied by itself) and the weight that determines the severity of the crash.

Statement of Problem and Substantiation for Public Comment

The proposed change does NOT advocate any increase or decrease in speed in any way, only that the standard should be based on verifiable data developed in a scientific study of apparatus accidents and consistent with the laws of physics. Standards developed by reputable organizations must be based on scientifically validated facts, not opinions or anecdotal data.

Related Item
First Revision No. 222-NFPA 1901-2013 [Chapter 10]

Submitter Information Verification

Submitter Full Name: JOSEPH GUYTHER
Organization: MECHANICSVILLE VOL FIRE DEPT
Street Address:
City:
State:
Zip:
Submittal Date: Mon May 12 06:30:02 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The committee feels the current standards limitations is an acceptable balance between required response speed and safety.
Public Comment No. 32-NFPA 1901-2014 [Sections 4.15.2, 4.15.3]

Sections 4.15.2, 4.15.3

4.15.2
The maximum top speed of fire apparatus with a GVWR over 26,000 lb (11,800 kg) shall not exceed either 68, either 75 mph (109, 120 km/hr) or the manufacturer's maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

4.15.3
If the combined water tank and foam agent tank capacities on the fire apparatus exceed 1250 gal (4732 L), or the GVWR of the vehicle is over 50,000 lb (22,680 kg), the maximum top speed of the apparatus shall not exceed either 60, either 65 mph (85, 104 km/hr) or the manufacturer's maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

Statement of Problem and Substantiation for Public Comment

Due to the distances that need to be covered in rural areas, these recommendations should either be increased or there should be a standard for rural response.

Related Item

Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: ROSS RYTTING
Organization: TRUCKEE MEADOWS FIRE PD
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 20:03:30 EST 2014

Committee Statement

Committee Action: Rejected
Resolution: The committee feels the current standards limitations is an acceptable balance between required response speed and safety.
4.15.3 If the combined water tank and foam agent tank capacities on the fire apparatus exceed 1250 gal (4732 L), or the GVWR of the vehicle is over 50,000 lb (22,680 kg), the maximum top speed of the apparatus shall not exceed either 60 mph (88.95 km/hr) or the manufacturer's maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

Statement of Problem and Substantiation for Public Comment

The conversion from MPH to K/HR seems to be erroneous, the correct conversion is 60MPH = 96.56K/hr. I think this should be revised, I assume you want it rounded to the nearest (5k/hr).

Related Item

Public Input No. 161-NFPA 1901-2013 [Section No. 4.15]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE
Street Address:
City:
State:
Zip:
Submittal Date: Mon Feb 24 23:06:58 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-9-NFPA 1901-2014
Statement: The conversion from MPH to K/HR seems to be erroneous, the correct conversion is 60MPH = 96.56K/hr. I think this should be revised, I assume you want it rounded to the nearest (5k/hr).
4.15.3 – If the combined water tank and foam agent tank capacities on the fire apparatus exceed 1250 gal (4732 L), or the GVWR of the vehicle is over 50,000 lb (22,680 kg), the maximum top speed of the apparatus shall not exceed either 60 mph (85 km/hr) or the manufacturer’s maximum fire service speed rating for the tires installed on the apparatus, whichever is lower.

Statement of Problem and Substantiation for Public Comment

This revision ties into public comment No. 77, if comment on 77 is adopted then 4.15.3 can be deleted.

Related Item
Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Jason Witmier
Organization: Pottsville Fire Department
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 03 13:14:14 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The committee feels the current standards limitations is an acceptable balance between required response speed and safety.
Public Comment No. 60-NFPA 1901-2014 [Section No. 4.17.1 [Excluding any Sub-Sections]]

Each apparatus shall be tested before delivery to the ultimate purchaser, by the manufacturer, in order to verify that it meets the criteria in this section.

Statement of Problem and Substantiation for Public Comment

By making the proposed changes, responsibility of performing the test(s) and when is defined. It is currently ambiguous at best.

Related Item

First Revision No. 148-NFPA 1901-2013 [Section No. 4.17]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 13:52:24 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-10-NFPA 1901-2014
Statement: Clarifying requirement.
4.17.4 — The auxiliary braking system, if so equipped, shall function as intended by the auxiliary braking system manufacturer.

Statement of Problem and Substantiation for Public Comment

The standard does not need to specify a requirement that a system operate as designed. The current statement does not define minimum design or performance requirements.

Related Item

First Revision No. 148-NFPA 1901-2013 [Section No. 4.17]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 16 08:25:00 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: This is a necessary test item.
New section 4.20.1 after (10): If the apparatus has a fire pump with maximum discharge gauge pressure capability rating that exceeds the hydrostatic test pressure of 16.5.2.1, the pump manufacturer’s certification of the hydrodynamic test (16.5.4.2)

Statement of Problem and Substantiation for Public Comment

New section 16.5.4 covers hydrodynamic test and provides requirements for when the pump manufacturer is required to provide a certification of completion for a hydrodynamic test. Section 4.20.1 should include reference to this certification.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 135-NFPA 1901-2014 [Section No. 4.20.1]</td>
<td></td>
</tr>
<tr>
<td>Public Comment No. 136-NFPA 1901-2014 [New Section after 3.3.108]</td>
<td></td>
</tr>
<tr>
<td>First Revision No. 227-NFPA 1901-2013 [Sections 16.5.2, 16.5.3, 16.5.4, 16.5.5]</td>
<td>Related Item</td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Tom Mettler
Organization: Waterous Company
Street Address:
City:
State:
Zip:
Submittal Date: Mon May 12 13:38:03 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-56-NFPA 1901-2014
Statement: New section 16.5.4 covers hydrodynamic test and provides requirements for when the pump manufacturer is required to provide a certification of completion for a hydrodynamic test.
4.20.1 Fire Apparatus Documentation.
The contractor shall deliver with the fire apparatus at least one copy of the following documents:

1. The manufacturer’s record of apparatus construction details, including the following information:
 a. Owner’s name and address
 b. Apparatus manufacturer, model, and serial number
 c. Chassis make, model, and serial number
 d. GAWR of front and rear axles and GVWR
 e. Front tire size and total rated capacity in pounds (kilograms)
 f. Rear tire size and total rated capacity in pounds (kilograms)
 g. Chassis weight distribution in pounds (kilograms) with water and manufacturer-mounted equipment (front and rear)
 h. Engine make, model, serial number, rated horsepower and related speed, and governed speed; and if so equipped, engine transmission PTO(s) make, model, and gear ratio
 i. Type of fuel and fuel tank capacity
 j. Electrical system voltage and alternator output in amps
 k. Battery make, model, and capacity in cold cranking amps (CCA)
 l. Chassis transmission make, model, and serial number; and if so equipped, chassis transmission PTO(s) make, model, and gear ratio
 m. Ratios of all driving axles
 n. Maximum governed road speed
 o. Pump make, model, rated capacity in gallons per minute (liters per minute where applicable), maximum discharge pressure, gauge pressure, capability rating, and serial number
 p. Pump transmission make, model, serial number, and gear ratio
 q. Auxiliary pump make, model, rated capacity in gallons per minute (liters per minute where applicable), and serial number
 r. Water tank certified capacity in gallons or liters
 s. Foam tank (if provided) certified capacity in gallons (liters)
 t. Aerial device type, rated vertical height in feet (meters), rated horizontal reach in feet (meters), and rated capacity in pounds (kilograms)
 u. Paint manufacturer and paint number(s)
 v. Company name and signature of responsible company representative
 w. Weight documents from a certified scale showing actual loading on the front axle, rear axle(s), and overall fire apparatus (with the water tank full but without personnel, equipment, and hose)

2. Certification of compliance of the optical warning system (see 13.8.16)

3. Siren manufacturer’s certification of the siren (see 13.9.1.1)

4. Written load analysis and results of the electrical system performance tests (see 13.14.1 and Section 13.15)

5. Certification of slip resistance of all stepping, standing, and walking surfaces (see 15.7.4.5)

6. If the apparatus has a fire pump, the pump manufacturer’s certification of suction capability (see 16.2.4.1)

7. If the apparatus is equipped with a fire pump and special conditions are specified by the purchaser, the pump manufacturer’s certification of suction capacity under the special conditions (see 16.2.4.2)

8. If the apparatus has a fire pump, a copy of the apparatus manufacturer’s approval for stationary pumping applications (see 16.3.1)

9. If the apparatus has a fire pump, the engine manufacturer’s certified brake horsepower curve for the engine furnished, showing the maximum governed speed (see 16.3.2.2)
(10) If the apparatus has a fire pump, the pump manufacturer’s certification of the hydrostatic test (see 16.5.2.2)

(11) If the apparatus has a fire pump, the certification of inspection and test for the fire pump (see 16.13.1.1.5 or 16.13.1.2.4 as applicable)

(12) If the apparatus is equipped with an auxiliary pump, the apparatus manufacturer’s certification of the hydrostatic test (see Section 17.12)

(13) When the apparatus is equipped with a water tank, the certification of water tank capacity (see Section 18.6)

(14) If the apparatus has an aerial device, the certification of inspection and test for the aerial device (see Section 19.24)

(15) If the apparatus has an aerial device, all the technical information required for inspections to comply with NFPA 1911

(16) If the apparatus has a foam proportioning system, the foam proportioning system manufacturer’s certification of accuracy (see 20.10.4.2) and the final installer’s certification the foam proportioning system meets this standard (see 20.11.2)

(17) If the system has a CAFS, the documentation of the manufacturer’s predelivery tests (see Section 21.9)

(18) If the apparatus has a line voltage power source, the certification of the test for the power source (see 22.15.7.2)

(19) If the apparatus is equipped with an air system, air tank certificates (see 24.5.1.2), the SCBA fill station certification (see 24.9.6), and the results of the testing of the air system installation (see 24.14.5 and 24.15.4)

(20) Any other required manufacturer test data or reports

Statement of Problem and Substantiation for Public Comment

The phrase in 4.20.1 (1) (o) maximum discharge pressure pressure capability rating doesn't match the wording of this phrase in other parts of the standard. Add the word "gauge" to be consistent.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 134-NFPA 1901-2014 [Section No. 16.2.6]</td>
<td>Refers to same phrase</td>
</tr>
<tr>
<td>Public Comment No. 115-NFPA 1901-2014 [New Section after 4.20.1]</td>
<td>Refers to same phrase</td>
</tr>
<tr>
<td>Public Comment No. 136-NFPA 1901-2014 [New Section after 3.3.108]</td>
<td></td>
</tr>
</tbody>
</table>

Related Item:
First Revision No. 226-NFPA 1901-2013 [New Section after 16.2.4.2]

Submitter Information Verification

Submitter Full Name: Tom Mettler
Organization: Waterous Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 16:45:42 EDT 2014

Committee Statement

Committee Action: Rejected
| Resolution: | This would be inconsistent with terminology in Ch. 16 |
4.20.2.1
The contractor shall deliver with the fire apparatus at least two sets of complete operation and service documentation covering the completed apparatus as delivered and accepted.

Statement of Problem and Substantiation for Public Comment

The statement currently in the standard seems appropriate for when documentation is in printed format. Additionally, the current requirement implies that two sets for each apparatus would be required. This creates a waste and undue burden for apparatus that are the same, or substantially similar (fleets). By making this change, it allows for various types of formats while still stating the requirement of the information must be supplied.

Related Item
First Revision No. 163-NFPA 1901-2013 [Section No. A.24.3.6.3]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 16 08:34:40 EDT 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-12-NFPA 1901-2014
Statement: The statement currently in the standard seems appropriate for when documentation is in printed format. Additionally, the current requirement implies that two sets for each apparatus would be required. This creates a waste and undue burden for apparatus that are the same, or substantially similar (fleets). By making this change, it allows for various types of formats while still stating the requirement of the information must be supplied.
The contractor shall also deliver with the fire apparatus the following documentation for the entire apparatus and each major operating system or major component of the apparatus:

1. Manufacturer's name and address
2. Country of manufacture
3. Source for service and technical information
4. Parts replacement information
5. Descriptions, specifications, and ratings of the chassis, pump (if applicable), and aerial device (if applicable)
6. Wiring diagrams for low voltage and line voltage systems to include the following information:
 a. Pictorial representations of circuit logic for all electrical components and wiring
 b. Circuit identification
 c. Connector pin identification
 d. Zone location of electrical components
 e. Safety interlocks
 f. Alternator–battery power distribution circuits
 g. * Input/output assignment sheets or equivalent circuit logic implemented in multiplexing systems
7. Lubrication charts
8. Operating instructions for the chassis, any major components such as a pump or aerial device, and any auxiliary systems
9. Precautions related to multiple configurations of aerial devices, if applicable
10. Instructions regarding the frequency and procedure for recommended maintenance
11. Overall apparatus operating instructions
12. Safety considerations
13. Limitations of use
14. Inspection procedures
15. Recommended service procedures
16. Troubleshooting guide
17. Apparatus body, chassis, and other component manufacturer's warranties
18. Special data required by this standard
19. A material safety data sheet (MSDS) for any fluid that is specified for use on the apparatus

Statement of Problem and Substantiation for Public Comment

The Fire Apparatus Manufacturer's Association has recently published their Fire Apparatus Safety Guide. This guide provides safety procedures essential to the safe operation of fire apparatus. It is inexpensive, and sized to be carried conveniently in any apparatus. As NFPA 1901 is all about apparatus safety, this publication written for anyone driving or using a fire apparatus should be provided with every apparatus. The FAMA Fire Apparatus Safety Guide includes further information on each of the hazards identified by the FAMA safety signs that were accepted as additions to the first draft of both NFPA 1901 and 1906. This guide can help operators to more fully
understand the risks pointed out by the FAMA safety signs.

Related Item
First Revision No. 29-NFPA 1901-2013 [Section No. 4.9.4]
First Revision No. 99-NFPA 1901-2013 [Section No. 14.1.3.9]
First Revision No. 100-NFPA 1901-2013 [Section No. 14.1.3.8]
First Revision No. 101-NFPA 1901-2013 [Section No. 14.1.8.4.3]
First Revision No. 104-NFPA 1901-2013 [New Section after 15.10.7]
First Revision No. 105-NFPA 1901-2013 [Section No. 15.12.3]
First Revision No. 114-NFPA 1901-2013 [Section No. 23.7.3]
First Revision No. 132-NFPA 1901-2013 [Section No. 19.23.1.2]

Submitter Information Verification

Submitter Full Name: J. Lackore
Organization: Oshkosh Corporation
Affiliation: Committee Member

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-16-NFPA 1901-2014
Statement: The Fire Apparatus Manufacturer's Association has recently published their Fire Apparatus Safety Guide. This guide provides safety procedures essential to the safe operation of fire apparatus. It is inexpensive, and sized to be carried conveniently in any apparatus. As NFPA 1901 is all about apparatus safety, this publication written for anyone driving or using a fire apparatus should be provided with every apparatus. The FAMA Fire Apparatus Safety Guide includes further information on each of the hazards identified by the FAMA safety signs that were accepted as additions to the first draft of both NFPA 1901 and 1906. This guide can help operators to more fully understand the risks pointed out by the FAMA safety signs.
Public Comment No. 57-NFPA 1901-2014 [Section No. 4.21 [Excluding any Sub-Sections]]

The entity responsible for final assembly of the completed apparatus shall deliver with the fire apparatus either a certification that the apparatus fully complies with all requirements of this standard or, alternatively, a Statement of Exceptions specifically describing each aspect of the completed apparatus that is not fully compliant with the requirements of this standard at the time of delivery to the ultimate purchaser.

Statement of Problem and Substantiation for Public Comment

The entity responsible may be a dealer or the fire department in certain cases. (e.g. addition of miscellaneous equipment or communications equipment). In the case of a fire department installing components/equipment, it doesn't seem logical for them to supply a statement of exceptions to themselves. By making this change, a clear distinction is identified when the transition of responsibility is beyond the manufacturer to which the standard applies by and large.

Related Item
First Revision No. 150-NFPA 1901-2013 [Section No. 4.21]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 13:22:04 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-14-NFPA 1901-2014
Statement: Clarifies the requirement
4.21.3 –
An apparatus that is delivered subject to a Statement of Exceptions other than a certification of full compliance shall not be placed in emergency service until the apparatus has been modified as necessary to accomplish full compliance with this standard.

Statement of Problem and Substantiation for Public Comment

This standard is to define the minimum requirements for design and performance of fire apparatus. It does not have the jurisdiction to determine when a vehicle can be placed into service. This is a departmental decision which could be based on non-compliance to the standard but should not be mandated by the standard itself.

Related Item
First Revision No. 150-NFPA 1901-2013 [Section No. 4.21]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sat Mar 15 13:30:28 EDT 2014

Committee Statement

Committee Action: Accepted
Statement: This standard is to define the minimum requirements for design and performance of fire apparatus. It does not have the jurisdiction to determine when a vehicle can be placed into service. This is a departmental decision which could be based on non-compliance to the standard but should not be mandated by the standard itself.
Chapter 5 Pumper Fire Apparatus

5.1 General.
If the apparatus is to function as a pumper, it shall meet the requirements of this chapter.

5.2 Fire Pump.
The apparatus shall be equipped with a fire pump that meets the requirements of Chapter 16 and that has a minimum rated capacity of 750 gpm (3000 L/min).

5.3 Aerial Device.
If the fire apparatus is equipped with an aerial device, the requirements of 5.3.1 through 5.3.4 shall apply.

The aerial device shall meet the requirements of Chapter 19.

5.3.1.2
If the aerial device is equipped with a permanently mounted waterway, the fire pump shall be capable of supplying the flow requirements of 19.6.1, 19.12.1, or 19.16.1 with a maximum intake gauge pressure of 20 psi (138 kPa).

5.3.3
Provisions shall be made to ensure that the pump operator is not in contact with the ground.

5.3.4
Signs shall be placed to warn the pump operator of electrocution hazards of all inherent hazards.

5.4 Foam Proportioning System.
If the pumper is equipped with a foam proportioning system, it shall meet the requirements of Chapter 20.

5.5 Water Tank.
The pumper shall be equipped with a water tank(s) that meets the requirements of Chapter 18 and that has a minimum certified capacity (combined, if applicable) of 300 gal (1100 L).

5.6 Equipment Storage.
A minimum of 40 ft³ (1.1 m³) of enclosed weather-resistant compartmentation that meets the requirements of Section 15.1 shall be provided for the storage of equipment.

5.7 Hose Storage.
Hose bed area(s), compartments, or reels that comply with Section 15.10 shall be provided to accommodate the following:

1. A minimum hose storage area of 30 ft³ (0.8 m³) for 2 ½ in. (65 mm) or larger fire hose

2. Two areas, each a minimum of 3.5 ft³ (0.1 m³), to accommodate 1 ½ in. (38 mm) or larger preconnected fire hose lines

5.8 Equipment Supplied by the Contractor.
The contractor shall supply the equipment listed in 5.8.1 and 5.8.2 and shall provide and install such brackets or compartments as are necessary to mount the equipment.

5.8.1 Ground Ladders.

5.8.1.1
All fire department ground ladders carried on the apparatus shall meet the requirements of NFPA 1931, except as permitted by 5.8.1.3 and 5.8.1.4.
At a minimum, the following fire department ground ladders shall be carried on the apparatus:

1. One straight ladder equipped with roof hooks
2. One extension ladder
3. One folding ladder

5.8.1.3
Stepladders and other types of multipurpose ladders meeting ANSI A14.2, Ladders — Portable Metal — Safety Requirements, or ANSI A14.5, Ladders — Portable Reinforced Plastic — Safety Requirements, with duty ratings of Type 1A or 1AA shall be permitted to be substituted for the folding ladder required in 5.8.1.2 (3).

5.8.1.4
Stepladders and other types of multipurpose ladders shall be permitted to be carried in addition to the minimum fire department ground ladders specified in 5.8.1.2 provided they meet either ANSI A14.2 or ANSI A14.5 with duty ratings of Type 1A or 1AA.

5.8.2 Suction Hose or Supply Hose.

5.8.2.1
A minimum of 20 ft (6 m) of suction hose or 15 ft (4.5 m) of supply hose shall be carried.

5.8.2.1.1
Where suction hose is provided, a suction strainer shall be furnished.

5.8.2.1.2
Where suction hose is provided, the friction and entrance loss of the combination suction hose and strainer shall not exceed the losses listed in Table 16.2.4.1(b) or Table 16.2.4.1(c).

5.8.2.1.3
Where supply hose is provided, it shall have couplings compatible with the local hydrant outlet connection on one end and the pump intake connection on the other end.

5.8.2.2
Suction hose and supply hose shall meet the requirements of NFPA 1961.

5.9 Minor Equipment.

5.9.1 General.
The equipment listed in 5.9.3 and 5.9.4 shall be available on the pumper fire apparatus before the apparatus is placed in service.

5.9.2 A detailed list of who is to furnish the items and the method for organizing and mounting these items shall be supplied by the purchasing authority.

5.9.3 Fire Hose and Nozzles.
The following fire hose and nozzles shall be carried on the apparatus:

1. 800 ft (240 m) of 2 ½ in. (65 mm) or larger fire hose
2. 400 ft (120 m) of 1 ½ in. (38 mm), 1¾ in. (45 mm), or 2 in. (52 mm) fire hose
3. One handline nozzle, 200 gpm (750 L/min) minimum
4. Two handline nozzles, 95 gpm (360 L/min) minimum
5. One smoothbore or combination nozzle with 2 ½ in. shutoff that flows a minimum of 250 gpm

5.9.4 Miscellaneous Equipment.
The following additional equipment shall be carried on the apparatus:

1. One 6 lb (2.7 kg) flathead axe
2. One 6 lb (2.7 kg) pickhead axe
3. One 6 ft (2 m) pike pole or plaster hook
4. One 8 ft (2.4 m) or longer pike pole
5. Two portable hand lights
6. One approved dry chemical portable fire extinguisher with a minimum 80-B:C rating
7. One 2 ½ gal (9.5 L) or larger water extinguisher
8. One self-contained breathing apparatus (SCBA) complying with NFPA 1981 for each assigned seating position, but not fewer than four, mounted in brackets fastened to the apparatus or stored in containers supplied by the SCBA manufacturer
9. One spare SCBA cylinder for each SCBA carried, each mounted in a bracket fastened to the apparatus or stored in a specially designed storage space
10. One first aid kit
11. Four combination spanner wrenches
12. Two hydrant wrenches
13. One double female 2 ½ in. (65 mm) adapter with National Hose (NH) threads
14. One double male 2 ½ in. (65 mm) adapter with NH threads
15. One rubber mallet, suitable for use on suction hose connections
16. Two salvage covers each a minimum size of 12 ft × 14 ft (3.7 m × 4.3 m)
17. Two or more wheel chocks, mounted in readily accessible locations, that together will hold the apparatus, when loaded to its GVWR or GCWR, on a hard surface with a 20 percent grade with the transmission in neutral and the parking brake released
18. One traffic vest for each seating position, each vest to comply with ANSI/ISEA 207, Standard for High-Visibility Public Safety Vests, and have a five-point breakaway feature that includes two at the shoulders, two at the sides, and one at the front
19. Five fluorescent orange traffic cones not less than 28 in. (711 mm) in height, each equipped with a 6 in. (152 mm) retroreflective white band no more than 4 in. (102 mm) from the top of the cone, and an additional 4 in. (102 mm) retroreflective white band 2 in. (51 mm) below the 6 in. (152 mm) band
20. Five illuminated warning devices such as highway flares, unless the five fluorescent orange traffic cones have illuminating capabilities
21. One automatic external defibrillator (AED)

5.9.4.1
If the supply hose carried does not use sexless couplings, an additional double female adapter and double male adapter, sized to fit the supply hose carried, shall be carried mounted in brackets fastened to the apparatus.

5.9.4.2
If none of the pump intakes are valved, a hose appliance that is equipped with one or more gated intakes with female swivel connection(s) compatible with the supply hose used on one side and a swivel connection with pump intake threads on the other side shall be carried. Any intake connection larger than 3 in. (75 mm) shall include a pressure relief device that meets the requirements of 16.6.6.

5.9.4.3
If the pumper is equipped with an aerial device with a permanently mounted ladder, four ladder belts meeting the requirements of NFPA 1983, shall be provided.

5.9.4.4
If the apparatus does not have a 2 ½ in. intake with NH threads, an adapter from 2 ½ in. NH female to a pump intake shall be carried, mounted in a bracket fastened to the apparatus if not already mounted directly to the intake.
5.9.4.5
If the supply hose carried has other than 2 1/2 in. NH threads, adapters shall be carried to allow feeding the supply hose from a 2 1/2 in. NH thread male discharge and to allow the hose to connect to a 2 1/2 in. NH female intake, mounted in brackets fastened to the apparatus if not already mounted directly to the discharge or intake.

Statement of Problem and Substantiation for Public Comment

The current language refers to sections that refer to other chapters. Simplify the document by referring to the appropriate/applicable chapter from the onset.

Related Item
First Revision No. 217-NFPA 1901-2013 [Chapter 5]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 16 10:18:09 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-57-NFPA 1901-2014
Statement: Simplifying the document by referring to the appropriate/applicable chapter instead of sections.
12.1.5.1*
The label shall show the unladen height of the completed unequipped fire apparatus in feet and inches (meters), the length of the completed fire apparatus in feet and inches (meters), and the GVWR in tons (metric tons).

Statement of Problem and Substantiation for Public Comment

The original PI 328 said unladen. This was edited to unequipped but in the final result both words were included. Saying both unladen and unequipped is repetitively redundant.

Related Item
Public Input No. 328-NFPA 1901-2013 [Section No. 12.1.5.1]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 20 16:19:02 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-21-NFPA 1901-2014
Statement: Saying both unladen and unequipped is repetitive
12.2.4.5
An air restriction indicator shall be mounted in the driving compartment and visible to the driver when available from the chassis manufacturer.

Statement of Problem and Substantiation for Public Comment

An in-cab air restriction filter indicator is not available on many chassis 19,500 GVWR and less

Related Item
Public Input No. 354-NFPA 1901-2013 [Section No. 12.2.2.4]

Submitter Information Verification

Submitter Full Name: John McDonald
Organization: US General Services Administration
Street Address:
City:
State:
Zip:
Submittal Date: Fri Apr 18 12:36:40 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: These indicators are readily available as an add-on device.
The regeneration process shall be activated by two methods:

1. Automatically by the engine system but only when the transmission is in gear and the speedometer indicates a speed above 5 mph (8 km/hr), whether the apparatus is in motion or is operating in stationary pump mode with an engine rpm sufficient to register 5 mph (8 km/hr) on the speedometer

2. Manually when initiated by activation of a switch located in the driver’s area of the driving compartment when available from the chassis manufacturer

Statement of Problem and Substantiation for Public Comment

Not all chassis 19,500 and under have this feature available

Related Item
Public Input No. 354-NFPA 1901-2013 [Section No. 12.2.2.4]

Submitter Information Verification

Submitter Full Name: John McDonald
Organization: US General Services Administra
Street Address:
City:
State:
Zip:
Submittal Date: Fri Apr 18 12:53:42 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-22-NFPA 1901-2014
Statement: These changes are conforming to current design practices.
12.3.1. Air Brake Systems

Fire apparatus equipped with an axle that is rated greater than 29,000 lbs shall meet 49 C.F.R. 571.121 - Air Brake Systems.

Statement of Problem and Substantiation for Public Comment

In PI 299, the committee responded by not accepting the input of the commenter and stating all requirements being recommended are in FMVSS 121/105. However, for vehicles equipped with air brake systems, vehicles equipped with an axle rated at 29,000 lbs or more are excluded from having to meet the FMVSS 121. (49 C.F.R. 571.121, S3(b)) To address the concerns raised in PI 299, and to incorporate federal requirements on vehicles to which they do not apply, the added section is being proposed.

Related Item

Public Input No. 299-NFPA 1901-2013 [Section No. 12.3.1.1]

Submitter Information Verification

Submitter Full Name: Wesley Chestnut
Organization: Spartan Motors, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 16 10:28:54 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-23-NFPA 1901-2014
Statement: This requirement clarifies that all fire apparatus shall comply with 49 C.F.R. 571.12.
Statement of Problem and Substantiation for Public Comment

Per change to 13.4.6, both master LOAD disconnect and master BODY disconnect switches are now allowed, so this statement needs to be made more generic.

Related Item
First Revision No. 204-NFPA 1901-2013 [Section No. 13.4.6 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 20 16:33:46 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-24-NFPA 1901-2014
Statement: Per change to 13.4.6, both master LOAD disconnect and master BODY disconnect switches are now allowed, so this statement needs to be made more generic. Also adding annex A material as seen in attachment that is consistent with changes in 1906.
Public Comment No. 4-NFPA 1901-2014 [Section No. 13.4.6.5]

<table>
<thead>
<tr>
<th>13.4.6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechargeable handlights, radios, and other similar devices shall be permitted to be connected to the electrical system ahead of the master load disconnect switch.</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

Per change to 13.4.6, both master LOAD disconnect and master BODY disconnect switches are now allowed, so this statement needs to be made more generic.

Related Item

First Revision No. 204-NFPA 1901-2013 [Section No. 13.4.6 [Excluding any Sub-Sections]]

Submitter Information Verification

- **Submitter Full Name:** Thomas Stalnaker
- **Organization:** Goshen Fire Company
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Thu Feb 20 16:29:13 EST 2014

Committee Statement

- **Committee Action:** Accepted
- **Resolution:** SR-25-NFPA 1901-2014
- **Statement:** Per change to 13.4.6, both master LOAD disconnect and master BODY disconnect switches are now allowed, so this statement needs to be made more generic.
It shall be permitted for red zone C lower flashing lights to switch to steady-on lights when the service brakes are applied and the optical warning light system is on in the “Clearing Right-of-Way” mode.

Statement of Problem and Substantiation for Public Comment

Delete this section. This permits the emergency warning light system to become non compliant with 13.8.11.1.

If the AHJ requires an auxiliary brake light, they should so specify.

If the committee feels that auxiliary brake lights are an improtant safety enhancement (as the text in the FR would seem to indicate), we should require them, in addition to our required existing emergency lighting

Related Item
First Revision No. 48-NFPA 1901-2013 [New Section after 13.8.13.3.3]

Submitter Information Verification

Submitter Full Name: John McDonald
Organization: US General Services Administra
Street Address:
City:
State:
Zip:
Submittal Date: Fri Apr 18 14:44:33 EDT 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-26-NFPA 1901-2014
Statement: Delete this section. This permits the emergency warning light system to become non compliant with 13.8.11.1.

If the AHJ requires an auxiliary brake light, they should so specify.

If the committee feels that auxiliary brake lights are an improtant safety enhancement (as the text in the FR would seem to indicate), we should require them, in addition to our required existing emergency lighting.
Statement of Problem and Substantiation for Public Comment

Arithmetic error (metric conversion error). 750 mm is 1/4 of 3 meters, just as 2.5 feet is 1/4 of 10 feet.

Related Item

Public Input No. 277-NFPA 1901-2013 [Section No. 13.10.1.1]

Submitter Information Verification

<table>
<thead>
<tr>
<th>Submitter Full Name:</th>
<th>Thomas Stalnaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>Goshen Fire Company</td>
</tr>
<tr>
<td>Street Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Zip:</td>
<td></td>
</tr>
<tr>
<td>Submittal Date:</td>
<td>Thu Feb 20 16:39:35 EST 2014</td>
</tr>
</tbody>
</table>

Committee Statement

- **Committee Action:** Accepted
- **Resolution:** SR-27-NFPA.1901-2014
- **Statement:** Arithmetic error (metric conversion error). 750 mm is 1/4 of 3 meters, just as 2.5 feet is 1/4 of 10 feet.
13.10.2.1
If a hose bed is provided, lighting on the hose bed floor shall be at an average level of 3 fc (30 lx) or higher measured at 30 in. equally spaced intervals along the center of the hose bed floor with all dividers and covers removed.

Statement of Problem and Substantiation for Public Comment

As currently written in the standard available for public comment, this paragraph leaves room for interpretation. It is not uncommon to have hose bed dividers in the center of the hose bed which would make it impossible to measure the light intensity as identified. I recommend changing the text to that as proposed by Mike Moore which removes all hose bed dividers and covers prior to the test. This is clear, straight forward, and repeatable.

Related Item
Public Input No. 280-NFPA 1901-2013 [Section No. 13.10.2.1]

Submitter Information Verification

Submitter Full Name: William Proft
Organization: Pierce Manufacturing
Affiliation: Manufacturer of Fire Apparatus
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 01 14:46:45 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-28-NFPA 1901-2014
Statement: As currently written in the standard available for public comment, this paragraph leaves room for interpretation. It is not uncommon to have hose bed dividers in the center of the hose bed which would make it impossible to measure the light intensity as identified.
If the apparatus has a crew carrying area separate from the main chassis cab, this crew area shall have an independent retention system to prevent the crew compartment from separating from the chassis should the primary retention system fail.

Statement of Problem and Substantiation for Public Comment

Many apparatus builders offer crew and/or crew carrying pump panel enclosures to carry personnel on commercial chassis as an alternative to custom fire chassis. There appears to be little requirements specifically addressing the safety of these crew carrying areas. I have taken this text from the new proposed 1906 standard for wildland crew carriers. Although these wildland carriers typically carry more personnel in quantity but serve a similar purpose. In fact I propose that we copy most of the text from the new 1906 Chapter 10 for crew carrying areas to apply to similar crew carrying areas installed on 1901 apparatus to assure the safety and integrity of these areas on apparatus in the event of a crash or roll over.

Related Item
Public Input No. 317-NFPA 1901-2013 [Section No. 14.1.3.1]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 02 18:54:48 EST 2014

Committee Statement

Committee Action: Rejected
Resolution: Not required within a minimum standard.
Public Comment No. 127-NFPA 1901-2014 [Section No. 14.1.3.2.3]

14.1.3.2.3
The distance from the buckle anchorage to point D in Figure 14.1.3.1 (buckle tip) shall be no more than 2 in. (51 mm) longer than the distance from the buckle anchorage to the seating reference point (H-Point) of the seat when the seat is adjusted to its lowest and most rearward position.

Statement of Problem and Substantiation for Public Comment

It is important that the distance from the buckle anchorage to point D in figure 14.1.3.1 (buckle tip) be no more than two inches longer than the distance from the buckle anchorage to the seating reference point (Hip point) of the seat when the seat is adjusted to the lowest and most rearward position BECAUSE this prevents the buckle from injuring the abdomen of firefighters. See page two, second bullet point, for a concise description of appropriate seatbelt fit http://www.nhtsa.dot.gov/staticfiles/nti/teen-drivers/pdf/seatbeltuse.pdf.

Serious and sometimes fatal injuries occur from placement of buckles or seatbelts on the abdomen. This revision limiting buckle distance is needed because the existing standard allows seatbelts which can seriously injure small and medium size firefighters, up to and including 73” tall and 225 lbs., by positioning the buckle and/or webbing on the abdomen, rather than on the hips.

The longer buckles allowed by the current standard also make it more difficult to find the female buckle in order to buckle up. Limiting buckle length as suggested in this revision will reduce the effect of buckles drooping down below the top of the seat, thus make it easier for firefighters to find and use the buckle.

My agency’s comparison of seatbelt fit on various size firefighters suggests that this revision limiting buckle distance will allow seatbelts to more safely and comfortably restrain firefighters of different sizes, with or without turnouts, and that they will find it easier to buckle up than with seatbelts allowed under the current standard. Interviews with seatbelt manufacturers support this revision.

One manufacturer told me that "Firefighters not in turnouts are outside the design parameters" of seatbelts allowed by the current standard. Discussions with firefighters from all over the nation, including volunteer, career and combination, show that firefighters commonly ride in fire apparatus without full turnouts.

Firefighters of all sizes need the revision limiting buckle length so that we can more easily buckle up and be safely and comfortably restrained both when wearing turnouts and when wearing less bulky clothing such as a uniform.

Thank you for considering this revision. I appreciate your efforts to provide safe driving and crew areas for fire apparatus.

Related Item
First Revision No. 116-NFPA 1901-2013 [Sections 14.1.3.2, 14.1.3.3]

Submitter Information Verification

Submitter Full Name: JUAN BYRON
Organization: SOUTH SAN FRANCISCO FD
Street Address:
City:
State:
Zip:
Submittal Date: Wed May 14 01:29:52 EDT 2014

Committee Statement
<table>
<thead>
<tr>
<th>Committee Action:</th>
<th>Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td>The Comment fails to state a proposed change</td>
</tr>
</tbody>
</table>
14.1.3.2.3

In the case of a Type 2 seat belt, the distance from the buckle anchorage to the point (Point E in Figure 14.1.3.2.3) to the buckle tip (Point D in Figure 14.1.3) shall be no more than 2 in. (51 mm) longer than the perpendicular distance from the buckle anchorage to the seating reference point (a lateral axis through the H-Point of the seat (line 3 in Figure 14.1.3.2.3) when the seat is adjusted to its lowest and most rearward position. If the H-Point of the seat is unknown, it can be estimated by the method outlined in annex A14.1.7.1.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901_1906_Figure_14_1_3_2_3.pdf</td>
<td>Proposed Figure 14.1.3.2.3 corresponding to the changes proposed to section 14.1.3.2.3</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

Justification: Buckles of extreme length can compromise the position and fit of a type II seat belt and make it less effective in the event of a crash. First draft language aimed to limit buckle length in accordance with SAE recommended practice J1834. SAE J1834 states: “As a guide, the latch plate entry should be no higher than the H-Point of the seat.” SAEJ1834 also states: “Specialty vehicles intended to be operated by personnel wearing heavy clothing (i.e. fire fighters, hazmat crews, etc…) should provide belt length sufficient to accommodate the extra bulk of the heavy clothing and protective gear”. First draft language proposed a buckle length specification which strikes the necessary balance between ease of access and restraint effectiveness. First draft language allowed for multiple interpretations of the proposed buckle length specification. Second draft language, with illustration, seeks to reduce the possibility of misinterpretation.

Related Item
First Revision No. 116-NFPA 1901-2013 [Sections 14.1.3.2, 14.1.3.3]

Submitter Information Verification

Submitter Full Name: SCOTT STRANKO
Organization: IMMI
Street Address:
City:
State:
Zip:
Submittal Date: Mon Apr 07 09:08:35 EDT 2014

Committee Statement

Committee: Rejected but see related SR
Statement: Buckles of extreme length can compromise the position and fit of a type II seat belt and make it less effective in the event of a crash. First draft language aimed to limit buckle length in accordance with SAE recommended practice J1834. SAE J1834 states: “As a guide, the latch plate entry should be no higher than the H-Point of the seat.” SAE J1834 also states: “Specialty vehicles intended to be operated by personnel wearing heavy clothing (i.e. fire fighters, hazmat crews, etc...) should provide belt length sufficient to accommodate the extra bulk of the heavy clothing and protective gear.” First draft language proposed a buckle length specification which strikes the necessary balance between ease of access and restraint effectiveness. First draft language allowed for multiple interpretations of the proposed buckle length specification. Second draft language, with illustration, seeks to reduce the possibility of misinterpretation. Add new annex A material as seen in attachment A.14.1.3.2.3 and new figure as seen in attachment Figure 14.1.3.2.3.
Alternatively, for ease of measurement, the distance CD in Figure 14.1.3.1 shall be no longer than 8 in. (203 mm) with the seat adjusted to its lowest and most rearward position.

Statement of Problem and Substantiation for Public Comment

Justification: Reference to Annex A.14.1.7.1 in the second draft proposal for section 14.1.3.2.3 gives the reader a means for estimating the H-Point from the location of the seat cushions. This reference to A.14.1.7.1 makes section 14.1.3.2.4 unnecessary.

Related Item
First Revision No. 116-NFPA 1901-2013 [Sections 14.1.3.2, 14.1.3.3]

Submitter Information Verification

Submitter Full Name: SCOTT STRANKO
Organization: IMMI
Street Address:
City:
State:
Zip:
Submittal Date: Mon Apr 07 09:26:01 EDT 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-30-NFPA 1901-2014
Statement: Justification: Reference to Annex A.14.1.7.1 in the second draft proposal for section 14.1.3.2.3 gives the reader a means for estimating the H-Point from the location of the seat cushions. This reference to A.14.1.7.1 makes section 14.1.3.2.4 unnecessary.
14.1.4* Flammability. The materials contained within the driver and crew compartment shall be protected to ensure that the flammability performance is sufficient to protect the driver and crew.

*A.14.1.4 FMVSS 302 is a mandatory flammability test for the flammability of some of the materials contained within the passenger compartment of passenger road vehicles in the US. NFPA 556, Guide on Methods for Evaluating Fire Hazard to Occupants of Passenger Road Vehicles, discuss the usefulness (or lack of it) of compliance with FMVSS 302 to ensure fire safety of occupants of passenger road vehicles. Abundant added research has shown the fact that FMVSS 302 is not an adequate flammability test. Guide NFPA 556 also provides some guidance into improved flammability requirements for materials and products in various areas of passenger road vehicles.

Also add NFPA 556 and FMVSS 302 into the annex on referenced standards.

Statement of Problem and Substantiation for Public Comment

Interior materials must be protected for flammability. At least information should be provided that no adequate test is being required to protect firefighters.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 102-NFPA 1901-2014 [Section No. 2.3.16]</td>
<td></td>
</tr>
<tr>
<td>First Revision No. 181-NFPA 1901-2013 [Section No. 14.1.4]</td>
<td>Related Item</td>
</tr>
<tr>
<td>Public Input No. 383-NFPA 1901-2013 [Section No. 14.1.4]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Marcelo Hirschler
Organization: GBH International
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 02 10:55:35 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: This removes redundant language as FMVSS is already required by federal law and in the required references within chapter 2.
Public Comment No. 154-NFPA 1901-2014 [Section No. 14.1.8.1]

14.1.8.1
Each seating space shall have a minimum width of 22-28 in. (560-711 mm) at the shoulder level and 27 in. (686 mm) at the hip level.

Statement of Problem and Substantiation for Public Comment

Section 14.1.9 of the 2009 edition of NFPA 1901 specifies the minimum dimensions for seats and seating spaces inside fire apparatus cabs. The current dimensions permit seats to be located in areas that provide insufficient space for firefighters wearing protective clothing. The firefighters who are required to use these seats are often unable to fasten their seatbelts and may be forced to sit in awkward positions that expose them to increased risk of death or injury in the event of a crash. The proposed revisions are intended to provide appropriate seating spaces based on validated anthropometric data.

The Technical Committee did not incorporate any of the recommended changes in the first draft document. This public comment incorporates the changes that were previously submitted as two separate proposals and asks the committee to reconsider the previous action. Minor adjustments to the proposed dimensions are incorporated into this comment, based on refinements to the data since the original proposals were submitted.

Justification

Paragraph 14.1.3 states the intent of the standard as “Each crew riding position shall be provided with a seat and an approved seat belt designed to accommodate a person with and without heavy clothing.” The minimum seating dimensions are found in Section 14.1.9. The same minimum dimensions have been incorporated in NFPA 1901 (and previously NFPA 19) for decades.

It is believed that the existing minimum dimensions were based on a data set that was obtained from US military personnel in the 1950s. This data was representative of the general military population at that time and made no allowances for the protective clothing that is worn by firefighters. The average weight and body dimensions of the general population have been increasing with each successive generation. In addition, firefighters are generally larger and heavier than the general population.

Complaints of cramped space inside fire apparatus have been heard and largely ignored for many years. The focus on this problem began in 2006 when it was recognized that many firefighters were unable to fasten their seatbelts because of the severely limited seating spaces that were provided for them. This recognition resulted in extensive efforts to develop accurate anthropometric data (measurements of the human body) for firefighters in the United States.

Between 2007 and 2013 a multi-phase project was conducted with the specific objective of supporting safety improvements in the design of fire apparatus as well as protective clothing and equipment. This effort involved an investment of approximately two million dollars by the National Institute of Occupational Safety and Health (NIOSH) and the National Institute of Standards and Technology (NIST) to develop the methodology and then to produce comprehensive data based on a statistically validated sample of 951 firefighters in the United States.

The efforts to gather and assemble this data were supported by the National Fallen Firefighters Foundation, the Safety, Health and Survival Section of the International Association of Fire Chiefs, the International Association of Firefighters, the Fire Apparatus Manufacturers Association (FAMA), numerous fire departments and hundreds of individual firefighters. The data collection phase was hosted by the Phoenix, Fort Worth, Philadelphia and Montgomery County (MD) Fire Departments and involved members of many additional fire departments in order to achieve the necessary distribution of subjects to statistically represent the population of firefighters in the United States.

The data shows that both male and female firefighters are significantly taller, heavier and larger in stature than the general population and that protective clothing adds significant additional bulk to their body dimensions. The seating areas in fire apparatus must be designed to safely accommodate the individuals who will be using them, including their protective clothing. The scientific data is now available to make the appropriate adjustments to the
standard; in fact it is probably the most extensive scientific data that has been provided to support any changes to this standard, I urge the committee to examine the supporting documentation and to reconsider the proposed changes to 14.1.9.

Paragraph 14.1.9.1 specifies the minimum width that must be provided for each seating position at the shoulder level. The current allowance of 22 inches allows for a row of four seats to be installed within a cab that provides 88 inches of interior width. The data shows that the median shoulder width for a seated male firefighter wearing protective clothing is 27.9 inches (709mm). The proposed revision to allow a minimum of 28 inches per seat is barely sufficient to accommodate a median width male firefighter in each seat.

The use of the median width for each seat in a row of seats is justifiable, because it is unlikely that an entire row of seats would be occupied by “extra large” firefighters at the same time. The allowance would have to be increased to 31.3 inches (796mm) to accommodate a firefighter with the 95th percentile shoulder width in each seat.

Paragraph 14.1.9.2 establishes 18 inches as the minimum width of a seat cushion. Single seats, particularly driver and officer positions, are often installed in spaces that are barely wide enough to accommodate an 18 inch wide cushion with no allowance for additional hip width. It is a common complaint that officers who are wearing protective clothing must sit with a semi-rotated posture, wedged against the cab door on one side and the engine enclosure on the other side.

A minimum clear width of 27 inches (686mm) is proposed at the hip level order to accommodate the 95th percentile firefighter width in a single seat. The data indicates that the median hip level width of a firefighter wearing protective clothing is 23.5 inches (597mm), while the 95th percentile width is 26.7 inches (678mm).

The Technical Committee rejected the public proposals on this subject with the justification “It is not possible to build to these dimensions in the current configurations commonly used, especially in the officers seating area.” This suggests that the committee believes that the challenge of making changes in cab configurations outweighs the benefits of accommodating the firefighters who have to use them. It is important to note that there are existing cab configurations that already comply with the proposed changes.

The proposed changes are directed toward recognized safety issues, not simply comfort and convenience. The failure to provide sufficient space to accommodate even median dimension firefighters creates a significant risk of death or injury. If the space is so constrained that the firefighter is unable to fasten the seat belt, the firefighter’s safety is severely compromised. In addition, seatbelts and harnesses are designed to secure individuals who are properly seated, not twisted in awkward positions.

In the past this technical committee has taken a leadership position in mandating significant design changes to increase the level of safety for firefighters, often based on little more than opinion and persuasion. In this case the proposals are supported by well documented scientific research and validated data. Please refer to the accompanying document “Sizing Firefighters: Method and Implications” from the Journal of the Human Factors and Ergonomics Society.

Note: Supporting material is available for review at NFPA Headquarters.

Related Item

Public Input No. 447-NFPA 1901-2013 [Section No. 14.1.9.1]
Public Input No. 448-NFPA 1901-2013 [Section No. 14.1.9.2]

Submitter Information Verification

Submitter Full Name: J Gordon Routley
Organization: Montreal Fire Department
Affiliation: National Fallen Firefighters Foundation
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 11:52:11 EDT 2014
Committee Statement

Committee Action: Rejected but held
Resolution: This is being held as new material until the next revision cycle.
14.1.9.1 *
Where SCBA holders are mounted within a driving or crew compartment, they shall comply with the following:

(1) The SCBA holder shall retain a pack and bottle combination for the published weight rating of the holder when subjected to the dynamic force pulse per SAE J2418, Occupant Restraint System Evaluation — Frontal Impact Component-Level Heavy Trucks and be third party certified.

(2) If the SCBA unit is mounted in a seatback, the release mechanism shall be accessible to the user while seated.

(3) Brackets that lock automatically either in the event of impact or when the parking brake is released, but are not locked at other times, shall be permitted.

(4) * The SCBA holder shall retain the bottle when subjected to the deceleration pulse at 0, 30, 90, and 180 degrees with respect to the direction of bottle extraction and in the horizontal plane.

(5) The SCBA holder shall retain the bottle when subjected to a deceleration pulse that exceeds 2 g for at least 60 ms in the vertical direction.

(6) The deceleration pulse shall meet the SAE J2418 deceleration profile with an accuracy of ±10 percent within the 35 to 95 ms range.

(7) The deceleration pulse shall be measured on a rigid portion of the base of the test fixture.

(8) The test component shall be retained in the holder during and after the dynamic test.

(9) The force required to extract the bottle after each test shall be no more than 125 percent of the initial extraction force.

(10) The SCBA holder shall be attached to the fixture in the same manner that it will be fastened to the seat or vehicle.

(11) The test bottle shall not move more than 3 in. relative to the frame of the holder during each test.

(12) The test fixture shall not allow the holder frame to move more than 3 in. relative to the base of the test sled.

(13) Each holder shall bear a label affixed by the holder manufacturer certifying compliance to these specifications.

(14) Manufacturers shall keep third party testing certification on file for anyone’s inspection.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901_Ziaylek.pdf</td>
<td>PC Form</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

The new SCBA holder requirements were written in order to ensure an adequate level of safety and to eliminate any loopholes in the test requirements. The additional requirement of third party certification follows the same thinking. When a firefighter has made the decision to purchase a particular product, he or she can have peace of mind that the safety of the product has indeed been checked. Most testing companies can provide a licensed professional engineer to witness tests to confirm compliances at a reasonable cost.

Related Item
First Revision No. 175-NFPA 1901-2013 [Section No. 14.1.10]

Submitter Information Verification
Submitter Full Name: Michael Ziaylek
Organization: Ziamatic Corp
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 24 14:01:01 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The current requirements are sufficient for SCBA holders
14.1.9.1*

Where SCBA holders are mounted within a driving or crew compartment, they shall comply with the following:

1. The SCBA holder shall retain a pack and bottle combination for the published weight rating of the holder when subjected to the dynamic force pulse per SAE J2418, Occupant Restraint System Evaluation — Frontal Impact Component-Level Heavy Trucks and be third party certified.

2. If the SCBA unit is mounted in a seatback, the release mechanism shall be accessible to the user while seated.

3. Brackets that lock automatically either in the event of impact or when the parking brake is released, but are not locked at other times, shall be permitted.

4. The SCBA holder shall retain the bottle when subjected to the deceleration pulse at 0, 30, 90, and 180 degrees with respect to the direction of bottle extraction and in the horizontal plane.

5. The SCBA holder shall retain the bottle when subjected to a deceleration pulse that exceeds 2 g for at least 60 ms in the vertical direction.

6. The deceleration pulse shall meet the SAE J2418 deceleration profile with an accuracy of ±10 percent within the 35 to 95 ms range.

7. The deceleration pulse shall be measured on a rigid portion of the base of the test fixture.

8. The test component shall be retained in the holder during and after the dynamic test.

9. The force required to extract the bottle after each test shall be no more than 125 percent of the initial extraction force.

10. The SCBA holder shall be attached to the fixture in the same manner that it will be fastened to the seat or vehicle.

11. The test bottle shall not move more than 3 in. relative to the frame of the holder during each test.

12. The test fixture shall not allow the holder frame to move more than 3 in. relative to the base of the test sled.

13. Each holder shall bear a label affixed by the holder manufacturer certifying compliance to these specifications.

14. Manufacturers shall keep third party testing certification on file for anyone's inspection.

Statement of Problem and Substantiation for Public Comment

The new SCBA holder requirements were written in order to ensure an adequate level of safety and to eliminate any loopholes in the testing requirements. The additional requirement of third party certification follows the same thinking. When a firefighters has made the decision to purchase a particular product, he or she can have peace of mind that the safety of the product has indeed been checked. Most testing companies can provide a licensed professional engineer to witness tests to confirm compliances at a reasonable cost.

Related Item

First Revision No. 175-NFPA 1901-2013 [Section No. 14.1.10]

Submitter Information Verification

Submitter Full Name: MICHAEL ZIAYLEK
Organization: ZIAMATIC CORP
Street Address:
City:
Committee Statement

Committee Action: Rejected
Resolution: The current requirements are sufficient for SCBA holders
Public Comment No. 100-NFPA 1901-2014 [Section No. 15.1.1]

15.1.1 *
Any enclosed external compartments shall be weather resistant and ventilated and have provisions for drainage of moisture. Drainage holes may serve a dual role as vents.

Statement of Problem and Substantiation for Public Comment

The added note is intended to clearly indicate that drainage holes may have a dual role as vents. This was submitted last year but was not included and the Committee Statement was "The current wording already allows drain holes to serve as vents". However, that is an interpretation which has been cause for discussion. Let's make the wording clear by adding what has been proposed.

Related Item
Public Input No. 344-NFPA 1901-2013 [Section No. 15.1.1]

Submitter Information Verification

Submitter Full Name: William Proft
Organization: Pierce Manufacturing
Affiliation: Manufacturer of Fire Apparatus
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 01 18:16:05 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The current requirements are sufficient
A means shall be provided that will retain the equipment rack in the road travel position when the vehicle is in motion unless the equipment rack is powered by a self-contained device that will eliminate the system from deploying unintentionally. A separate control shall be provided for the means of retention that serves to prevent unintentional movement of the equipment rack.

Statement of Problem and Substantiation for Public Comment

The failure of the powered system components such as hydraulic hoses as mentioned in the previous public comment is not the only means of unintentional movement of powered equipment racks. I am aware of several events (one in Nanaimo BC) where these racks have moved due to failure of the control mechanism such as a switch or wire, therefore they should have a separate control to prevent unintentional movement should the control system fail, causing the power system to operate.

Related Item
Public Input No. 244-NFPA 1901-2013 [Section No. 15.4.2]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICE
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 02 22:28:21 EST 2014

Committee Statement

Committee Action: Rejected
Resolution: The current requirements already have redundancies included.
Public Comment No. 90-NFPA 1901-2014 [Section No. 15.7.1.2]

15.7.1.2 *

All steps shall have a minimum area of 35 in.\(^2\) (22,580 mm\(^2\)), shall be of such a shape that a 5 in. (125 mm) diameter disk does not overlap any side when placed on the step, and shall be arranged to provide at least 8 in. (200 mm) of clearance between the leading edge of the step and any obstruction. This measurement shall be taken at 45% from the leading edge of the step.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901_STEP_REQUIREMENTS.pdf</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

Limits need to be established for taking the 8" measurement or the requirement needs to be removed.

Related Item

Public Input No. 401-NFPA 1901-2013 [Section No. 15.7.1.1 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: John McDonald
Organization: US General Services Administra

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-31-NFPA 1901-2014
Statement: This brings the standard in line with other established step standards.
1901 STEP REQUIREMENTS

COMMERCIAL VEHICLE STEPS
Freightliner M270

- Pierce Number 26699-01
- VIN 1FDVACYDT4EHFP2355
- GSA RPN# GU753
1901 Requirements

- **15.7.1.2** All steps shall have a minimum area of 35 in.2 (22,580 mm2), shall be of such a shape that a 5 in. (125 mm) diameter disk does not overlap any side when placed on the step, and shall be arranged to provide at least 8 in. (200 mm) of clearance between the leading edge of the step and any obstruction.

- **15.7.1.3** All platforms shall have a minimum depth of 8 in. (200 mm) from the leading edge of the platform to any obstruction.

- **15.7.1.4** All access ladders shall have at least 8 in. (200 mm) clearance between the leading edge of any rung and the body of the fire apparatus or other obstruction.
Streetside
Curbside
So, Given the above

• How do these steps comply with 1901?
15.7.1.6

Designated horizontal standing or walking surfaces higher than 48 in. (1220 mm) from the ground and not guarded by a railing, when measured with the apparatus at curb weight, shall have a safety yellow line at least 1 in. (25 mm) wide marking the outside perimeter of the surface, excluding steps and ladders.

Statement of Problem and Substantiation for Public Comment

Delete this requirement in its entirety. It will result in confusion and interpretation. A prime example is non-walk-in Rescue bodies. The entire roof area is often covered in aluminum diamond plate with an anti-slip surface since there are many horizontal areas that could be used as stepping surfaces. This new requirement could be interpreted to mean that the entire roof periphery needs to be outlined with a yellow line. That is impractical. Fire fighters are highly trained individuals that are expected to know how to use and operate their apparatus appropriately. The yellow line will do little, if anything, to prevent potential injuries.

Related Item

First Revision No. 185-NFPA 1901-2013 [New Section after 15.7.1.4]

Submitter Information Verification

Submitter Full Name: William Proft
Organization: Pierce Manufacturing
Affiliation: Manufacturer of Fire Apparatus
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 01 18:21:35 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-32-NFPA 1901-2014
Statement: The nature of fire apparatus in most cases precludes the use of railings or other features to guard against falls from the top of apparatus. The addition of a yellow line on the edge of the horizontal surfaces of the body may reduce the risk of operators inadvertently stepping off the edge. Clearly marking those areas where the manufacturer has designed the apparatus with the intention of allowing fire fighters to stand or walk will remove the ambiguity from the term "designated standing or walking surfaces" found in paragraph 15.7.4.

The adjective “safety” in front of the word yellow may be more restrictive than necessary to meet the intent. Manufacturers may use tape, paint, anodizing, or another method to provide the color and requiring a specific color tone may restrict these methods.

Adding the option for an orange line will solve the problem where a yellow line on a yellow painted apparatus would not stand out. Adding the words “that provides contrast with the background” will ensure that the appropriate color is chosen.

Replacing the word “line” with “delineation” allows the manufacturer to use colored handrails, or other features when it may be more practical to do so rather than needing to always provide a “line”.

National Fire Protection Association Report http://submittals.nfpa.org/TerraViewWeb/ContentFetcher?commentPara...
Replacing the word "surface" with the phrase "designated standing or walking surface area" is more specific. A manufacturer may wish to designate a limited area for standing or walking than the surface would necessarily provide.
15.7.1.6
Designated horizontal standing or walking surfaces higher than 48 in. (1220 mm) from the ground and not guarded by a railing, when measured with the apparatus at curb weight, shall have a safety yellow line at least 1 in. (25 mm) wide marking the outside perimeter of the surface, excluding steps and ladders.

Statement of Problem and Substantiation for Public Comment

There is not enough data provided to justify that this change will adequately enhance safety of personnel. It is proposed that the problem be studied in depth, root cause be defined, and resolution proposals be developed to properly address the risk.

Related Item
First Revision No. 185-NFPA 1901-2013 [New Section after 15.7.1.4]

Submitter Information Verification

Submitter Full Name: Dirk Steyn
Organization: E-One, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Mon May 12 15:50:47 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-32-NFPA 1901-2014
Statement: The nature of fire apparatus in most cases precludes the use of railings or other features to guard against falls from the top of apparatus. The addition of a yellow line on the edge of the horizontal surfaces of the body may reduce the risk of operators inadvertently stepping off the edge. Clearly marking those areas where the manufacturer has designed the apparatus with the intention of allowing fire fighters to stand or walk will remove the ambiguity from the term "designated standing or walking surfaces" found in paragraph 15.7.4.

The adjective "safety" in front of the word yellow may be more restrictive than necessary to meet the intent. Manufacturers may use tape, paint, anodizing, or another method to provide the color and requiring a specific color tone may restrict these methods.

Adding the option for an orange line will solve the problem where a yellow line on a yellow painted apparatus would not stand out. Adding the words "that provides contrast with the background" will ensure that the appropriate color is chosen.

Replacing the word "line" with "delineation" allows the manufacturer to use colored handrails, or other features when it may be more practical to do so rather than needing to always provide a "line".

Replacing the word "surface" with the phrase "designated standing or walking surface area" is more specific. A manufacturer may wish to designate a limited area for standing or walking than the surface would necessarily provide.
Public Comment No. 43-NFPA 1901-2014 [Section No. 15.7.1.6]

15.7.1.6
Designated horizontal standing or walking surfaces and lift up style diamond plate doors ie: ladder tunnel doors, pump service doors, that are higher than 48 in. (1220 mm) from the ground and not guarded by a railing, when measured with the apparatus at curb weight, shall have a safety yellow line at least 1 in. (25 mm) wide marking the outside perimeter of the surface, excluding steps and ladders.

Statement of Problem and Substantiation for Public Comment

This is a very good idea, I personally had a near miss last year when I stepped on an open lift up diamond plate door on a ladder tunnel that was part of a all diamond plate surfaced ladder tunnel in a hose bed on top of a truck. Luckily I was just able to grab a nearby handrail to save myself from a potentially fatal injury. we need to include this on lift up doors that look like walking surfaces.

Related Item
First Revision No. 185-NFPA 1901-2013 [New Section after 15.7.1.4]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICES
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 02 22:44:44 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-32-NFPA 1901-2014
Statement: The nature of fire apparatus in most cases precludes the use of railings or other features to guard against falls from the top of apparatus. The addition of a yellow line on the edge of the horizontal surfaces of the body may reduce the risk of operators inadvertently stepping off the edge. Clearly marking those areas where the manufacturer has designed the apparatus with the intention of allowing fire fighters to stand or walk will remove the ambiguity from the term "designated standing or walking surfaces" found in paragraph 15.7.4.

The adjective “safety” in front of the word yellow may be more restrictive than necessary to meet the intent. Manufacturers may use tape, paint, anodizing, or another method to provide the color and requiring a specific color tone may restrict these methods.

Adding the option for an orange line will solve the problem where a yellow line on a yellow painted apparatus would not stand out. Adding the words “that provides contrast with the background” will ensure that the appropriate color is chosen.

Replacing the word “line” with “delineation” allows the manufacturer to use colored handrails, or other features when it may be more practical to do so rather than needing to always provide a “line”.

Replacing the word “surface” with the phrase “designated standing or walking surface area” is more specific. A manufacturer may wish to designate a limited area for standing or walking than the surface would necessarily provide.
15.9.3.2.1
Each stripe in the chevron shall be a single color alternating between red and either yellow, fluorescent yellow, or fluorescent yellow-green alternating colors.

Statement of Problem and Substantiation for Public Comment

Striping on the side of the apparatus has been in the code for several years now and there has not been a requirement for specific colors. The specific requirement of the red/yellow color pattern has not been shown to provide any additional safety than other color combinations. When the red/yellow color combination was originally proposed the logic was that this color pattern would define a "fire apparatus" to the motorists on the roadway, several states use Red/Yellow on vehicles other than fire apparatus. Pennsylvania for example uses Red/Yellow chevron on the back of their department of transportation vehicles, so the justification that Red/Yellow defines the vehicle is not credible. Providing high visibility chevrons on the back of the apparatus does add a safety element to the vehicle, but there is no reason/need to define the color combinations.

Related Item
Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Jason Witmier
Organization: Pottsville Fire Department
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 03 11:53:11 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The committee feels the current are preferable to the proposal and is consistent with the IAFC recommendations.
15.9.3.3.1
All retroreflective materials used to satisfy the requirements of 15.9.3.1 and 15.9.3.2 that are colors not listed in ASTM D 4956, Section 6.1.1, shall have a minimum coefficient of retroreflection of 10 with observation angle of 0.2 degrees and entrance angle of -4 degrees.

Statement of Problem and Substantiation for Public Comment

This relates to public comment No. 73, if the color requirement is removed from 15.9.3.2.1 then this item will apply to both.

Related Item
Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification
Submitter Full Name: Jason Witmier
Organization: Pottsville Fire Department
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 03 12:47:09 EDT 2014

Committee Statement
Committee Action: Rejected
Resolution: The committee feels the current are preferable to the proposal and is consistent with the IAFC recommendations.
15.9.3.3.2 - Fluorescent yellow and fluorescent yellow-green retroreflective materials used to meet the requirements of 15.9.3.2 shall conform to the minimum requirements specified for yellow Type I Sheeting in ASTM D 4956, Section 6.1.1.

Statement of Problem and Substantiation for Public Comment

This relates to Public comment No. 73, if the color requirement is removed then this section is no longer necessary and 15.9.3.3.1 will be sufficient.

Related Item

Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Jason Witmier
Organization: Pottsville Fire Department
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 03 12:49:41 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The committee feels the current are preferable to the proposal and is consistent with the IAFC recommendations.
Public Comment No. 76-NFPA 1901-2014 [Section No. 15.9.3.3.3]

15.9.3.3.3
Any printed or processed retroreflective film construction used to meet the requirements of 15.9.3.1. and 15.9.3.2. shall conform to the standards required of an integral colored film as specified in ASTM D 4956, Section 6.1.1.

Statement of Problem and Substantiation for Public Comment

This relates to public comment No. 73, if the color requirement is removed from 15.9.3.2.1 then 15.9.3.3.2 is deleted and this item needs to be changed as proposed.

Related Item
Public Input No. 1-NFPA 1901-2012 [Section No. 22.10 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Jason Witmier
Organization: Pottsville Fire Department
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 03 12:50:50 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The committee feels the current are preferable to the proposal and is consistent with the IAFC recommendations.
15.10.1*
The bottom shall be constructed to prevent the accumulation of water and allow ventilation to aid in drying hose and be constructed of non corrosive materials.

Statement of Problem and Substantiation for Public Comment
In the changes from the first draft the requirement of non corrosive materials was lost.

Related Item
Public Input No. 351-NFPA 1901-2013 [Section No. 24.5.1.3]

Submitter Information Verification
Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICES
Street Address:
City:
State:
Zip:
Submittal Date: Mon Mar 03 00:12:06 EST 2014

Committee Statement
Committee Action: Rejected
Resolution: There is no clear definition for "Non-Corrosive Materials"
Public Comment No. 98-NFPA 1901-2014 [Section No. 15.12.2]

15.12.2
Receivers or anchors installed at any location on the apparatus for use with rope operations shall be
designed and affixed to the apparatus to provide at least a **9000 lbf (40,000 N) no-yield condition with a straight line pull 1.5 to 1 straight line pull no-yield safety factor over the load rating of the receiver or anchor.**

Statement of Problem and Substantiation for Public Comment

There is no clear understanding as to how the 9,000 pound minimum rating was derived. There are many locations on fire apparatus where customers want rope eyes or anchors that cannot be rated to that level, but can be rated to something lower such as 3,000 pounds. We can provide those items but also have to rate them as "non-compliant" since they are not rated for 9,000 pounds. Let's simply provide a minimum safety factor and allow the manufacturer of the apparatus and the customer decide what they can provide and where.

Related Item
Public Input No. 352-NFPA 1901-2013 [Section No. 15.12.2]

Submitter Information Verification

Submitter Full Name: William Proft
Organization: Pierce Manufacturing
Affiliation: Manufacturer of Fire Apparatus
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 01 14:17:44 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: 9000lbs of force is the requirement from NFPA 1983 and is the requirement for Rescue Rope and Related Equipment.
Public Comment No. 134-NFPA 1901-2014 [Section No. 16.2.5]

16.2.5 Fire Pump Maximum Discharge Gauge Pressure Capability Rating.

16.2.5.1 The fire pump manufacturer shall establish the maximum discharge gauge pressure capability rating of the pump.

16.2.5.2 The fire pump manufacturer shall certify the maximum discharge gauge pressure capability rating of the pump if it exceeds the hydrostatic test gauge pressure in 16.5.2.1.

Statement of Problem and Substantiation for Public Comment

The title of 16.2.5 doesn't match the use of this phrase elsewhere in the standard. For consistency, add "Gauge" to the title of 16.2.5 to match the use of this phrase elsewhere in the standard.

Related Public Comments for This Document

<table>
<thead>
<tr>
<th>Related Comment</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Comment No. 135-NFPA 1901-2014 [Section No. 4.20.1]</td>
<td></td>
</tr>
<tr>
<td>Public Comment No. 136-NFPA 1901-2014 [New Section after 3.3.108]</td>
<td></td>
</tr>
<tr>
<td>First Revision No. 226-NFPA 1901-2013 [New Section after 16.2.4.2]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Tom Mettler
Organization: Waterous Company
Street Address: City: State: Zip: Submittal Date: Thu May 15 16:30:35 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Statement: Removing the word "gauge" to be consistent with 16.2.5
16.5.3
The entire discharge and intake piping system, valves, drain cocks and lines, and intake and outlet closures, excluding the tank fill and tank-to-pump lines on the tank side of the valves in those lines, shall be capable of withstanding a minimum hydrostatic gauge pressure of 500 psi (3400 kPa). The aerial water system from the base of the aerial to the tip shall be tested to a pressure of 250 psi.

Statement of Problem and Substantiation for Public Comment

The aerial waterway components are very weight sensitive. A pressure test of 250 psi has been in place and worked successfully for many years. This requirement will reduce the capability of the ladder.

Related Item
Public Input No. 177-NFPA 1901-2013 [Section No. 16.13.10.2]

Submitter Information Verification

Submitter Full Name: James Salmi
Organization: Spartan ERV
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 08:10:05 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-61-NFPA 1901-2014
Statement: Clarifies pressure capability requirements of intake plumbing and discharge plumbing and identifies differences in their requirements. Also includes specific requirements for those components excluded from the discharge pressure capability requirements.
Each valved intake shall be equipped with a bleeder valve having a minimum $\frac{3}{4}$ in. (19.20 mm) pipe thread connection to bleed off air or water.

Statement of Problem and Substantiation for Public Comment

There is no "19 mm pipe thread". The closest nominal size is 20 mm. All pipe sizes are nominal (name) sizes and not an exact dimension.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

<table>
<thead>
<tr>
<th>Submitter Full Name:</th>
<th>Thomas Stalnaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>Goshen Fire Company</td>
</tr>
<tr>
<td>Street Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Zip:</td>
<td></td>
</tr>
<tr>
<td>Submittal Date:</td>
<td>Fri Feb 21 10:21:26 EST 2014</td>
</tr>
</tbody>
</table>

Committee Statement

<table>
<thead>
<tr>
<th>Committee Action:</th>
<th>Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td>SR-34-NFPA 1901-2014</td>
</tr>
<tr>
<td>Statement:</td>
<td>There is no "19 mm pipe thread". The closest nominal size is 20 mm. All pipe sizes are nominal (name) sizes and not an exact dimension.</td>
</tr>
</tbody>
</table>
Public Comment No. 126-NFPA 1901-2014 [Section No. 16.7.5 [Excluding any Sub-Sections]]

Each discharge outlet shall be equipped with a valve that can be opened and closed by the operator with a maximum force of 55 lbf (240 N) from full open to full closed or from full closed to full open with 250 psi (1700 kPa) pump discharge gauge pressure and at the flows shown in Table 16.7.1 when the valve is in the full open position.

Statement of Problem and Substantiation for Public Comment

The proposed 55 lbs is much lower than what is acceptable per established standards and at a much higher pressure (250) than what is typically used on the majority of operations. Keeping the requirement as written will result in unnecessarily longer vehicles and higher pump enclosures (and higher preconnects) due to required changes of mechanical valve controls. It also has the potential of driving vehicle costs unnecessarily higher.

MIL STD 1472D Table XXIV allows for a 70lb force with both hands on a high traction surface at 20" - 50" above the floor and up to 110 lbs if braced (such as against a running board or back of the cab on a top mount).

In addition, Liberty Mutual Group Loss Prevention tables (commonly referred to as Snook Tables) provide guidelines to acceptable lift, lowering, pushing, and pulling values. They list an acceptable initial push value for a 90% male as 70 lbs at a height of 57" and 75lb at a height of 37" at the lowest frequency of cycles. Both of these push/pull standards are within reasonable ranges of each other and should be considered as reasonable values in fire apparatus applications.

Furthermore, the majority of nozzles, hose lays and operations revolve around attack lines where the operational pump pressures are run at or below 150 psi. It seems reasonable the standard is created around the majority of operations otherwise valve operating forces at 250 psi will require the unnecessary use of more expensive valve operators (electric) and/or larger/higher pump panels and longer wheelbases for alternative mechanical controls.

Related Item

Public Input No. 53-NFPA 1901-2013 [Sections 16.7.5.1, 16.7.5.2]

Submitter Information Verification

Submitter Full Name: Michael Moore
Organization: Pierce Manufacturing, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Tue May 13 18:20:00 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-63-NFPA 1901-2014
Statement: Reverting to previous text as this issue has many variables and has not been reported as a problem throughout the industry.
Public Comment No. 70-NFPA 1901-2014 [Section No. 16.7.5 [Excluding any Sub-Sections]]

Each discharge outlet shall be equipped with a valve that can be opened and closed by the operator with a maximum force of 55 lbf (240 N) from full open to full closed or from full closed to full open with 250 psi (1700 kPa) pump discharge gauge pressure and at the flows shown in Table 16.7.1 when the valve is in the full open position.

Statement of Problem and Substantiation for Public Comment

The 55 lbf was discussed at the last NFPA meeting but I do not believe this was approved by the committee. There was discussion and it was decided that more scientific data was required to determine what the proper force should be. Our research has determined that very few push pull type valve linkages can be operated at 55 lbf or less, therefore more expensive electric valve controls or hand wheel type will be required. Many customers require unique pump and plumbing configurations which make it difficult to install valve control linkages in locations that reduce the force to operate the valve. If customers want a force requirements on valve controls they can specify such requirements in their purchasing process.

Related Item
Public Input No. 53-NFPA 1901-2013 [Sections 16.7.5.1, 16.7.5.2]

Submitter Information Verification

Submitter Full Name: Mike Schoenberger
Organization: Rosenbauer America
Street Address:
City:
State:
Zip:
Submittal Date: Wed Mar 26 08:40:55 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-63-NFPA 1901-2014
Statement: Reverting to previous text as this issue has many variables and has not been reported as a problem throughout the industry.
Each discharge outlet shall be equipped with a valve that can be opened and closed by the operator with a maximum force of 55 lbf (240 N) from full open to full closed or from full closed to full open with 250 psi (1700 kPa) pump discharge gauge pressure and at the flows shown in Table 16.7.1 when the valve is in the full open position.

Statement of Problem and Substantiation for Public Comment

This paragraph is adding additional requirements that are not justified by complaints from the industry. Further, the proposed value is exceptionally low, and does not account for any of the following:
- Plumbing geometry
- Control type, including slow-close devices
- Maintenance

In practice, even new trucks often have pull forces in the 80 lbs range under the conditions specified, but it is a momentary pull, and the force decreases once the valve starts to move.

This should remain something the operator can work through with their manufacturer on an as-needed basis.

Related Item

First Revision No. 233-NFPA 1901-2013 [Section No. 16.7.5]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Mon Apr 14 09:31:14 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-63-NFPA 1901-2014
Statement: Reverting to previous text as this issue has many variables and has not been reported as a problem throughout the industry.
16.7.8.1
Each pump discharge shall have a valve that can be controlled from the pump operator's position. All discharges 2" or larger shall have gateable positioning.

Statement of Problem and Substantiation for Public Comment

Nowhere in the standard do we require gating capability on discharge outlets, adding this phrase rectifies this situation

Related Item
Public Input No. 174-NFPA 1901-2013 [Section No. 16.7.10]

Submitter Information Verification

Submitter Full Name: Gary Handwerk
Organization: handwerk consulting services
Street Address:
City:
State:
Zip:
Submittal Date: Thu Apr 17 12:07:57 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: This issue is covered by 16.7.5.1
16.7.10

Where the valve-operating mechanism does not indicate the position of the valve, an indicator shall be provided to show when the valve is closed and when open.

Statement of Problem and Substantiation for Public Comment

from a safety stand point you need to know if the valve is either open or closed, if you only indicate closed and are using an indicator light and it fails you will have no indication that the valve is closed.

Related Item

Public Input No. 174-NFPA 1901-2013 [Section No. 16.7.10]

Submitter Information Verification

Submitter Full Name: Gary Handwerk
Organization: handwerk consulting services
Street Address:
City:
State:
Zip:

Submital Date: Thu Apr 17 11:43:41 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The current language is adequate for a minimum standard.
Public Comment No. 122-NFPA 1901-2014 [New Section after 16.10.1.2]

<table>
<thead>
<tr>
<th>TITLE OF NEW CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type your content here ...</td>
</tr>
</tbody>
</table>

New section after 16.10.1.2

Where the pump is driven by the chassis engine and transmission through a split-shaft PTO, an interlock system shall be provided to prevent the pump drive system from being shifted out of the “Pump Engaged” pumping mode of operation when the chassis transmission is in pump gear.

Statement of Problem and Substantiation for Public Comment

Substantiation: FR-74 eliminated the requirement for apparatus where the pump is driven by the chassis engine and transmission through a split-shaft transmission that the speedometer shall register when the pump drive system is engaged. This was justified by technical realities of the electronics on today’s vehicles but it also removes a visual reminder of the status of the pump drive system. Section 16.10.1.2 has for a very long time required that “Any control device used in the pumping system power train between the engine and the pump, except a manual pump shift override device if provided, shall be equipped with a means to prevent unintentional movement of the control device from its set position in the pumping mode.” The control of a split-shaft pump drive system consists not only of the shift control of the pump transmission; it also consists of the chassis transmission shift control and its relation with the pump shift control. There have been countless occurrences of the pump drive system being inadvertently shifted from the pumping mode of operation while the chassis transmission is in pump gear.

This proposed new interlock requirement will compensate for the upcoming loss of speedometer registration during pump drive system engagement and will ensure that the intent of 16.10.1.2 is met to prevent unintentional movement of the pump drive system control. Additionally, extensive damage to pump drive system components will be prevented.

Related Item

First Revision No. 74-NFPA 1901-2013 [Section No. 16.10.1.4]
Public Input No. 235-NFPA 1901-2013 [Section No. 16.10.1.4]

Submitter Information Verification

- **Submitter Full Name:** Tom Mettler
- **Organization:** Waterous Company
- **Affiliation:** Not Applicable
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Mon May 12 16:58:31 EDT 2014

Committee Statement

- **Committee Action:** Rejected but see related SR
- **Resolution:** SR-64-NFPA 1901-2014
- **Statement:** This proposed new interlock requirement will compensate for the upcoming loss of speedometer registration during pump drive system engagement and will ensure that the intent of 16.10.1.2 is met to prevent unintentional movement of the pump drive system control for apparatus with automatic transmissions. Additionally, extensive damage to pump drive system components will be prevented.
system components will be prevented.
Public Comment No. 146-NFPA 1901-2014 [Section No. 16.13.8 [Excluding any Sub-Sections]]

The engine speed advancement interlock system shall be tested to verify that engine speed cannot be increased at the pump operator's panel unless there is throttle-ready indication and meet all the test conditions in the following tables. (This requires moving A.16.13.8 to 16.13.8).

Statement of Problem and Substantiation for Public Comment

By moving A.16.13.8 to the body and requiring the fire apparatus to meet all test conditions of A.16.13.8 will require the fire truck fabricator to perform all tests necessary to insure that the pump throttle system is operating correctly and safely. It only takes two people 10 to 15 minutes and no equipment to carry out the testing of an apparatus.

Related Item
Public Input No. 340-NFPA 1901-2013 [Section No. 16.13.8.1]

Submitter Information Verification

Submitter Full Name: Dan McKenzie
Organization: US Department of Agriculture
Affiliation: US Forest Service
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 23:06:32 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as seen in attachment A.16.13.8 and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
If the apparatus is equipped with a stationary pump driven through split-shaft PTO, the test shall verify that the engine speed control at pump operator’s panel cannot be advanced when either of the following conditions exists:

1. The chassis transmission is in neutral, the parking brake is off, and the pump shift in the driving compartment is in the road position.
2. The chassis transmission has been placed in the position for pumping as indicated on the label provided in the driving compartment, the parking brake is on, and the pump shift in the driving compartment is in the road position.

Statement of Problem and Substantiation for Public Comment

By moving A.16.13.8 to the body of the Standard there no longer a need for 16.13.8.1.

Related Item

Public Input No. 340-NFPA 1901-2013 [Section No. 16.13.8.1]

Submitter Information Verification

Submitter Full Name: Dan McKenzie
Organization: US Department of Agriculture
Affiliation: US Forest Service
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 23:50:01 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as seen in attachment A.16.13.8 and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
Public Comment No. 148-NFPA 1901-2014 [Section No. 16.13.8.2]

16.13.8.2 – If the apparatus is equipped with a stationary pump driven through a transmission mounted PTO, front-of-engine crankshaft PTO, or engine flywheel PTO, the test shall verify that the engine speed control on the pump operator’s panel cannot be advanced when either of the following conditions exists:

(1) The chassis transmission is in neutral, the parking brake is off, and the pump shift status in the driving compartment is disengaged.

(2) The chassis transmission is in any gear other than neutral, the parking brake is on, and the pump shift in the driving compartment is in the “Pump Engaged” position.

Statement of Problem and Substantiation for Public Comment

By moving A.16.13.8 to the body of the Standard there no longer a need for 16.13.8.2.

Related Item

Public Input No. 340-NFPA 1901-2013 [Section No. 16.13.8.1]

Submitter Information Verification

Submitter Full Name: Dan McKenzie
Organization: US Department of Agriculture
Affiliation: US Forest Service
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 23:55:52 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as seen in attachment A.16.13.8 and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
16.13.8.3 – If the apparatus is equipped with a pump driven by the chassis engine designed for both stationary pumping and pump-and-roll, the test shall verify that the engine speed control at pump operator's panel cannot be advanced when any of the following conditions exist:

1. The chassis transmission is in neutral, the parking brake is off, and the pump shift status in the driving compartment is disengaged.

2. The chassis transmission is in any gear other than neutral, the parking brake is on, and the pump shift in the driving compartment is in the pump engaged position.

3. The chassis transmission is in any gear other than neutral, the parking brake is off, the pump shift in the driving compartment is in the pump engaged position and the "OK to Pump-and-Roll" indicator is on.

Statement of Problem and Substantiation for Public Comment

By moving A.16.13.8 to the body of the Standard there no longer a need for 16.13.8.3.

Related Item
Public Input No. 340-NFPA 1901-2013 [Section No. 16.13.8.1]

Submitter Information Verification

Submitter Full Name: Dan McKenzie
Organization: US Department of Agriculture
Affiliation: US Forest Service
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 00:12:28 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as seen in attachment A.16.13.8 and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
16.13.8.4 –
If the apparatus is equipped with a stationary pump driven through transfer case PTO, the test shall verify that the engine speed control on the pump operator’s panel cannot be advanced when one of the following conditions exists:

1. The chassis transmission is in neutral, the transfer case is in neutral, the parking brake is off, and the pump shift in the driving compartment is in the road position.
2. The chassis transmission is in neutral, the transfer case is engaged, the parking brake is off, and the pump shift in the driving compartment is in the road position.
3. The chassis transmission has been placed in the position for pumping as indicated on the label provided in the driving compartment, the parking brake is on, and the pump shift in the driving compartment is in the road position.

Statement of Problem and Substantiation for Public Comment

By moving A.16.13.8 to the body of the Standard there no longer a need for 16.13.8.4.

Related Item
Public Input No. 340-NFPA 1901-2013 [Section No. 16.13.8.1]

Submitter Information Verification

Submitter Full Name: Dan McKenzie
Organization: US Department of Agriculture
Affiliation: US Forest Service
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 01:38:47 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as seen in attachment A.16.13.8 and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
Proposed change is to replace sections 16.13.10.2 and all following with new text to be uploaded.

16.13.10.1 Manufacturer's Predelivery Test.

The manufacturer shall conduct a piping hydrostatic test prior to delivery of the apparatus.

16.13.10.2 The test shall be conducted as follows:

1. The pump and its connected piping system shall be hydrostatically tested to a gauge pressure of 500 psi (3400 kPa).
2. The hydrostatic test shall be conducted with the tank fill line valve, the bypass line valve if so equipped, and the tank-to-pump valve closed.
3. All discharge valves shall be open and the outlets capped.
4. All intake valves shall be closed, and nonvalved intakes shall be capped.
5. This pressure shall be maintained for 3 minutes.

16.13.10.3 If the maximum discharge gauge pressure capability rating of the pump is greater than 500 psi, either a hydrostatic test in accordance with 16.13.10.3.1 or hydrodynamic test in accordance with 16.13.10.3.2 shall be conducted.

16.13.10.3.1 If a hydrostatic test is conducted, the hydrostatic test in 16.13.10.3.2 shall be performed at the prescribed maximum discharge gauge pressure rating.

16.13.10.3.2 If a hydrodynamic test is conducted, the pump and its connected piping system shall be hydrodynamically tested at the prescribed maximum discharge gauge pressure capability rating pressure for a minimum of 3 minutes.

16.13.10.3.3 The tests in 16.13.10.3.1 or 16.13.10.3.2 shall be permitted to be omitted if the pumping system is provided with a pressure control system that limits the maximum discharge gauge pressure to 500 psi (3400 kPa) or less.

16.13.10.3.4 The test in 16.13.10.3.2 shall be permitted to be performed in conjunction with the pumping test performed in 16.13.2.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predelivery_Hyd_Test.docx</td>
<td>Mettler proposed changes for 16.13.10</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

Substantiation is provided in the uploaded file.

Related Item

First Revision No. 229-NFPA 1901-2013 [Section No. 16.13.10.2]

Submitter Information Verification

Submitter Full Name: Tom Mettler
Committee Statement

Committee Action: Rejected but see related SR

Statement: Clarifies and provides specific requirements to ensure that all apparatus will be both hydrostatically tested and hydrodynamically tested with the hydrodynamic test performed at the maximum discharge pressure capability rating of the pump or maximum pump close-off pressure. Clarifies test procedure with respect to water supply, valve positioning and maintenance of pump temperature during test.
16.13.10* Manufacturer’s Predelivery Test
16.13.10.1 The manufacturer shall conduct a piping hydrostatic test prior to the delivery of the apparatus. (no change)

16.13.10.2

The test shall be conducted as follows on all pump and piping systems regardless of the pump’s maximum discharge gauge pressure capability rating:

(1) If the apparatus is equipped without CAFS, the pump and its connected piping system shall be hydrostatically tested to a gauge pressure of 500 psi (3400 kPa).

(2) If the apparatus is equipped with CAFS, the pump and its connected piping system shall be hydrostatically tested to a gauge pressure of 250 psi (1700 kPa).

(23) The hydrostatic test shall be conducted with the tank fill line valve, the bypass line valve if so equipped, and the tank-to-pump valve closed.

(34) All discharge valves shall be open and the outlets capped.

(45) All intake valves shall be closed with intakes uncapped, and nonvalved intakes shall be capped.

(56) This pressure shall be maintained for 3 minutes.

16.13.10.3 If the maximum discharge gauge pressure capability rating of the pump is greater than 500 psi (3400 kPa), either a hydrostatic test in accordance with 16.13.10.3.15 or a hydrodynamic test in accordance with 16.13.10.3.26 shall be conducted.

16.13.10.4 If the apparatus is equipped with CAFS, a hydrodynamic test in accordance with 16.13.10.6 shall be conducted.

16.13.10.3.15 If a hydrostatic test is conducted, the hydrostatic test in 16.13.10.3.2 shall be performed at the prescribed maximum discharge gauge pressure rating.

16.13.10.3.26 If a hydrodynamic test is conducted, the pump and its connected piping system shall be hydrodynamically tested at the prescribed maximum discharge gauge pressure capability rating pressure or the maximum pump close-off pressure, whichever is less, for a minimum of 3 minutes.

16.13.10.36.1* For apparatus equipped without CAFS and with maximum discharge gauge pressure capability rating greater than 500 psi, the tests in 16.13.10.3.15 or 16.13.10.3.26 shall be permitted to be omitted if the pumping system is provided with a pressure control system that limits the maximum discharge gauge pressure to 500 psi (3400 kPa) or less.

16.13.10.6.2 The hydrodynamic test conducted in 16.13.10.6 shall be permitted to be performed with a bypass valve open to prevent overheating of the pump.
16.13.10.46.3 The test in 16.13.10.46.2 shall be permitted to be performed in conjunction with the pumping test performed in 16.13.2.

Substantiation: 16.13.10.2: First Draft text 16.13.10.3 and 16.13.10.3.3 could be interpreted that no hydrostatic test would be required for pumps with maximum discharge gauge pressure capability rating greater than 500 psi. The proposed test makes it clear that the hydrostatic test in 16.13.10.2 is required for all pumps.

Proposed (1) and (2) provides for different hydrostatic test pressures depending on whether the apparatus is equipped with CAFS. This is required since certain components of CAF systems that are designed to operate at pressures typical of CAF systems (125 psig) or are exposed to higher water pressures only in a dynamic situation such as when the fire pump is operated at pressures up to or greater than 250 psig and when subjected to the 250 psig hydrostatic test that is currently performed on finished apparatus. The proposed wording requires a 250 psig hydro test and a hydrodynamic test for apparatus with CAFS in order to ensure piping integrity prior to being placed into service.

Proposed (45) clarifies that the hydrostatic test is to be performed with intake valves closed (present wording) and with intakes uncapped. Without this clarification, a potentially unsafe condition could be created during the test if the intakes were capped with the intake valve closed. A leaking valve could pressurize trapped air between the valve and the cap and should there be a failure of the intake connection, the pressurized air could result in a rapid release of stored energy.

16.13.10.4 – New proposal requires that apparatus with CAFS shall be hydrodynamically tested. As stated above, this is a follow-on test to the 250 psig hydrostatic test for apparatus with CAFS.

16.13.10.36.2 - Added the hydrodynamic test pressure objective to be either the maximum discharge gauge pressure capability rating pressure or the maximum pump close-off pressure. This proposal addresses those situations where the maximum discharge gauge pressure capability rating pressure cannot be attained possibly as a result of the apparatus power train not having sufficient speed or power capability. Maximum pump close-off pressure would suffice to ensure piping integrity for those apparatus.

16.13.10.36.1 3 – This section permits the high pressure hydrostatic test or hydrodynamic test to be avoided if a pressure control system is in place. The proposed change limits this possible avoidance choice of the hydrodynamic test or high pressure hydrostatic test to those apparatus whose pump has a maximum discharge gauge pressure greater than 500 psi but is without CAFS. If it has CAFS, it must have a hydrodynamic test.

16.13.10.6.2 – This new section permits the use of a bypass line to avoid overheating the pump. This is important for those apparatus where the maximum pump close-off pressure test is performed with all discharges closed.
The test shall be conducted as follows:

(1) The pump and its connected piping system shall be hydrostatically tested to a gauge pressure of 500 psi (3400 kPa).

(2) The hydrostatic test shall be conducted with the tank fill line valve, the bypass line valve if so equipped, and the tank-to-pump valve closed.

(3) All discharge valves shall be open and the outlets capped.

(4) All intake valves shall be closed, and nonvalved intakes shall be capped.

(5) This pressure shall be maintained for 3 minutes.

Statement of Problem and Substantiation for Public Comment

Modern fire apparatus are custom designed for specific pump applications operating at specific pressures. The 2009 standard as written meets the need as minimum standard. Our proposal is to retain 250 psi as minimum standard, and cover concerns related to higher pressure systems, with section 16.13.10.3.

Submitter Information Verification

Submitter Full Name: Dirk Steyn
Organization: E-One, Inc.
Street Address:
City:
State:
Zip:
Submittal Date: Mon May 12 15:59:33 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Statement: Clarifies and provides specific requirements to ensure that all apparatus will be both hydrostatically tested and hydrodynamically tested with the hydrodynamic test performed at the maximum discharge pressure capability rating of the pump or maximum pump close-off pressure. Clarifies test procedure with respect to water supply, valve positioning and maintenance of pump temperature during test.
16.13.10.2
The test shall be conducted as follows:

1. The pump and its connected piping system shall be hydrostatically tested to a gauge pressure of 500 psi (3400 kPa).
2. The hydrostatic test shall be conducted with the tank fill line valve, the bypass line valve if so equipped, and the tank-to-pump valve closed.
3. All discharge valves shall be open and the outlets capped.
4. All intake valves shall be closed, and nonvalved intakes shall be capped.
5. This pressure shall be maintained for 3 minutes.

Statement of Problem and Substantiation for Public Comment

500 psi is excessive. Many suction relief valves cannot be set that high. Some joints and connections may not withstand such a pressure. The suction side of the pump is unlikely to ever encounter that pressure level, and even on the discharge side, it is highly unlikely.

Related Item
Public Input No. 177-NFPA 1901-2013 [Section No. 16.13.10.2]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Tue May 13 14:31:25 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Statement: Clarifies and provides specific requirements to ensure that all apparatus will be both hydrostatically tested and hydrodynamically tested with the hydrodynamic test performed at the maximum discharge pressure capability rating of the pump or maximum pump close-off pressure. Clarifies test procedure with respect to water supply, valve positioning and maintenance of pump temperature during test.
16.13.10.2
The test shall be conducted as follows:

1. The pump and its connected piping system shall be hydrostatically tested to a gauge pressure of 500 psi (3400 kPa).
2. The hydrostatic test shall be conducted with the tank fill line valve, the bypass line valve if so equipped, and the tank-to-pump valve closed and the master stream device valve closed.
3. All discharge valves shall be open and the outlets capped.
4. All intake valves shall be closed, and nonvalved intakes shall be capped.
5. This pressure shall be maintained for 3 minutes.

Statement of Problem and Substantiation for Public Comment

Master stream devices (monitors) are typically rated for a maximum operating pressure of 200 psi. Akron Brass performs a hydrostatic test on master stream devices that is 1.5 times operating pressure (350 psi). The 500 psi requirement would exceed the manufacturer’s hydrostatic test requirement and could potentially cause damage to the device. Either the device needs to be removed completely and the waterway capped or an exception to keep the master stream/aerial waterway valve closed should be considered.

Related Item
First Revision No. 229-NFPA 1901-2013 [Section No. 16.13.10.2]

Submitter Information Verification

Submitter Full Name: Jeffrey Benson
Organization: Akron Brass Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 13:59:52 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Statement: Clarifies and provides specific requirements to ensure that all apparatus will be both hydrostatically tested and hydrodynamically tested with the hydrodynamic test performed at the maximum discharge pressure capability rating of the pump or maximum pump close-off pressure. Clarifies test procedure with respect to water supply, valve positioning and maintenance of pump temperature during test.
If the maximum discharge gauge pressure capability rating of the pump is greater than 500 psi (1700 kPa), either a hydrostatic test in accordance with 16.13.10.3.1 or hydrodynamic test in accordance with 16.13.10.3.2 shall be conducted.

Statement of Problem and Substantiation for Public Comment

As stated in comments under section 16.13.10.2, our proposal is to use this section for pressure application above 250psi.

Related Item

First Revision No. 229-NFPA 1901-2013 [Section No. 16.13.10.2]

Submitter Information Verification

Submitter Full Name: Dirk Steyn
Organization: E-One, Inc.

Committee Statement

Committee Action: Rejected but see related SR
Statement: Clarifies and provides specific requirements to ensure that all apparatus will be both hydrostatically tested and hydrodynamically tested with the hydrodynamic test performed at the maximum discharge pressure capability rating of the pump or maximum pump close-off pressure. Clarifies test procedure with respect to water supply, valve positioning and maintenance of pump temperature during test.
medium or high pressure pump system rating plate
If the apparatus is equipped with an auxiliary medium or high pressure pump system, a rating plate showing the rated flow and pressure capacities of the auxiliary pump system shall be supplied at the pump operators location.

Statement of Problem and Substantiation for Public Comment
many auxiliary medium and high pressure pump systems installed on apparatus either separate or chassis engine drive do not have rating labels on the the pump operators panel. The only way to know the capacity of the auxiliary system with looking at the specifications

Related Item
Committee Input No. 237-NFPA 1901-2013 [Chapter 17]

Submitter Information Verification
Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICES
Street Address:
City:
State:
Zip:
Submittal Date: Mon Mar 03 01:29:45 EST 2014

Committee Statement
Committee Action: Rejected but see related SR
Resolution: SR-67-NFPA 1901-2014
Statement: Many auxiliary medium and high pressure pump systems installed on apparatus either separate or chassis engine drive do not have rating labels on the the pump operators panel. The only way to know the capacity of the auxiliary system without looking at the specifications.
HIGH PRESSURE PUMP RELIEF VALVES

The high pressure pump system shall have an automatic discharge pressure relief valve that will be preset at or below the maximum discharge pressure setting. This relief valve system shall discharge to atmosphere and be directed away from the pump operators position.

The high pressure pump system shall also be equipped with a thermal relief valve system that will automatically dump water from the pump above 160 degrees F to atmosphere.

Statement of Problem and Substantiation for Public Comment

High pressure pump systems need an adjustable spring type preset relief valve to prevent accidental over pressure of the pump system, most high pressure pump systems have these. Also the chance of rapid pump overheating in small capacity/high pressure pumps due to the size of the pump and pressures it operates at often with little throttle increase. Therefore an automatic thermal relief valve system that dumps to atmosphere is required.

Related Item
Committee Input No. 237-NFPA 1901-2013 [Chapter 17]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICES
Street Address:
City:
State:
Zip:
Submittal Date: Mon Mar 03 00:59:59 EST 2014

Committee Statement

Committee Action: Rejected
Resolution: See SR-71 in section new 17.6.6 and 17.6.7, and see SR-72 in section 17.8.7
Public Comment No. 46-NFPA 1901-2014 [Section No. 17.11.1 [Excluding any Sub-Sections]]

A master discharge pressure gauge shall be provided for medium and high pressure pump systems that is a separate master pressure gauge from the main normal pressure pump system master pressure gauge.

Statement of Problem and Substantiation for Public Comment

Many high pressure pump systems are installed on apparatus that have rated normal pressure pumps. Some of these are capable of operating normal and high pressure simultaneously. A separate high pressure pump system master gauge should be supplied. Many apparatus only have the booster reel or turret pressure gauge to indicate the pressure of the high pressure system.

Related Item
Committee Input No. 237-NFPA 1901-2013 [Chapter 17]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICES
Street Address:
City:
State:
Zip:
Submittal Date: Mon Mar 03 01:12:17 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-73-NFPA 1901-2014
Statement: This clarifies that the pressure gauge is for the auxiliary pump.
Public Comment No. 9-NFPA 1901-2014 [Section No. 19.2.11 [Excluding any Sub-Sections]]

The apparatus shall be equipped with steps that meet the skid resistance requirements of 15.7.4 and/or rungs, either of which provides a path at any degree of elevation from the bottom rung of the aerial ladder to the ground.

Statement of Problem and Substantiation for Public Comment

The path could be all rungs, all steps, or a combination of both. The suggested language is more accurate if there are some of each.

Related Item

Public Input No. 70-NFPA 1901-2013 [Section No. 19.2.11 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 20 17:30:54 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-1-NFPA 1901-2014
Statement: The path could be all rungs, all steps, or a combination of both. The suggested language is more accurate if there are some of each.
The rated capacity of the aerial ladder shall be a minimum load of 250 lb (114 kg) carried on the outermost rung of the outermost fly section with the aerial ladder placed in the horizontal position at maximum horizontal extension and with the stabilizers fully deployed.

For an aerial ladder whose control system is designed to prevent placing the minimum load beyond any point of defined stability, the rated capacity of the aerial ladder shall be a minimum load of 250 lb (114 kg) carried on the outermost rung of the outermost fly section with the aerial ladder placed in any position allowed by the manufacturer’s defined operating envelope and with the stabilizers fully deployed.

Statement of Problem and Substantiation for Public Comment

I agree with the previous submitter from UL, the current text does not properly address aerials that use envelope controls to meet the minimum load rating when stabilizers are not fully deployed. Several manufacturers currently offer envelope controls that allow the aerial device to operate with the minimum rated load with the stabilizers not fully deployed the standard needs to address this technology to ensure firefighter safety.

Related Item

Public Input No. 436-NFPA 1901-2013 [New Section after 19.3.1]

Submitter Information Verification

Submitter Full Name: Paul Prevost
Organization: Clearwater Regional Fire Rescue Services
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 30 22:09:59 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The ratings of an aerial device with envelope controls are adequately covered by the current language, and are further clarified by the testing requirements for testing envelope controlled devices in the following sections: 19.24.2.4 Systems that allow the aerial device to be operated over the side with the stabilizers not fully deployed shall be tested in three positions: (1) Stabilizers at the minimum extension as defined by the manufacturer (2) Stabilizers extended to midpoint of the minimum extension and full extension (3) Stabilizers fully deployed 19.24.2.5.1 For aerial devices that have computer controlled or electronically controlled limitations to the range of aerial movement, a test as defined by the manufacturer shall be performed to validate the proper operation of the control system.
19.18.6
A spotlight of not less than 75,000 beam cp (75,000 lumens per steradian) or a floodlight with a total luminous flux of not less than 10,500 lumens shall be provided on the apparatus by which the operator shall be able to observe the effect of the stream from the ladder pipe or monitor nozzle.

19.18.6.1
For diode based lighting instruments, total luminous flux measurement must be attained through measurement using either a Goniophotometer or an integrating sphere. Measurement must be taken after the diodes have reached their operating temperature; typically no less than 2 hours after the fixture is powered on.

Statement of Problem and Substantiation for Public Comment

19.18.6 outlines a specified value without qualifying how that value is to be measured. Using a qualified spectrometry report summary is the only accurate way to ensure a fixture meets or exceeds the required light output requirements set forth in section 19.18.6. Lumens can not simple be measured like Lux can with a handheld meter. While a definition of “lumens” is needed, more importantly a clarification as to how “lumens” are to be measured is needed in this section. 13.10.2.1 and other lighting sections of 1901 each rely on a spec based on a measurable value.

Currently in the Fire/Rescue industry manufacturers often advertise misleading rating scales. Of 3 independently tested “15,000 lumen” LED scene lights by 3 different manufacturers, photometrically verified luminous flux ranged from 4,200 to 10,500 lumens with NONE of the manufacturers meeting their advertised “lumen” output. Therefore, it can be assumed that to date, none of the current NFPA qualified Ariel devices using LED solutions meet the spec as written.

If adopted, 10,500 effective lumens may indeed prove to be more light than is required to do the job of illuminating the water stream. It would be my recommendation to adjust that value to something between 5,500 and 6,500 effective lumens.

“Total luminous flux” is commonly referred (in other industries) to as “effective lumens” while the calculated and misleading “lumens” most fire market manufacturers use today is commonly referred to as “RAW lumens.” The global mining lighting market has made the shift to using effective lumens in specs so as to ensure data is measurable and replaceable in the event that the data were ever called in to question.

Note: Supporting material is available for review at NFPA Headquarters.

Related Item
First Revision No. 209-NFPA 1901-2013 [Section No. 13.10.1.1]
First Revision No. 210-NFPA 1901-2013 [Section No. 13.10.2.1]

Submitter Information Verification

Submitter Full Name: Sam Massa
Organization: HiViz LED Lighting
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 11:57:52 EDT 2014
<table>
<thead>
<tr>
<th>Committee Action:</th>
<th>Rejected but see related SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td>SR-50-NFPA 1901-2014</td>
</tr>
<tr>
<td>Statement:</td>
<td>4000 lumens is typical for 500 watt floodlight. Reducing minimum to 4,000 based on testing allows for less risk of an acceptable light failing the testing of a specific sample. There are apparently problems with the actual light output of some lights. Defining the testing process and making the data available levels the playing field for all manufacturers and defines the numbers being published. Generally light manufacturers have the capability to do this testing internally at minimal cost. Revise text and add new annex A material as seen in attachment A.19.18.6.1.</td>
</tr>
</tbody>
</table>
19.23.1.2
Safety signs warning of hazards that are substantially similar to the following found in FAMA TC010, *Standard Product Safety Sign Catalog for Automotive Fire Apparatus*, shall be provided where applicable:

1. FAMA 25 (Training Required): One sign visible to the operator at the main aerial controls
2. FAMA 30 (Stabilizer Crush): One sign visible to personnel near each stabilizer and one sign at the stabilizer deployment control(s)
3. FAMA 31 (Stabilizers with Pins) or FAMA 32 (Stabilizers without Pins): One sign in a location visible to personnel at the stabilizer deployment control(s)
4. FAMA 34 (Fall Restraint Required): One sign in a location visible to personnel at the base of any aerial device with a ladder capable of being climbed and one sign visible to personnel in any aerial platform
5. FAMA 35 (Electrocution): One sign in a location visible to the aerial operator and one sign in a location visible to the pump operator
6. FAMA 36 (Electrocution): One sign on each side of the vehicle and one sign on the back
7. FAMA 37 (Aerial Device Load Capacity): One sign visible to operators at any location where the aerial can be controlled
8. FAMA 38 (Aerial Ladder Rung Pinch): One sign visible to operators at any location where the aerial can be controlled
9. FAMA 38, 39 (Aerial Inspection and Maintenance): One sign visible to the operator at the main aerial controls

Statement of Problem and Substantiation for Public Comment

Typo in the original Public Input. FAMA 39 is the Aerial Inspection label.

Related Item
First Revision No. 132-NFPA 1901-2013 [Section No. 19.23.1.2]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 16:42:34 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-51-NFPA 1901-2014
Statement: Eliminates the use of the phrase “substantially similar”, and cleans up the wording to avoid repeating the source of the artwork for every instance. Also adding FAMA 46 and FAMA 47. FAMA 46: There are significant pinch hazards created between the ladder sections when the device is first extended and again when the device is nearing complete retraction. The FAMA 46 sign is intended to remind personnel of these hazards who may be standing on the turntable while the device is being operated.
FAMA 47: A recent fatal LODD reinforced the need to always have an operator at the primary controls of a device any time it is in operation or any time personnel are climbing or riding on the device. The primary operator must be ready to remove personnel from danger if the secondary operator become incapacitated or there are dangers present. FAMA 47 is intended to remind operators of this essential element of aerial device safety.
20.6.3.4
The fill tower shall be arranged so that foam concentrate from a standard container [5 gal (19 L) up to 6.6 gal (25 L)] can be poured directly into the tank without the use of funnels or other special devices.

Statement of Problem and Substantiation for Public Comment

In the US, the standard foam container is 5 gal, not 6.6 gal. In other countries, the corresponding containers are 19, 20, or 25 L.

Related Item
Public Input No. 73-NFPA 1901-2013 [Section No. 20.6.3.3]

Submitter Information Verification
Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 20 17:43:08 EST 2014

Committee Statement
Committee Action: Rejected but see related SR
Resolution: SR-35-NFPA 1901-2014
Statement: These changes provide enough information for the purpose of pouring buckets of foam.
Public Comment No. 11-NFPA 1901-2014 [Section No. 21.9.1.1.1]

21.9.1.1.1*

The compressed air system shall be operated at its flow capacity at a minimum gauge pressure of 125 psi (862 kPa), and the water pump shall discharge a minimum of 2 gpm (7.6250 L/min) of water at 125 psi (862 kPa) net pump pressure for every 1 SCFM (28.3 L/min at standard temperature and pressure) of compressed air discharge.

Statement of Problem and Substantiation for Public Comment

Air discharge from as CAF system in metric is measured in SCMM per 21.2.2.1. This change corrects the units while providing the same ratio of air to water as the US units.

Related Item

First Revision No. 201-NFPA 1901-2013 [Section No. 21.2.2.1]

Submitter Information Verification

- **Submitter Full Name:** Thomas Stalnaker
- **Organization:** Goshen Fire Company
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Thu Feb 20 18:24:09 EST 2014

Committee Statement

- **Committee Action:** Rejected but see related SR
- **Resolution:** SR-36-NFPA 1901-2014
- **Statement:** Separating English and metric statements since they are not equivalent and to make easily understood. Revise annex A material as seen in attachment A.21.9.1.1.1 to be consistent.
23.11.3 Computer Electrical Outlets. 23.11.3.1

Electrical outlets specifically for computer use, whether low voltage or line voltage, shall be marked with a label for their intended usage and power output.

Statement of Problem and Substantiation for Public Comment

PI 79, PI 390, FR 60 eliminated 23.11.3.2 so the sub section number 23.11.3.1 is not needed.

Related Item
First Revision No. 60-NFPA 1901-2013 [Section No. 23.11.3.2]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 09:14:50 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-37-NFPA 1901-2014
| All exposed piping compressed air lines shall be clamped to a rigid body or chassis component at a minimum of every 24 in. (610 mm) and within 6 in. (152 mm) on each side of a coupling or elbow. |

Statement of Problem and Substantiation for Public Comment

Correct the precision of SI conversion consistent with the NFPA Manual of Style.

Related Item

First Revision No. 157-NFPA 1901-2013 [Section No. 24.2.7.9]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 09:27:05 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-38-NFPA 1901-2014
Statement: Correct the precision of SI conversion consistent with the NFPA Manual of Style.
24.5.3
Air tanks shall be permanently stamped or identified in accordance with DOT or ASME regulations.

Statement of Problem and Substantiation for Public Comment

This paragraph appears to duplicate the information included in 24.5.1.2. If there is in fact a difference between the two, it should be made more clear.

Related Item
Public Input No. 350-NFPA 1901-2013 [Section No. 24.5.1.2]

Submitter Information Verification

Submitter Full Name: William Proft
Organization: Pierce Manufacturing
Affiliation: Manufacturer of Fire Apparatus
Street Address:
City:
State:
Zip:
Submittal Date: Wed Apr 23 12:10:22 EDT 2014

Committee Statement

Committee Action: Accepted
Statement: This paragraph appears to duplicate the information included in 24.5.1.2. If there is in fact a difference between the two, it should be made more clear.
24.9.6.3
All tests shall be witnessed and the test results certified by an independent third-party certification organization, a nationally recognized testing laboratory. The fill station / fill enclosure shall be listed (NFPA 1901 3.2.4) and shall be labeled (NFPA 1901 3.2.3) indicating compliance with this standard (NFPA 1901 24.9.6.1).

Statement of Problem and Substantiation for Public Comment

The reasoning behind this request for this insertion is that a certificate based on just a one-time rupture test of a prototype device is technically insufficient and risks subjecting operators to severe injuries including dismemberment and death as a result of degrading manufacturing processes after the initial prototype rupture test. The listed and labeled requirement by a nationally recognized testing laboratory is more in keeping with established NFPA definitions and would not result in misinterpretation and/or an "open interpretation".

Related Item
First Revision No. 166-NFPA 1901-2013 [Section No. 24.9.7.1.1]

Submitter Information Verification

Submitter Full Name: GEORGE MARPLE
Organization: EAGLE COMPRESSORS
Street Address:
City:
State:
Zip:
Submittal Date: Mon May 12 14:21:45 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The submitter has not provided the criteria for a nationally recognized testing laboratory while section 4.7 of NFPA 1901 adequately defines the requirements for an independent third-party certification organization.
Public Comment No. 125-NFPA 1901-2014 [Section No. 26.10.4.5]

26.10.4.5
For trailers using electric or hydraulic brakes or small trailers without brakes, the umbilical cable for the federally required lighting and brake system shall be connected using a seven-wire heavy duty cable and a seven-way flat blade recreational vehicle connector meeting SAE J2863, Automotive Trailer Tow Connector.

Statement of Problem and Substantiation for Public Comment

The standard for the seven-way flat blade recreational connector was released as under SAE document J2863 in 2010. Since this standard references it without the SAE designation, it should be updated accordingly.

Related Item
First Revision No. 44-NFPA 1901-2013 [Section No. 26.10.4.5]

Submitter Information Verification

- **Submitter Full Name:** Neil Bjornstad
- **Organization:** Pierce Mfg. Inc.
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Tue May 13 15:15:44 EDT 2014

Committee Statement

- **Committee Action:** Rejected but see related SR
- **Resolution:** SR-40-NFPA 1901-2014
- **Statement:** The standard for the seven-way flat blade recreational connector was released as under SAE document J2863 in 2010. Since this standard references it without the SAE designation, it should be updated accordingly.
28.2.1* An ultra-high pressure fire pump shall have a minimum rated capacity of 6 gpm (25 L/min) and shall have a rated discharge pressure greater than or equal to 1100 psi (7600 kPa).

Statement of Problem and Substantiation for Public Comment

6 gpm is too low for effective fire suppression, even at 1100 psi.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 20:04:35 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: There known units that operate at this rated capacity and rated discharge pressure, and the suggested language could limit the marketplace.
Public Comment No. 15-NFPA 1901-2014 [Section No. 28.2.3]

28.2.3
If the completed pumping system is capable of taking suction, it shall do so within 30 seconds under the following conditions:

1. At an altitude of 2000 ft (600 m) above sea level
2. Through 10 ft (3 m) of suction hose of the size specified in Table 28.2.3 and equipped with a suction hose strainer
3. With a lift of 3 ft (1 m)
4. At 29.9 in. Hg (101 kPa) atmospheric pressure (corrected to sea level)
5. At a water temperature of 60°F (16°C)

<table>
<thead>
<tr>
<th>Flow Rate</th>
<th>Suction Hose Size</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpm</td>
<td>L/min</td>
<td>in.</td>
</tr>
<tr>
<td>20 and less</td>
<td>80 or less</td>
<td>1 25</td>
</tr>
<tr>
<td>30</td>
<td>120</td>
<td>1 1/2 38</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
<td>2 51</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
<td>2 1/2 65</td>
</tr>
<tr>
<td>150</td>
<td>600</td>
<td>2 1/2 65</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
<td>2 1/2 75</td>
</tr>
<tr>
<td>250</td>
<td>1000</td>
<td>3 75</td>
</tr>
<tr>
<td>300</td>
<td>1200</td>
<td>3 75</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment
Throughout this document, the equivalency of 1 gpm to 4 Lpm is used, and the same should be used here.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification
- **Submitter Full Name:** Thomas Stalnaker
- **Organization:** Goshen Fire Company
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Fri Feb 21 09:45:26 EST 2014

Committee Statement
- **Committee Action:** Rejected but see related SR
<table>
<thead>
<tr>
<th>Resolution:</th>
<th>SR-80-NFPA 1901-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement:</td>
<td>Throughout this document, the equivalency of 1 gpm to 4 Lpm is used, and the same should be used here. Revise Table 28.2.3 as seen in attachment Table 28.2.3.</td>
</tr>
</tbody>
</table>
28.2.3

If the completed pumping system is capable of taking suction, it shall do so within 30 seconds under the following conditions:

1. At an altitude of 2000 ft (600 m) above sea level
2. Through 10 ft (3 m) of suction hose of the size specified in Table 28.2.3 and equipped with a suction hose strainer
3. With a lift of 3 ft (1 m)
4. At 29.9 in. Hg (101 kPa) atmospheric pressure (corrected to sea level)
5. At a water temperature of 60°F (16°C)

Table 28.2.3 suction hose size by rated capacity

<table>
<thead>
<tr>
<th>Flow Rate</th>
<th>Minimum Suction Hose Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpm</td>
<td>L/min</td>
</tr>
<tr>
<td>20 and less</td>
<td>75</td>
</tr>
<tr>
<td>30</td>
<td>115</td>
</tr>
<tr>
<td>50</td>
<td>190</td>
</tr>
<tr>
<td>100</td>
<td>375</td>
</tr>
<tr>
<td>150</td>
<td>568</td>
</tr>
<tr>
<td>200</td>
<td>750</td>
</tr>
<tr>
<td>250</td>
<td>950</td>
</tr>
<tr>
<td>300</td>
<td>1100</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

There should be no requirement that precludes using a larger hose.

Related Item
Public Input No. 156-NFPA 1901-2013 [New Section after 21.4.2]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 15:53:02 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-80-NFPA 1901-2014
Statement: Throughout this document, the equivalency of 1 gpm to 4 Lpm is used, and the same should be used here. Revise Table 28.2.3 as seen in attachment Table 28.2.3.
Public Comment No. 157-NFPA 1901-2014 [Section No. 28.2.4]

28.2.4*
The pump manufacturer shall certify for each ultra-high pressure fire pump the rated capacity in gpm (L/min), rated discharge pressure in psi (kPa) and Net Positive Suction Head Required (NPSHR) in ft (m) of water at 60°F (16°C) and 29.9 in. Hg (101 kPa) atmospheric pressure (corrected to sea level) for an elevation up to 2000 feet.

Statement of Problem and Substantiation for Public Comment

Without defining elevation, NPSHR cannot be defined.

Related Item
Public Input No. 157-NFPA 1901-2013 [Section No. 9.4]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 15:57:14 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-81-NFPA 1901-2014
Statement: Without defining elevation, NPSHR cannot be defined.
28.2.5.2
The requirements of 28.2.5.1 shall be met with all intake valves open, with all intakes capped or plugged, with all discharge caps removed and valves closed, and without the use of the pump primer during the 5-minute period.

Statement of Problem and Substantiation for Public Comment

Clarification.

Related Item
Public Input No. 158-NFPA 1901-2013 [New Section after 4.10.4]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:00:44 EDT 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-41-NFPA 1901-2014
Statement: Clarification.
Section 28.4.1
The pump body, discharge piping excluding tank fill line, pump intake and associated intake plumbing and valves shall be capable of withstanding a minimum hydrostatic pressure of 1.4 times the rated discharge pressure.

Statement of Problem and Substantiation for Public Comment
Some pumps utilized in UHP applications have a lower pressure intake and should never see the pressures that are on the high pressure side.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification
Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Wed May 14 17:28:34 EDT 2014

Committee Statement
Committee Action: Rejected but see related SR
Resolution: SR-82-NFPA 1901-2014
Statement: The addition of this section provides criteria for the pump intake and associated plumbing and valves so that they are not withstanding 1.4 times the discharge pressure. Revise text as shown, add new section, and renumber accordingly.
If the pump body is subjected to a hydrostatic test, it shall be hydrostatically tested to a gauge pressure of 1.4 times the rated discharge pressure for a minimum of 10–15 minutes.

Statement of Problem and Substantiation for Public Comment

NFPA 414 requires a 15 minute hydrostatic test.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:16:03 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: This was voluntarily withdrawn by submitter Doug Kelley.
Public Comment No. 137-NFPA 1901-2014 [Section No. 28.4.3.1]

28.4.3.1
If the pump body is subjected to a hydrostatic test, it shall be hydrostatically tested to a gauge pressure of 1.4 times the rated discharge pressure for a minimum of 10 minutes, excluding the pump intake, which is not subjected to discharge pressures.

Statement of Problem and Substantiation for Public Comment

Triplex piston pump has a low pressure and a high pressure side; the low pressure side should not be subjected to high pressure testing.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 18:21:28 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: This test is required for the pump body only.
28.4.3.2
If the pump body is subjected to a hydrodynamic test, it shall be hydrodynamically tested to a gauge pressure of 1.4 times the rated discharge pressure for a minimum of 15 minutes.

Statement of Problem and Substantiation for Public Comment

NFPA 414 requires a 15 minute hydrostatic test.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:17:27 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: This was voluntarily withdrawn by submitter Doug Kelley.
Title of New Content: Intake Strainer (Piston type UHPS pump)
Type your content here ...If the Ultra High Pressure Pump is a piston type pump, it shall have an in-line "Y" type corrosion resistant strainer. The strainer shall be easily accessible for cleaning.

Statement of Problem and Substantiation for Public Comment

many UHPS pumps are piston type pumps, these pumps are sensitive to debris in the intake water. Typically these pumps should have an in-line "Y" type strainer that is easily accessible for frequent service.

Related Item
Public Input No. 242-NFPA 1901-2013 [Section No. 14.1.3.10]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE
Street Address:
City:
State:
Zip:
Submittal Date: Mon Feb 24 23:36:52 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-84-NFPA 1901-2014
Statement: This requirement helps to prevent debris from entering the pump.
28.5.3.2
Each external valved intake larger than 1-1/2" shall be equipped with a bleeder valve to bleed off air or water from a hose connected to the intake.

Statement of Problem and Substantiation for Public Comment

This will match the intake requirements for regular pumps. Only larger intakes require bleeder valves.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:08:16 EDT 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-42-NFPA 1901-2014
Statement: This will match the intake requirements for regular pumps. Only larger intakes require bleeder valves.
TITLE OF NEW CONTENT
Type your content here ...
The pump system discharge manifold shall be equipped with a "Start/Run" valve that will bypass the normal operating discharge system and primary pressure valve. This "start/Run" valve shall divert water flow from the pump discharge to atmosphere or the tank providing easy starting of the pump engine or drive system and avoiding pressure build up in the discharge manifold until it is needed for operation.

Statement of Problem and Substantiation for Public Comment

Most small UHP systems provide a valve on the control panel to allow starting without building discharge pressure against the normal pressure operating valve. This is usually identified as a "Start/Run" valve. This valve facilitates starting or engaging the UHP system pump without a "load" from the pressure build up in the discharge manifold. The discharge stream from this valve can be discharged to atmosphere or to water tank to provide circulation in cold weather operations.

Related Item
Public Input No. 242-NFPA 1901-2013 [Section No. 14.1.3.10]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 27 00:28:07 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-85-NFPA 1901-2014
Statement: Most small UHP systems provide a valve on the control panel to allow starting without building discharge pressure in the pump system. Add new annex A material as seen in attachment A.28.8.1
Public Comment No. 138-NFPA 1901-2014 [Section No. 28.6.1]

28.6.1*
Each pump discharge shall be equipped with a valve that can be controlled from the pump operator's position.

Statement of Problem and Substantiation for Public Comment

What about the bumper turret? It does not make sense to control that from the pump panel. Also systems with auto-throttle and low water shutdown do not require a pump panel operator so it does not make sense to open/close valves at the pump panel. For a handline, why can't a valve be located at the hose reel?

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 18:36:26 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-86-NFPA 1901-2014
Statement: The addition of this language clarifies that discharges such as turrets can be operated from the cab pump operator's position only. Revise annex A material as seen in attachment A.28.6.1.
28.6.5
All preconnected hose connections and preconnected hoses shall be capable of withstanding a hydrostatic
gauge pressure of 1.4 times the maximum pump close-off maximum discharge pressure.

Statement of Problem and Substantiation for Public Comment

What is the maximum pump close-off pressure? It would seems that a system should be able to hold up to the
maximum discharge pressure, which is value that will be known.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 18:42:53 EDT 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-43-NFPA 1901-2014
Statement: The system should be able to hold up to the maximum discharge pressure, which is value that
will be known.
Public Comment No. 107-NFPA 1901-2014 [Section No. 28.6.7]

28.6.7 –
All 1-\(\frac{1}{2}\) in. (38 mm) or larger discharge outlets shall be equipped with a drain or bleeder valve having a minimum 3/4 in. (19 mm) pipe thread connection for draining or bleeding off pressure from a hose connected to the outlet.

Statement of Problem and Substantiation for Public Comment

UHP systems do not have handline outlets larger than 1” because the flow rates at high pressure would be too large to control. These hoses are more like hydraulic lines than traditional fire hoses, so bleeder valves are not recommended.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:18:28 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-44-NFPA 1901-2014
Statement: UHP systems do not have handline outlets larger than 1” because the flow rates at high pressure would be too large to control. These hoses are more like hydraulic lines than traditional fire hoses, so bleeder valves are not recommended.
28.6.7

All 1.4 in. (38 mm) or larger discharge outlets shall be equipped with a drain or bleeder valve having a minimum 3/4 in. (19 mm) pipe thread connection for draining or bleeding off pressure from a hose connected to the outlet.

Statement of Problem and Substantiation for Public Comment

UHP line of 1 1/2" are not practical, and bleading these line will be unsafe

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Gary Handwerk
Organization: handwerk consulting services
Street Address:
City:
State:
Zip:
Submittal Date: Wed May 14 11:22:46 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-44-NFPA 1901-2014
Statement: UHP systems do not have handline outlets larger than 1" because the flow rates at high pressure would be too large to control. These hoses are more like hydraulic lines than traditional fire hoses, so bleeder valves are not recommended.
Public Comment No. 16-NFPA 1901-2014 [Section No. 28.6.7]

28.6.7
All 1 ½ in. (38 mm) or larger discharge outlets shall be equipped with a drain or bleeder valve having a minimum ¾ in. (19.20 mm) pipe thread connection for draining or bleeding off pressure from a hose connected to the outlet.

Statement of Problem and Substantiation for Public Comment

There is no "19 mm pipe thread". The closest nominal size is 20 mm. All pipe sizes are nominal (name) sizes and not an exact dimension.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 10:14:31 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-44-NFPA 1901-2014
Statement: UHP systems do not have handline outlets larger than 1" because the flow rates at high pressure would be too large to control. These hoses are more like hydraulic lines than traditional fire hoses, so bleeder valves are not recommended.
TITLE OF NEW CONTENT Hose reel discharge air blowout provision

Type your content here ...If the UHP system is equipped with one or more hose reel discharges, an air blowout provision shall be provided for the reel hoses to facilitate draining water in cold weather. This air blowout shall be either from chassis air supply or a separate external inlet. This air blowout shall be provided with a manual operated valve and a check valve to prevent water from entering the chassis or external air supply.

Statement of Problem and Substantiation for Public Comment

Getting the water out of these UHP hose reels is often problematic especially as most of them currently in service are small diameter hydraulic type hose with quick connect fittings that prevent easy draining. These hoses are very susceptible to freeze damage. This damage can be unperceived and dangerous if they burst in use. The only way to assure complete drainage is to equip them with an air blowout connection from either chassis air or external air sources. This requires a valve to operate and a check valve to prevent inadvertent water entry into the air supply especially since the high water pressure would be capable of damaging most air supply systems.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICES
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 02 20:11:59 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-87-NFPA 1901-2014
Statement: Delete section. UHP hose is more like hydraulic hose and must be preconnected to for a tight connection. Bleeder valves are prone to leakage and are not recommended.
Annex A material associated with 28.6.10 will now be associated with 28.8.6.1.
Renumber annex A material accordingly and edit as shown in attachment A.28.6.1.
Public Comment No. 108-NFPA 1901-2014 [Section No. 28.6.10]

Statement of Problem and Substantiation for Public Comment

UHP hose is more like hydraulic hose and must be preconnected to for a tight connection. Bleeder valves are prone to leakage and are not recommended.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:20:51 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-87-NFPA 1901-2014
Statement: Delete section. UHP hose is more like hydraulic hose and must be preconnected to for a tight connection. Bleeder valves are prone to leakage and are not recommended.

Annex A material associated with 28.6.10 will now be associated with 28.8.6.1.

Renumber annex A material accordingly and edit as shown in attachment A.28.6.1.
Public Comment No. 159-NFPA 1901-2014 [Section No. 28.6.10]

28.6.10*
All 1 -1/2 in. (25.38 mm) or larger discharge outlets, except outlets to which a hose will be preconnected, shall be equipped with a drain or bleeder valve for draining or bleeding off pressure connected to the outlet.

Statement of Problem and Substantiation for Public Comment

Matches 28.6.7. This appears redundant, except for the preconnected hose clause.

Related Item
Public Input No. 159-NFPA 1901-2013 [Section No. 4.13.1.3.2]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:03:40 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-87-NFPA 1901-2014
Statement: Delete section. UHP hose is more like hydraulic hose and must be preconnected to for a tight connection. Bleeder valves are prone to leakage and are not recommended.

Annex A material associated with 28.6.10 will now be associated with 28.8.6.1.

Renumber annex A material accordingly and edit as shown in attachment A.28.6.1.
Public Comment No. 28-NFPA 1901-2014 [Section No. 28.7.3]

28.7.3
One safety sign warning of the need for training prior to operating the apparatus that is substantially similar to FAMA2, FAMA20 from FAMA TC010, Standard Product Safety Sign Catalog for Automotive Fire Apparatus, shall be located on the pump operator’s panel.

Statement of Problem and Substantiation for Public Comment

One digit got lost, making the reference incorrect. Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 15:54:28 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-88-NFPA 1901-2014
Statement: Clarifies unenforceable language and incorporates correct FAMA symbol reference.
28.8.3 Parallel/Series Control.

28.8.3.1 With parallel/series pumps, the positions for parallel operation (volume) and series operation (pressure) shall be indicated.

28.8.3.2 The control for changing the pump from series to parallel and vice versa shall be located on the pump operator's panel.

Statement of Problem and Substantiation for Public Comment

This section is not relevant to an Ultra High Pressure pump. For positive displacement pump (most UHP systems), series connection would not help, although parallel systems are occasionally used for increased volume capacity. For centrifugal UHP pumps, series connections are often used to achieve UHP, but a parallel connection of these same pumps would no longer be a UHP pump. Series connections of 2 centrifugal UHP pumps would produce such a high pressure that a completely different system would be required and would not be practical.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 16:09:35 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-45-NFPA 1901-2014
Statement: Delete section. This section is not relevant to an Ultra High Pressure pump. For positive displacement pump (most UHP systems), series connection would not help, although parallel systems are occasionally used for increased volume capacity. For centrifugal UHP pumps, series connections are often used to achieve UHP, but a parallel connection of these same pumps would no longer be a UHP pump. Series connections of 2 centrifugal UHP pumps would produce such a high pressure that a completely different system would be required and would not be practical.
Public Comment No. 39-NFPA 1901-2014 [New Section after 28.8.7]

TITLE OF NEW CONTENT Freeze prevention provisions
Type your content here ... If the ultra high pressure system pump is a positive displacement type and therefore unable to be easily drained, the system shall have provisions provided for the eduction of Anti freeze fluid to be siphoned into the water and foam portions of the system from the pump operators position.

Statement of Problem and Substantiation for Public Comment

Freeze protection for UHP systems is a very significant issue field, with many services experiencing down time and costs incurred due to freeze ups. Many of these pumps are piston type positive displacement pumps that cannot be easily drained. Therefore the typical arrangement is to put a separate intake with valve and pick up tube for educting either low temp windshield washer fluid or RV winterization antifreeze into the pump system. Also on many of these systems the foam system is an ATP system and this system also have to be filled with antifreeze fluid to prevent freezing.

Related Item
Public Input No. 61-NFPA 1901-2013 [Section No. 16.13.2.3.5.3]

Submitter Information Verification

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 02 19:21:32 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-87-NFPA 1901-2014
Statement: Delete section. UHP hose is more like hydraulic hose and must be preconnected to for a tight connection. Bleeder valves are prone to leakage and are not recommended.

Annex A material associated with 28.6.10 will now be associated with 28.8.6.1.
Renumber annex A material accordingly and edit as shown in attachment A.28.6.1.
28.8.7
A pump cooling/recirculation line of sufficient size to prevent the pump from overheating when no discharge lines are open shall be provided between the pump discharge and the water tank. When the pump is of a positive displacement type an automatic bypass relief valve will be provided in place of the recirculation line.

Statement of Problem and Substantiation for Public Comment

recirculation line is good for centrifugal pumps, for positive displacement pumps an automatic bypass relief valve is required

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Gary Handwerk
Organization: handwerk consulting services
Street Address:
City:
State:
Zip:
Submittal Date: Wed May 14 11:32:38 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-89-NFPA 1901-2014
Statement: A recirculation line is good for centrifugal pumps, for positive displacement pumps an automatic bypass relief valve is required.
PUBLIC COMMENT NO. 40-NFPA 1901-2014 [NEW SECTION AFTER 28.9.3]

TITLE OF NEW CONTENT Anti cavitation system

Type your content here ... The pump engine will be equipped with a system that senses pump discharge water pressure less than 30psi (200kpa) for more than two (2) minutes and shuts the engine off.

STATEMENT OF PROBLEM AND SUBSTANTIATION FOR PUBLIC COMMENT

These systems are often operated by minimally staffed crews without a pump operator attending the pump system at all times. Many of these systems are small and do not have engine governor controls with anti cavitation features. Typically the discharge pressure is controlled with the use of spring operated relief valves that return discharge water into intake. But there is a lack of anti cavitation control when the tank runs dry, piston type pumps are subject to significant damage if run out of water.

RELATED ITEM

FIRST REVISION NO. 242-NFPA 1901-2013 [NEW SECTION AFTER 26.11.3]

SUBMITTER INFORMATION VERIFICATION

Submitter Full Name: PAUL PREVOST
Organization: CLEARWATER REGIONAL FIRE RESCUE SERVICES
Street Address:
City:
State:
Zip:
Submittal Date: Sun Mar 02 19:50:06 EST 2014

COMMITTEE STATEMENT

Committee Action: Rejected but see related SR
Resolution: SR-90-NFPA 1901-2014
Statement: Add new annex A material as seen in attachment A.28.10. The new annex material provides useful guidance to avoid issues caused by the UHP system operating outside of established parameters.
Public Comment No. 18-NFPA 1901-2014 [Section No. 28.9.3]

28.9.3
If a separate pumping engine is provided, it shall meet the requirements of 12.2.1.1, 12.2.1.2, 12.2.1.7, 12.2.2, 12.2.3.1, 12.2.3.2, 12.2.4, 12.2.5, 12.2.6, 13.2, 13.4.3, 13.4.4, 13.4.4.1, 13.4.4.3, 13.4.4.4, 13.4.5, and 13.5.

Statement of Problem and Substantiation for Public Comment

12.2.6 Exhaust Systems is included in the requirements in chapter 17 for separate pumping engines and is applicable here as well.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 12:06:47 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-46-NFPA 1901-2014
Statement: 12.2.6 Exhaust Systems is included in the requirements in chapter 17 for separate pumping engines and is applicable here as well.
28.11 Gauges and Instruments.

28.11.1 Master Pump Discharge Pressure Gauge.
A master discharge pressure gauge shall be provided.

28.11.1.1 The master discharge pressure gauge shall read from a gauge pressure of 0 to not less than 500 psi (3500 kPa) higher than the maximum pressure that can be developed by the pump when it is operating with zero intake pressure.

28.11.1.2 Where an analog pressure gauge is used, it shall have a minimum accuracy of Grade 1A as defined in ASME B40.100, Pressure Gauges and Gauge Attachments.

28.11.1.2.1 Numerals for master gauges shall be a minimum 0.25 in. (6.4 mm) high.

28.11.1.2.2 There shall be graduation lines showing at least every 50 psi (700 kPa), with major and intermediate graduation lines emphasized and figures at least every 500 psi (7000 kPa).

28.11.1.2.3 Analog pressure gauges shall be vibration and pressure pulsation dampened; be resistant to corrosion, condensation, and shock; and have internal mechanisms that are factory lubricated for the life of the gauge.

28.11.1.3 If a digital pressure gauge is used, the digits shall be at least 0.25 in. (6.4 mm) high.

28.11.1.3.1 Digital pressure gauges shall display pressure in increments of not more than 10 psi (70 kPa).

28.11.1.3.2 Digital master pressure gauges shall have an accuracy of ±3 percent over the full scale.

28.11.2 Discharge Outlet Instrumentation.

28.11.2.1 If the apparatus is equipped with two or more discharge outlets that are 1 1/2 in. (38 mm) or larger and that can be supplied only by the ultra-high pressure fire pump, these discharge outlets shall be equipped with pressure gauges or flowmeters.

28.11.2.2 The pressure gauge or flowmeter display shall be located adjacent to the corresponding valve control with no more than 6 in. (150 mm) separating the pressure gauge or flowmeter bezel and the valve control centerline.

28.11.2.3 Pressure gauges shall be connected to the outlet side of the valve.

28.11.2.4 Flowmeters shall display flow in increments not greater than 5 gpm (19 L/min).

28.11.2.4.1 Where an analog pressure gauge is used, the gauge shall have a minimum accuracy of Grade B as defined in ASME B40.100, Pressure Gauges and Gauge Attachments.

28.11.2.4.1 Numerals for gauges shall be a minimum 5/32 in. (4 mm) high.

28.11.2.4.2 There shall be graduation lines showing at least every 50 psi (700 kPa), with major and intermediate graduation lines emphasized and figures at least every 500 psi (7000 kPa).

28.11.2.4.3 Analog pressure gauges shall be vibration and pressure pulsation dampened; be resistant to corrosion, condensation, and shock; and have internal mechanisms that are factory lubricated for the life of the gauge.

28.11.2.5 If a digital pressure gauge is used, the digits shall be at least 0.25 in. (6.4 mm) high.
28.11.2.5.1 Digital pressure gauges shall display pressure in increments of not more than 10 psi (70 kPa).

28.11.2.5.2 Digital pressure gauges shall have an accuracy of ±3 percent over the full scale.

28.11.3 Protection of Gauges and Instruments.

Each pressure gauge or flowmeter and its respective display shall be mounted and attached so it is protected from accidental damage and excessive vibration.

28.11.4* Cab Gauges.

If the pump on the apparatus is driven by the chassis engine through a PTO, and the apparatus is designed for pump-and-roll operations using that chassis engine-driven pump, a second gauge that meets the same requirements as the discharge pressure gauge required by 28.11.1 shall be mounted in the driving compartment in view of the driver.

Statement of Problem and Substantiation for Public Comment

Pressure gauges are not manufactured with graduations of 7 or 35. They would be 1, 2, 5; times powers of 10. The numbers proposed are consistent with the numbers used in chapter 16.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 12:43:34 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-91-NFPA 1901-2014
Statement: Reason for change in 28.11.1.3.1, when working at pressures over 1000 psi, resolution to 10 psi is not needed. Delete 28.11.2 and subsets, UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1" because it would be very difficult to handle or control. Additional edits to 28.11.4, the driver should know what the pump is doing for any pump and roll operations. Delete 28.11.2 and subsets and renumber accordingly.
Public Comment No. 160-NFPA 1901-2014 [Section No. 28.11.1.3.1]

28.11.1.3.1
Digital pressure gauges shall display pressure in increments of not more than 10 psi (69 kPa).

Statement of Problem and Substantiation for Public Comment

When working at pressures over 1000 psi, resolution to 10 psi is not needed.

Related Item
Public Input No. 160-NFPA 1901-2013 [New Section after 4.14]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:08:17 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-91-NFPA 1901-2014
Statement: Reason for change in 28.11.1.3.1, when working at pressures over 1000 psi, resolution to 10 psi is not needed. Delete 28.11.2 and subsets, UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1” because it would be very difficult to handle or control. Additional edits to 28.11.4, the driver should know what the pump is doing for any pump and roll operations. Delete 28.11.2 and subsets and renumber accordingly.
If the apparatus is equipped with two or more discharge outlets that are 1.4/2 in. (38 mm) or larger and that can be supplied only by the ultra-high pressure fire pump, these discharge outlets shall be equipped with pressure gauges or flowmeters.

Statement of Problem and Substantiation for Public Comment

This requirement comes from traditional fire pumps to determine engine pressure for a specific line so you can determine nozzle pressure for each discharge. UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1" because it would be very difficult to handle or control.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:23:33 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-91-NFPA 1901-2014
Statement: Reason for change in 28.11.1.3.1, when working at pressures over 1000 psi, resolution to 10 psi is not needed. Delete 28.11.2 and subsets, UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1" because it would be very difficult to handle or control. Additional edits to 28.11.4, the driver should know what the pump is doing for any pump and roll operations. Delete 28.11.2 and subsets and renumber accordingly.
Public Comment No. 141-NFPA 1901-2014 [Section No. 28.11.2.2]

28.11.2.2
Pressure gauges shall be connected to the outlet side of the discharge valve.

Statement of Problem and Substantiation for Public Comment

clarification of the section

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 18:55:36 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-91-NFPA 1901-2014
Statement: Reason for change in 28.11.1.3.1, when working at pressures over 1000 psi, resolution to 10 psi is not needed. Delete 28.11.2 and subsets, UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1" because it would be very difficult to handle or control. Additional edits to 28.11.4, the driver should know what the pump is doing for any pump and roll operations. Delete 28.11.2 and subsets and renumber accordingly.
28.11.2.3
Flowmeters shall display flow in increments not greater than 5 gpm (19 L/min) for pumps up to 100 GPM and in increments of 10 GPM for larger pumps.

Statement of Problem and Substantiation for Public Comment

A 300 GPM pump doesn’t need to be within 5 GPM.

Related Item
Public Input No. 161-NFPA 1901-2013 [Section No. 4.15]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:11:43 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-91-NFPA 1901-2014
Statement: Reason for change in 28.11.1.3.1, when working at pressures over 1000 psi, resolution to 10 psi is not needed. Delete 28.11.2 and subsets, UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1” because it would be very difficult to handle or control. Additional edits to 28.11.4, the driver should know what the pump is doing for any pump and roll operations. Delete 28.11.2 and subsets and renumber accordingly.
28.11.2.5.1
Digital pressure gauges shall display pressure in increments of not more than 10.50 psi (70 kPa).

Statement of Problem and Substantiation for Public Comment

We don’t need this level of resolution when operating over 1000 psi.

Related Item
Public Input No. 162-NFPA 1901-2013 [Section No. 4.18]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:15:33 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-91-NFPA 1901-2014
Statement: Reason for change in 28.11.1.3.1, when working at pressures over 1000 psi, resolution to 10 psi is not needed. Delete 28.11.2 and subsets, UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1” because it would be very difficult to handle or control. Additional edits to 28.11.4, the driver should know what the pump is doing for any pump and roll operations. Delete 28.11.2 and subsets and renumber accordingly.
28.11.4* Cab Gauges.

If the pump on the apparatus is driven by the chassis engine through a PTO, or separate engine drive, and the apparatus is designed for pump-and-roll operations using that chassis engine-driven pump, or the separate engine driven pump, a second gauge that meets the same requirements as the discharge pressure gauge required by 28.11.1 shall be mounted in the driving compartment in view of the driver.

Statement of Problem and Substantiation for Public Comment

Separate engines are often used for pump and roll and the driver should know what that pump is doing.

Related Item

Public Input No. 163-NFPA 1901-2013 [Section No. 4.20.1]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address: City: State: Zip:
Submittal Date: Fri May 16 16:17:32 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-91-NFPA 1901-2014
Statement: Reason for change in 28.11.1.3.1, when working at pressures over 1000 psi, resolution to 10 psi is not needed. Delete 28.11.2 and subsets, UHP discharges are not throttled, so there is no need for individual line gauges. In addition, it is unlikely there would be a UHP handline larger than 1” because it would be very difficult to handle or control. Additional edits to 28.11.4, the driver should know what the pump is doing for any pump and roll operations. Delete 28.11.2 and subsets and renumber accordingly.
28.12 Required Testing.
28.12.1 Apparatus Pump System Certification.
28.12.1.1 General.
The UHP pump shall be tested after the pump and all its associated piping and equipment have been installed on the fire apparatus.

28.12.1.1.2 If the fire UHP pump is driven by the chassis engine, the engine speed advancement interlock test in 28.12.10 shall be included.

28.12.1.1.3 The test results shall be certified by the manufacturer.

28.12.1.2* Test Label.
28.12.1.2.1 A test label shall be provided at the pump operator’s position that gives the rated discharges and pressures and, if so equipped, the position of the parallel/series pump control.

28.12.1.2.2 If powered by an engine, the speed of the engine as determined by the certification test for each unit and the governed speed of the engine as stated by the engine manufacturer on a certified brake horsepower curve shall be provided on the test label.

28.12.1.2.3 The label shall be stamped with all information at the factory and attached to the vehicle prior to shipping.

28.12.2.1 Tests shall be performed when conditions are as follows:

(1) Air temperature: 0°F to 110°F (-18°C to 43°C)
(2) Water temperature: 35°F to 90°F (2°C to 32°C)
(3) Barometric pressure: 29 in. Hg (98.2 kPa), minimum (corrected to sea level)

28.12.2.2 If it is necessary to perform the test outside the air or water temperature ranges or the minimum barometric pressure stated in 28.12.2.1 and the pump passes the certification test, the test results shall be acceptable.

28.12.2.3 Engine-driven accessories shall not be functionally disconnected or otherwise rendered inoperative during the tests.

28.12.2.3.1 If the chassis engine drives the UHP pump, the total continuous electrical loads, excluding those loads associated with the equipment defined in 28.12.2.3.3, shall be applied for the entire pumping portion of this test.

28.12.2.3.2 If the vehicle is equipped with a fixed power source driven by the same engine that drives the ultra-high pressure fire pump, it shall be running at a minimum of 50 percent of its rated capacity throughout the pumping portion of the pump test.
28.12.2.3.3
The following devices shall be permitted to be turned off or not operating during the pump test:

(1) Foam pump
(2) Hydraulically driven equipment (other than hydraulically driven line voltage generator)
(3) Winch
(4) Windshield wipers
(5) Four-way hazard flashers
(6) Compressed air foam system (CAFS) compressor

28.12.2.3.4
All structural enclosures, such as floorboards, gratings, grilles, and heat shields not furnished with a means for opening them in normal service shall be kept in place during the tests.

28.12.3 Equipment.

28.12.3.1
One or more lines of fire hose of sufficient diameter shall be provided to allow discharge of the rated capacity of the pump without exceeding a flow velocity of 35 ft/sec (10.7 m/sec) through the hose.

28.12.3.2
Discharge rate shall be measured using equipment such as flowmeters, volumetric tanks, or weigh tanks.

28.12.3.3 Test Gauges.

28.12.3.3.1
All test gauges shall meet the requirements for Grade A gauges as defined in ASME B40.100 and shall be at least size $3\frac{1}{2}$ per ASME B40.100, *Pressure Gauges and Gauge Attachments*.

28.12.3.3.2
The pump intake gauge shall have a range of 30 in. Hg (100 kPa) vacuum to zero for a vacuum gauge or 30 in. Hg (100 kPa) vacuum to a gauge pressure of 150 psi (1000 kPa) for a compound gauge.

28.12.3.3.3
The discharge pressure gauge shall have a gauge pressure range of 0 psi (0 kPa) to not less than 500 psi (3500 kPa) over the rated pump discharge pressure.

28.12.3.3.4
All gauges shall have been calibrated in the year preceding the tests using a deadweight gauge tester or a master gauge meeting the requirements for Grade 3A or Grade 4A gauges, as defined in ASME B40.100, that has been calibrated within the preceding year.

28.12.3.3.5
Each test gauge connection shall include a means for snubbing, such as a needle valve to damp out rapid needle movements.

28.12.3.4
Speed-measuring equipment shall consist of a tachometer or other device for measuring revolutions per minute.

28.12.4 Procedure.

28.12.4.1*
The ambient air temperature, water temperature, elevation of test site, and atmospheric pressure (corrected to sea level) shall be determined and recorded prior to the pump test.

28.12.4.2*
The engine, pump, transmission, and all parts of the fire apparatus shall exhibit no undue heating, loss of power, overspeed, leaks, or other defect during the entire test.

28.12.5.1
The water tank–to–pump flow test shall be performed with water being supplied from the apparatus water tank to verify the rated capacity and rated discharge pressure capability of the apparatus.
28.12.5.2
The water tank–to–pump flow test shall be conducted as follows:

1. The apparatus shall be placed on level ground and the water tank filled until it overflows.
2. All intakes to the pump shall be closed.
3. The tank fill line shall be closed.
4. A hose line(s) and nozzle(s) for discharging water at the rated pump capacity flow rate shall be connected to one or more discharge outlets.
5. The water tank–to–pump valve(s) and the discharge valve(s) leading to the hose line(s) and nozzle(s) shall be opened.
6. The pumping system shall be operated and adjusted as required until the rated pump capacity flow rate, -0/± 5 percent, at the rated discharge pressure is established.
7. The discharge pressure shall be recorded.
8. The discharge valves shall be closed and the water tank refilled.
9. The bypass cooling line shall be permitted to be opened temporarily, if needed, to keep the water temperature in the pump within acceptable limits.
10. The discharge valves shall be reopened and the time noted.
11. If necessary, the pumping system shall be adjusted to maintain the discharge pressure recorded as noted in 28.12.5.2(6).
12. The pumping system shall be operated at these conditions for 30 minutes or the discharge pressure drops by 100 psi (700 kPa) or more, at which time the time shall be noted and the elapsed time from the opening of the discharge valves shall be calculated and recorded.

28.12.5.3 Volume Discharge Calculation.

28.12.5.3.1
The volume discharged shall be calculated by multiplying the rate of discharge in gallons per minute (liters per minute) by the time in minutes elapsed from the opening of the discharge valves until the discharge pressure drops by at least 100 psi (700 kPa).

28.12.5.3.2
Other means shall be permitted to be used to determine the volume of water pumped from the tank such as a totalizing flowmeter, weighing the truck before and after, or refilling the tank using a totalizing flowmeter.

28.12.5.3.3
The flow rate shall be maintained for 30 minutes or until 80 percent of the rated capacity of the tank has been discharged.

28.12.6 30-Minute Pumping Test.

28.12.6.1
The pump shall be subjected to a 30-minute pumping test consisting of continuous pumping at rated capacity at rated pump discharge pressure.

28.12.6.2
The 30-minute pumping test shall be permitted to be performed from the apparatus water tank with provisions to maintain tank level during the duration of the test.

28.12.6.3
The 30-minute pumping test shall be permitted to be performed with water supplied to the pump intake from separate water supply that provides a positive pressure to the pump intake.

28.12.6.4
If the 30-minute pumping test is performed with water supplied to the pump that provides a positive pressure at the pump intake, the net pump pressure shall be equal to the rated pump discharge pressure.

28.12.6.5
The 30-minute pumping test shall be permitted to be run at a test site that provides a supply of clear water and close enough to allow the suction strainer to be submerged at least 2 ft (0.6 m) below the surface of the water, when connected to the pump by a minimum of 10 ft (3 m) of suction hose.

28.12.6.6
If the pump is stopped before the test is completed, the entire pump test shall be repeated.
28.12.6.7
The flow discharge pressure, intake pressure, and engine speed shall be recorded at least every 15 minutes but not fewer than three times for each test sequence.

28.12.6.8
The average net pump pressure shall be calculated and recorded based on the average values for discharge and intake pressure.

28.12.7 Pressure Control Test.
At the pump rated flow and pressure for pumps with two or more discharges, the pump system shall be tested for pressure rise as follows:

1. The pump shall be operated at rated capacity and rated discharge gauge pressure.
2. If a pressure control system is supplied, it shall maintain the rated discharge gauge pressure within ±5 percent, or if it is adjustable, it shall be set in accordance with the manufacturer’s instructions to maintain the rated discharge gauge pressure within ±5 percent.
3. All discharge valves shall be closed not more rapidly than in 3 seconds and not more slowly than in 7 seconds.
4. The rise in discharge pressure shall not exceed 10 percent of the rated discharge pressure and shall be recorded.

28.12.8 Priming System Test.
If the UHP pumping system is equipped with a priming system, it shall be operated in accordance with the manufacturer’s instructions until the pump has been primed and is discharging water.

28.12.8.1*
This test shall be run at a test site that provides a supply of clear water and close enough to allow 10 ft (3 m) of suction hose of the size specified in Table 28.2.3 and equipped with a suction hose strainer to be connected to the pump intake to be submerged at least 2 ft (0.6 m) below the surface of the water, with the water level 3 ft (0.91 m) below the center of the pump intake corrected for the following conditions:

1. At an altitude of 2000 ft (600 m) above sea level
2. At 29.9 in. H (101 kPa) atmospheric pressure (corrected to sea level)
3. At a water temperature of 60°F (16°C)

28.12.8.2
The interval from the time the priming system is started until the time the pump is discharging water shall be noted.

28.12.8.3
The time required to prime the pump shall not exceed 30 seconds.

28.12.8.4
Only biodegradable products shall be permitted to be discharged onto the ground.

28.12.9 Vacuum Test.
If the UHP pumping system is equipped with a priming system, a vacuum test shall be performed that consists of subjecting the interior of the pump, with all intake valves open, all intakes capped or plugged, and all discharge caps removed to a vacuum of 17 in. Hg (57.6 kPa) by means of the pump priming system.

28.12.9.1
At altitudes above 2000 ft (600 m), the vacuum attained shall be permitted to be less than 17 in. Hg (57.6 kPa) by 1 in. Hg (3.4 kPa) for each 1000 ft (300 m) of altitude above 2000 ft (600 m).

28.12.9.2
The primer shall not be used after the 5-minute test period has begun.

28.12.9.3
The engine shall not be operated at any speed greater than the governed speed during this test.

28.12.9.4
The vacuum shall not drop more than 10 in. Hg (34 kPa) in 5 minutes.

28.12.9.5
The vacuum test shall then be repeated with all intake valves closed and the caps or plugs on all gated intakes removed.
28.12.10* Engine Speed Advancement Interlock Test.
If the UHP pump is driven by the chassis engine, the engine speed advancement interlock system shall be tested to verify that engine speed cannot be increased at the pump operator’s panel unless there is throttle-ready indication.

28.12.10.1
If the apparatus is equipped with a stationary UHP pump driven through split-shaft PTO, the test shall verify that the engine speed control at the pump operator’s panel cannot be advanced when either of the following conditions exists:

(1) The chassis transmission is in neutral, the parking brake is off, and the UHP pump shift in the driving compartment is in the road position.

(2) The chassis transmission has been placed in the position for pumping as indicated on the label provided in the driving compartment, the parking brake is on, and the UHP pump shift in the driving compartment is in the road position.

28.12.10.2
If the apparatus is equipped with a stationary UHP pump driven through a transmission-mounted PTO, front-of-engine crankshaft PTO, or engine flywheel PTO, the test shall verify that the engine speed control on the pump operator’s panel cannot be advanced when either of the following conditions exists:

(1) The chassis transmission is in neutral, the parking brake is off, and the UHP pump shift status in the driving compartment is disengaged.

(2) The chassis transmission is in any gear other than neutral, the parking brake is on, and the UHP pump shift in the driving compartment is in the “Pump Engaged” position.

28.12.10.3
If the apparatus is equipped with a UHP pump driven by the chassis engine designed for both stationary pumping and pump-and-roll, the test shall verify that the engine speed control at the pump operator’s panel cannot be advanced when any of the following conditions exists:

(1) The chassis transmission is in neutral, the parking brake is off, and the UHP pump shift status in the driving compartment is disengaged.

(2) The chassis transmission is in any gear other than neutral, the parking brake is on, and the UHP pump shift in the driving compartment is in the “Pump Engaged” position.

(3) The chassis transmission is in any gear other than neutral, the parking brake is off, the UHP pump shift in the driving compartment is in the “Pump Engaged” position and the “OK to Pump-and-Roll” indicator is on.

28.12.10.4
If the apparatus is equipped with a stationary UHP pump driven through transfer case PTO, the test shall verify that the engine speed control on the pump operator’s panel cannot be advanced when one of the following conditions exists:

(1) The chassis transmission is in neutral, the transfer case is in neutral, the parking brake is off, and the UHP pump shift in the driving compartment is in the road position.

(2) The chassis transmission is in neutral, the transfer case is engaged, the parking brake is off, and the UHP pump shift in the driving compartment is in the road position.

(3) The chassis transmission has been placed in the position for pumping as indicated on the label provided in the driving compartment, the parking brake is on, and the UHP pump shift in the driving compartment is in the road position.

28.12.11 Gauge and Flowmeter Test.
28.12.11.1
Pump intake and discharge pressure gauges shall be checked for accuracy while pumping at rated capacity at pump rated pressure.

28.12.11.2
Any gauge that does not meet Grade B ASME B40 requirements as compared to the calibrated test gauge shall be recalibrated, repaired, or replaced.

28.12.11.3
Each flowmeter shall be checked for accuracy while pumping at rated capacity at pump rated pressure.
28.12.11.4
Any flowmeter that is off by more than 10 percent shall be recalibrated, repaired, or replaced.

28.12.12 Manufacturer’s Predelivery Test.
28.12.12.1 Piping Integrity Test.
The UHP pump and its connected piping system shall be subjected to either a hydrostatic test per 28.12.12.2 or hydrodynamic test per 28.12.12.3.

28.12.12.2
If the pump and its connected piping system are subjected to a hydrostatic test, they shall be hydrostatically tested to a gauge pressure of 1.4 times the rated pump discharge pressure.

28.12.12.2.1
The hydrostatic test shall be conducted with the tank fill line valve, the tank–to–pump valve closed, and the pump bypass line return to the water tank disconnected and capped.

28.12.12.2.2
The hydrostatic test shall be conducted with all discharge valves open and the outlets capped.

28.12.12.2.3*
The hydrostatic test shall be conducted with all external intakes capped and intake valves left open in external intakes equipped with valves.

28.12.12.2.4
The hydrostatic test pressure shall be maintained for 3 minutes.

28.12.12.3*
If the pump and its connected piping system are subjected to a hydrodynamic test, they shall be hydrodynamically tested to a gauge pressure of 1.4 times the rated pump discharge pressure.

28.12.12.4
The hydrodynamic test pressure shall be maintained for 3 minutes.

The water tank shall be tested for usable water capacity by either a totalizing flowmeter method or truck weight method.

28.12.13.1
The water tank shall be filled until it overflows.

28.12.13.2
If the unit is equipped with an automatic shutdown due to a low pressure feature, the feature shall be engaged.

28.12.13.3
If a totalizing flowmeter is used, the meter shall be connected to a discharge and set to zero.

28.12.13.3.1
If the totalizing flowmeter is connected to a discharge valve, the valve shall be opened and the unit run at between 25 and 35 percent of the pump’s rated flow until it automatically shuts down or the pressure drops below 1000 psi (7000 kPa).

28.12.13.3.2
The total volume that was discharged shall be recorded.

28.12.13.4
If the truck weight method is used, the truck shall be weighed and the weight recorded.

28.12.13.4.1
The pump shall be started and brought up to a flow rate of between 25 percent and 35 percent of the pump’s rated flow by partly opening a discharge valve.

28.12.13.4.2
The discharge valve shall be closed when the unit automatically shuts down or the pump pressure drops below 1000 psi (7000 kPa).

28.12.13.4.3
The truck shall be reweighed.

28.12.13.4.4
The water tank empty weight shall be subtracted from water tank full weight and the result divided by 8.33 lb/gal to obtain the usable water volume in gallons.

Statement of Problem and Substantiation for Public Comment
"fire pump" is a term defined in chapter 3, so it can not be used to refer to a pump that does not meet that definition.
In cases where a UHP pump and another pump are both installed, some of the wording need UHP to clarify the meaning.
Additional changes may still be needed to define the throttle interlocks and testing for cases with 2 pumps both driven by the chassis engine.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

<table>
<thead>
<tr>
<th>Submitter Full Name:</th>
<th>Thomas Stalnaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>Goshen Fire Company</td>
</tr>
<tr>
<td>Street Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Zip:</td>
<td></td>
</tr>
<tr>
<td>Submittal Date:</td>
<td>Fri Feb 21 13:42:08 EST 2014</td>
</tr>
</tbody>
</table>

Committee Statement

<table>
<thead>
<tr>
<th>Committee Action:</th>
<th>Rejected but see related SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td>SR-92-NFPA 1901-2014</td>
</tr>
<tr>
<td>Statement:</td>
<td>Most UHP system are low volume systems < 300 gpm. Since they will be supplied from the tank, measuring the rating of the pump is the same as measuring the flow rate from the tank, and a separate tank-to-pump flow test is not required.</td>
</tr>
</tbody>
</table>
Public Comment No. 30-NFPA 1901-2014 [Section No. 28.12.1.2.1]

28.12.1.2.1
A test label shall be provided at the pump operator’s position that gives the rated discharges and pressures and, if so equipped, the position of the parallel/series pump control.

Statement of Problem and Substantiation for Public Comment

Parallel/series pump control not relevant to UHP pumps (See Public Comment 29).

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 16:22:38 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-93-NFPA 1901-2014
Statement: Parallel/series pump control not relevant to UHP pumps (See Public Comment 29).
28.12.2.3.2
If the vehicle is equipped with a fixed power source driven by the same engine that drives the ultra-high pressure fire pump, it shall be running at a minimum of 50-85 percent of its rated gross horsepower capacity throughout the pumping portion of the pump test.

Statement of Problem and Substantiation for Public Comment

50% is quite low compared to conventional fire pumps that have no similar requirements. If they did, a 500 HP engine would be required for a 1500 GPM pump. There is no compelling reason to single out UHP pumps as being different. Rated capacity of an engine is undefined as written. Gross HP isn't much clearer but it gets us on the same page. In the automotive world, that's what is generally published. In the industrial, separate engine world, they generally have numerous ratings, such as Na, Nb, and Nc. It may be a suggestion to pick one SAE standard and see if you can get the engine manufacturers to publish certified curves to that.

Related Item
Public Input No. 164-NFPA 1901-2013 [New Section after 15.2]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:23:43 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-94-NFPA 1901-2014
Statement: This pertains to the fixed power source such as the generator. Clarifying language
28.12.3.1
One or more lines of fire UHP hose of sufficient diameter shall be provided to allow discharge of the rated capacity of the pump without exceeding a flow velocity of 35 ft/sec (10.7 m/sec) through the hose.

Statement of Problem and Substantiation for Public Comment

Fire hose (per NFPA 1961) does not include the hoses typically used with UHP systems, so the term Fire Hose should not be used here.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 14:13:19 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-47-NFPA 1901-2014
Statement: Fire hose (per NFPA 1961) does not include the hoses typically used with UHP systems, so the term Fire Hose should not be used here.
28.12.3.3.2

The pump. If the UHP pump system is capable of drafting, the pump intake gauge shall have a range of 30 in. Hg (100 kPa) vacuum to zero for a vacuum gauge or 30 in. Hg (100 kPa) vacuum to a gauge pressure of 150 psi (1000 kPa) for a compound gauge.

Statement of Problem and Substantiation for Public Comment

Many UHP systems cannot draft and can only be supplied from the tank.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:27:37 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-95-NFPA 1901-2014

Most UHP systems are low volume systems < 300 gpm. Since they will be supplied from the tank, measuring the rating of the pump is the same as measuring the flow rate from the tank, and a separate tank-to-pump flow test is not required.

Add new annex A material as seen in attachment A.28.12.5.7
28.12.5.1 Water Tank-to-Pump Flow Test.

The water tank-to-pump flow test shall be performed with water being supplied from the apparatus water tank to verify the rated capacity and rated discharge pressure capability of the apparatus.

28.12.5.2 The water tank-to-pump flow test shall be conducted as follows:

1. The apparatus shall be placed on level ground and the water tank filled until it overflows.
2. All intakes to the pump shall be closed.
3. The tank fill line shall be closed.
4. A hose line(s) and nozzle(s) for discharging water at the rated pump capacity flow rate shall be connected to one or more discharge outlets.
5. The water tank-to-pump valve(s) and the discharge valve(s) leading to the hose line(s) and nozzle(s) shall be opened.
6. The pumping system shall be operated and adjusted as required until the rated pump capacity flow rate, -0/+5 percent, at the rated discharge pressure is established.
7. The discharge pressure shall be recorded.
8. The discharge valves shall be closed and the water tank refilled.
9. The bypass cooling line shall be permitted to be opened temporarily, if needed, to keep the water temperature in the pump within acceptable limits.
10. The discharge valves shall be reopened and the time noted.
11. If necessary, the pumping system shall be adjusted to maintain the discharge pressure recorded as noted in 28.12.5.2(6).
12. The pumping system shall be operated at these conditions for 30 minutes or the discharge pressure drops by 100 psi (700 kPa) or more, at which time the time shall be noted and the elapsed time from the opening of the discharge valves shall be calculated and recorded.

28.12.5.3 Volume Discharge Calculation.

28.12.5.3.1 The volume discharged shall be calculated by multiplying the rate of discharge in gallons per minute (liters per minute) by the time in minutes elapsed from the opening of the discharge valves until the discharge pressure drops by at least 100 psi (700 kPa).

28.12.5.3.2 Other means shall be permitted to be used to determine the volume of water pumped from the tank such as a totalizing flowmeter, weighing the truck before and after, or refilling the tank using a totalizing flowmeter.

28.12.5.3.3 The flow rate shall be maintained for 30 minutes or until 80 percent of the rated capacity of the tank has been discharged.

Statement of Problem and Substantiation for Public Comment

Most UHP system are low volume systems < 300 gpm. Since they will be supplied from the tank, measuring the rating of the pump is the same as measuring the flow rate from the tank, and a separate tank-to-pump flow test is not required.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]
Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:29:06 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-95-NFPA 1901-2014

Most UHP system are low volume systems < 300 gpm. Since they will be supplied from the tank, measuring the rating of the pump is the same as measuring the flow rate from the tank, and a separate tank-to-pump flow test is not required.

Add new annex A material as seen in attachment A.28.12.5.7
28.12.7 Pressure Control Test.
At the pump rated flow and pressure for pumps with two or more discharges, the pump system shall be tested for pressure rise as follows:

1. The pump shall be operated at rated capacity and rated discharge gauge pressure.

2. If a pressure control system is supplied, it shall maintain the rated discharge gauge pressure within \(\pm 5 \) 10 percent, or if it is adjustable, it shall be set in accordance with the manufacturer’s instructions to maintain the rated discharge gauge pressure within \(\pm 5 \) 10 percent.

3. All discharge valves shall be closed not more rapidly than in 3 seconds and not more slowly than in 7 seconds.

4. The rise in discharge pressure shall not exceed 10 percent of the rated discharge pressure and shall be recorded.

Statement of Problem and Substantiation for Public Comment

This figure matches 28.8.4.1

Related Item
Public Input No. 165-NFPA 1901-2013 [New Section after 16.6.4]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:36:42 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-96-NFPA 1901-2014
Statement: This figure matches 28.8.4.1
Public Comment No. 23-NFPA 1901-2014 [Section No. 28.12.8.1]

28.12.8.1*
This test shall be run at a test site that provides a supply of clear water and close enough to allow 10 ft (3 m) of suction hose of the size specified in Table 28.2.3 and equipped with a suction hose strainer to be connected to the pump intake to be submerged at least 2 ft (0.6 m) below the surface of the water, with the water level at least 3 ft (0.91 m) below the center of the pump intake corrected for the following conditions:

1. At an altitude of 2000 ft (600 m) above sea level
2. At 29.9 in. H (101 kPa) atmospheric pressure (corrected to sea level)
3. At a water temperature of 60°F (16°C)

Statement of Problem and Substantiation for Public Comment

The words "at least:" are needed in many cases. If the pump were on a flat bed with the intake 48" above the ground, as written the truck would have to be partially (12") submerged in the water supply to run the test as written. The other requirements in the sentence include "at least".

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 14:24:50 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-97-NFPA 1901-2014
Statement: The words "at least:" are needed in many cases. If the pump were on a flat bed with the intake 48" above the ground, as written the truck would have to be partially (12") submerged in the water supply to run the test as written. The other requirements in the sentence include "at least".
Public Comment No. 26-NFPA 1901-2014 [Section No. 28.12.9 [Excluding any Sub-Sections]]

If the pumping system is equipped with a priming system, a vacuum test shall be performed that consists of subjecting the interior of the pump, with all intake valves open, all intakes capped or plugged, and all discharge caps removed; to a vacuum of 17 in. Hg (57.6 kPa) by means of the pump priming system.

Statement of Problem and Substantiation for Public Comment

Grammar correction. As written, the caps have to be removed to a vacuum. With the semicolon, the interior of the pump has to be subjected to a vacuum (with further subordinate conditions).

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 14:44:28 EST 2014

Committee Statement

Committee Action: Accepted
Resolution: SR-105-NFPA 1901-2014
Statement: Grammar correction. As written, the caps have to be removed to a vacuum. With the semicolon, the interior of the pump has to be subjected to a vacuum (with further subordinate conditions).
Public Comment No. 25-NFPA 1901-2014 [Section No. 28.12.2.1]

28.12.2.1
The hydrostatic test shall be conducted with the tank fill line valve closed, the tank–to–pump valve closed, and the pump bypass line return to the water tank disconnected and capped or its valve closed.

Statement of Problem and Substantiation for Public Comment

One word is missing.
If bypass line has a valve, it could be closed rather than disconnected.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 14:38:56 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-98-NFPA 1901-2014
Statement: Delete text and replace as seen in attachment 28.12.12.1 through 28.12.12.3.2. Original procedure could not be accomplished on all pumps depending on the type of pump and the configuration of the intake and discharge plumbing. The test durations are deemed adequate.

Add new annex A material as seen in attachment A.28.12.12.3.1(5)
28.12.12.2.4
The hydrostatic test pressure shall be maintained for 3-15 minutes.

Statement of Problem and Substantiation for Public Comment

The test procedure needs to be consistent with the time listed earlier in the chapter.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:

Submittal Date: Thu May 08 16:32:51 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-98-NFPA 1901-2014
Statement: Delete text and replace as seen in attachment 28.12.12.1 through 28.12.12.3.2. Original procedure could not be accomplished on all pumps depending on the type of pump and the configuration of the intake and discharge plumbing. The test durations are deemed adequate.

Add new annex A material as seen in attachment A.28.12.12.3.1(5)
28.12.12.3*

If the pump and its connected piping system are subjected to a hydrodynamic test at a minimum of 6 GPM, they shall be hydrodynamically tested to a gauge pressure of 1.4 times the rated pump discharge pressure.

Add appendix item stating:

Pressure control systems may need to be deactivated to achieve this pressure, and this pressure may not be obtainable with the engine and powertrain on a particular vehicle, depending on transmission, PTO, and pump gear ratios selected, along with engine power. Depending on system rated pressures, gauges may need to be disconnected as well.

Note that the gauge issue applies to hydrostatic tests as well.

Statement of Problem and Substantiation for Public Comment

Establishes a flow rate for hydrodynamic testing and provides a warning for such testing. Note that Annex material may need to be added for these tests that exceed the 10% pressure rise requirements earlier in this chapter.

Related Item

Public Input No. 166-NFPA 1901-2013 [Section No. 16.5.2.1]

Submitter Information Verification

Submitter Full Name: Michael Ruthy
Organization: Darley Co
Street Address:
City:
State:
Zip:
Submittal Date: Fri May 16 16:41:58 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-98-NFPA 1901-2014
Statement: Delete text and replace as seen in attachment 28.12.12.1 through 28.12.12.3.2. Original procedure could not be accomplished on all pumps depending on the type of pump and the configuration of the intake and discharge plumbing. The test durations are deemed adequate.

Add new annex A material as seen in attachment A.28.12.12.3.1(5)
Public Comment No. 113-NFPA 1901-2014 [Section No. 28.12.12.4]

28.12.12.4

The hydrodynamic test pressure shall be maintained for 3 for 15 minutes.

Statement of Problem and Substantiation for Public Comment

The test time needs to be consistent with the requirements listed earlier in the chapter.

Related Item

First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: DOUGLAS KELLEY
Organization: KME FIRE APPARATUS
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 08 16:34:05 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-98-NFPA 1901-2014
Statement: Delete text and replace as seen in attachment 28.12.12.1 through 28.12.12.3.2. Original procedure could not be accomplished on all pumps depending on the type of pump and the configuration of the intake and discharge plumbing. The test durations are deemed adequate.
Add new annex A material as seen in attachment A.28.12.12.3.1(5)
Public Comment No. 24-NFPA 1901-2014 [Section No. 28.12.13.3.1]

28.12.13.3.1
If the totalizing flowmeter is connected to a discharge valve, the valve shall be opened and the unit run at between 25-50 and 35-100 percent of the pump’s rated flow until it automatically shuts down or the pressure drops below 1000 psi (7000 kPa).

Statement of Problem and Substantiation for Public Comment

Many UHP systems run a single line and a nozzle that is matched to the pump. 25%-35% is both difficult to achieve and very slow. A typical NFPA 1901 test corresponding to this test takes 1-3 minutes. At written this test for a 8gpm pump x 25% with 100 gal. tank would take 50 minutes. At typical UHP system flows, discharging even 100% of the rated flow should not create significant turbulence or air suction in the tank, and virtually none at 50%.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 14:32:44 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-48-NFPA 1901-2014
Statement: Many UHP systems run a single line and a nozzle that is matched to the pump. 25%-35% is both difficult to achieve and very slow. A typical NFPA 1901 test corresponding to this test takes 1-3 minutes. At written this test for a 8gpm pump x 25% with 100 gal. tank would take 50 minutes. At typical UHP system flows, discharging even 100% of the rated flow should not create significant turbulence or air suction in the tank, and virtually none at 50%.
28.12.13.4.1
The pump shall be started and brought up to a flow rate of between 25-20 percent and 35-40 percent of the pump’s rated flow by partly opening a discharge valve.

Statement of Problem and Substantiation for Public Comment

Open up the the standard for low flow systems make sense.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 19:53:17 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-48-NFPA 1901-2014
Statement: Many UHP systems run a single line and a nozzle that is matched to the pump. 25%-35% is both difficult to achieve and very slow. A typical NFPA 1901 test corresponding to this test takes 1-3 minutes. At written this test for a 8gpm pump x 25% with 100 gal. tank would take 50 minutes. At typical UHP system flows, discharging even 100% of the rated flow should not create significant turbulence or air suction in the tank, and virtually none at 50%.
Public Comment No. 144-NFPA 1901-2014 [Section No. 28.12.13.4.1]

28.12.13.4.1
The pump shall be started and brought up to a flow rate of between 25-20 percent and 35-40 percent of the pump’s rated flow by partly opening a discharge valve.

Statement of Problem and Substantiation for Public Comment

20 to 40 percent makes more sense for low flow systems.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: WILLIAM E CARROLL
Organization: HMA FIRE LLC
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 20:02:52 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-48-NFPA 1901-2014
Statement: Many UHP systems run a single line and a nozzle that is matched to the pump. 25%-35% is both difficult to achieve and very slow. A typical NFPA 1901 test corresponding to this test takes 1-3 minutes. At written this test for an 8gpm pump x 25% with 100 gal. tank would take 50 minutes. At typical UHP system flows, discharging even 100% of the rated flow should not create significant turbulence or air suction in the tank, and virtually none at 50%.
A.3.3.166 Standard Cubic Feet per Minute (SCFM).

Standard temperature is 60°F (15°C), and standard pressure is 14.696 psi (101.33 kPa) or 29.92 in. Hg (760 mm Hg) conditions of pressure and temperatures to which gas volumes are frequently referred “will vary considerably between sections of the world and, to some degree, with the profession or industry involved." As such, the SCFM rating from manufacturers will be based on “standard” conditions at its manufacturing plant locations. Such a method of rating compressor volume, in fact, inhibits the possibility of the user to fairly compare the volume of discharged air from various manufacturers. Refer to the definition of Charging Rate.

Statement of Problem and Substantiation for Public Comment

The use of SCFM ratings for compressors would be confusing and lead to misinterpretation of manufacturers data. The rating of compressor volume should remain as it is, Charging Rate, as that is precisely the application of compressors, in this case, re-charging Self Contained Breathing Apparatus (SCBA) and Underwater Breathing Apparatus (SCUBA) cylinders.

Related Item

First Revision No. 22-NFPA 1901-2013 [Section No. 3.3.164]

Submitter Information Verification

Submitter Full Name: GEORGE MARPLE
Organization: EAGLE COMPRESSORS
Street Address:
City:
State:
Zip:
Submittal Date: Mon May 12 14:35:19 EDT 2014

Committee Statement

Committee Action: Rejected
Resolution: The public comment was scientifically inaccurate.
A.4.15.3
Special fire service tire ratings could apply that are different from the sidewall rating on the tire. The purchaser might want to consider requesting the tire manufacturer’s rating documentation. Fire service ratings are based on the assumption that the truck will never drive at this speed for more than 50 mi (80 km) (1 hour for some manufacturers) without stopping to cool the tires. If longer responses or trips are anticipated, the fire service ratings should not be used.

Statement of Problem and Substantiation for Public Comment

Additional information about what a fire service rating is, and when it might not be appropriate.

This was originally Public Input No. 90-NFPA 1901-2013 and I believe it was approved at the San Diego meeting but it for lost in the editing and balloting stage. Fire service ratings are referred to in both 4.15.2 (where it did get added to the annex) and 4.15.3.

Related Item
Public Input No. 90-NFPA 1901-2013 [New Section after A.4.15.2]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 20 16:12:32 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-107-NFPA 1901-2014
Statement: Adding safety sign FAMA12 for those apparatus that use fire service rated tires. Add new annex A material as seen in attachment A.12.3.2.1.2.
A.14.1.7.1
The H point is the mechanically hinged hip point of the torso and thigh on the devices used in defining and measuring vehicle seating accommodation in SAE J826, *Devices for Use in Defining and Measuring Vehicle Seating Accommodation*. It is an imaginary point located in two-dimensional space above the seat cushion. The H point is measured using a tool that simulates human hips and torso of a specific size and weight. The H point will vary with the size, shape, and material of the seat back, seat frame, and seat cushion. If the H point measurement is not available, it can be approximated by measuring 5 in. (130 mm) ahead of the seat back and 3 in. (75 mm) up from the nondepressed seat cushion surface.

Suspension-style seats have been developed for long-haul truck operations where the operator is driving for many hours at a time. Acceleration and braking are controlled, with an eye to fuel economy. The suspension-style seat in this duty profile provides a smoother ride and reduces fatigue from long hours in the seats. In contrast, the operator of a fire apparatus typically is making short runs with fast acceleration, quick maneuvers, and sudden braking. The bouncing motion of the suspension seat could hinder the driver's ability to maintain precise control of the throttle, brake, steering wheel, and other driving controls.

Selection of seating options should be made with consideration to the frequency of time that the driver will spend in the vehicle each day, and whether the fire department *standard operating procedure* (SOP) requires or encourages the occupant of the seat to be equipped with strictly enforces not wearing head gear during travel. The use of headgear reduces headroom and increases the chance of injury should the vehicle encounter unexpected road undulation or speed bumps. The effect of such road conditions during high-speed operation might be intensified by the action of a seat suspension. Potential for injury is greatly increased by failure to use or properly adjust the seat belt.

Proper seat adjustment is another issue that should be addressed by the fire department SOPs if apparatus are equipped with suspension seats. Too much pressure in a suspension seat air bag will reduce static headroom height and will negate the potential benefits of the suspension. Too little pressure will cause the seat to bounce excessively. The proper amount of pressure is dependent on the weight of the occupant. Departments where multiple drivers share an apparatus should recognize that adjustments need to be made between each shift. Seat adjustment should not be postponed until the driver is exiting the station on the way to a call.

Statement of Problem and Substantiation for Public Comment

Both NFPA 1901 and NFPA 1500 say that headgear should not be worn. The wording here should be based on the assumption that this is correct but might not be followed in all departments. The existing wording is obsolete and contradicts these other statements in 1901 and 1500.

This was originally submitted as Public Input No. 93-NFPA 1901-2013. It was not processed and so was published as Committee Input 252.

Related Item

Public Input No. 93-NFPA 1901-2013 [Section No. A.14.1.8.1]
Committee Input No. 252-NFPA 1901-2013 [Section No. A.14.1.8.1]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Mon Apr 28 08:43:46 EDT 2014
<table>
<thead>
<tr>
<th>Committee Action:</th>
<th>Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td>SR-103-NFPA 1901-2014</td>
</tr>
<tr>
<td>Statement:</td>
<td>Both NFPA 1901 and NFPA 1500 say that headgear should not be worn. The wording here should be based on the assumption that this is correct but might not be followed in all departments. The existing wording is obsolete and contradicts these other statements in 1901 and 1500. This was originally submitted as Public Input No. 93-NFPA 1901-2013. It was not processed and so was published as Committee Input 252.</td>
</tr>
</tbody>
</table>
A.16.13.8
Move entire section to body of Standard. Add a column between "Pump Indicator Status (Pump Operator's Panel)" and "Engine Speed Control at Pump Operator's Panel" titled "Throttle Authority in Cab" with all entries "Yes."
Delete column "Required Test."
The test of the engine speed advancement interlock system should verify proper functioning for the conditions of chassis transmission(s), parking brake and pump shift control action status, and indicator status in driving compartment and pump operator’s panel indicated in Table A.16.13.8(a) through Table A.16.13.8(d). Testing should be performed with a qualified person positioned in the driving compartment and a qualified person verifying engine speed control status at the pump operator’s panel. Shifting of the pump transmission/PTO should be done in accordance with the manufacturer’s instructions.

Table A.16.13.8(a) Stationary Pump Driven Through Split-Shaft PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)</th>
<th>Pump Indicator Status (Driving Compartment)</th>
<th>Pump Indicator Status (Pump Operator’s Panel)</th>
<th>Engine Speed Control at Pump Operator’s Panel</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>Yes b</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged” & “Okay to Pump”</td>
<td>“Throttle Ready”</td>
<td>Yes b</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any gear other than neutral and pump gear c</td>
<td>On or off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Any gear other than neutral and pump gear c</td>
<td>On or off</td>
<td>Engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

a Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

b Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

c Chassis transmission shift selector is placed in position for pumping as indicated on the label provided in the driving compartment.

Table A.16.13.8(b) Stationary Pump Driven Through Transmission-Mounted PTO, Front-of-Engine Crankshaft PTO, or Engine Flywheel PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)</th>
<th>Indicator Status (Driving Compartment)</th>
<th>Indicator Status (Pump Operator’s Panel)</th>
<th>Engine Speed Control at Pump Operator’s Panel</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Disengaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chassis Transmission Gear Selected</td>
<td>Parking Brake Status</td>
<td>Pump Shift Control Action Status (Driving Compartment)</td>
<td>Indicator Status (Driving Compartment)</td>
<td>Indicator Status (Pump Operator’s Panel)</td>
<td>Engine Speed Control at Pump Operator’s Panel</td>
<td>Required Test</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Disengaged</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>Yes†</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Disengaged</td>
<td>None</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged” & “Okay to Pump”</td>
<td>“Pump Engaged & “Throttle Ready”</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>On or off</td>
<td>Disengaged</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

* Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

† Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

Table A.16.13.8(c) Stationary and Pump-and-Roll Pump
Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

†Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

Table A.16.13.8(d) Stationary Pump Driven Through Transfer Case PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)(a)</th>
<th>Indicator Status (Driving Compartment)</th>
<th>Indicator Status (Pump Operator's Panel)</th>
<th>Engine Speed Control at Pump Operator's Panel Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral or engaged</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Neutral or engaged</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>Yes(b)</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No X</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No X</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Throttle Ready”</td>
<td>Yes(b)</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Pump gear(c)</td>
<td>Neutral</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Pump gear(c)</td>
<td>Engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Pump gear(c)</td>
<td>Neutral or engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No X</td>
</tr>
<tr>
<td>Pump gear(c)</td>
<td>Neutral or engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>Any gear other than neutral and pump gear(c)</td>
<td>Neutral or engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>

\(a\) Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

\(b\) Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.
Chassis transmission shift selector is placed in position for pumping as indicated on the label provided in the driving compartment.

Statement of Problem and Substantiation for Public Comment

This section encompasses very important safety requirements that all fire apparatus must meet; therefore, these testing requirements should be in the body of the Standard and not in the Annex. It only takes two people 10 to 15 minutes and no equipment to carry out the testing of an apparatus.

Related Item
Public Input No. 340-NFPA 1901-2013 [Section No. 16.13.8.1]

Submitter Information Verification

Submitter Full Name: Dan McKenzie
Organization: US Department of Agriculture
Affiliation: US Forest Service
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 15 19:51:55 EDT 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as shown and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
The test of the engine speed advancement interlock system should verify proper functioning for the conditions of chassis transmission(s), parking brake and pump shift control action status, and indicator status in driving compartment and pump operator’s panel indicated in Table A.16.13.8(a) through Table A.16.13.8(d). Testing should be performed with a qualified person positioned in the driving compartment and a qualified person verifying engine speed control status at the pump operator’s panel. Shifting of the pump transmission/PTO should be done in accordance with the manufacturer’s instructions.

Table A.16.13.8(a) Stationary Pump Driven Through Split-Shaft PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)</th>
<th>Pump Indicator Status (Driving Compartment)</th>
<th>Pump Indicator Status (Pump Operator’s Panel)</th>
<th>Engine Speed Control at Pump Operator’s Panel</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>Yes</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear</td>
<td>On</td>
<td>“Pump Engaged” & “Okay to Pump”</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>Yes</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear</td>
<td>Off</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Any gear other than neutral and pump gear</td>
<td>On or off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Any gear other than neutral and pump gear</td>
<td>On or off</td>
<td>Engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
</tbody>
</table>

aRefers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

bEngine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

cChassis transmission shift selector is placed in position for pumping as indicated on the label provided in the driving compartment.

Table A.16.13.8(b) Stationary Pump Driven Through Transmission-Mounted PTO, Front-of-Engine Crankshaft PTO, or Engine Flywheel PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)</th>
<th>Indicator Status (Driving Compartment)</th>
<th>Indicator Status (Pump Operator’s Panel)</th>
<th>Engine Speed Control at Pump Operator’s Panel</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Disengaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Chassis Transmission Gear Selected</td>
<td>Parking Brake Status</td>
<td>Pump Shift Control Action Status (Driving Compartment)</td>
<td>Indicator Status (Driving Compartment)</td>
<td>Indicator Status (Pump Operator’s Panel)</td>
<td>Engine Speed Control at Pump Operator’s Panel</td>
<td>Required Test</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Disengaged</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>Yes†</td>
<td>Yes†</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Disengaged</td>
<td>None</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged” & “Okay to Pump”</td>
<td>“Pump Engaged”</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Pump Engaged”</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>On or off</td>
<td>Disengaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

* Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

† Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

Table A.16.13.8(c) Stationary and Pump-and-Roll Pump
* Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

† Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

Table A.16.13.8(d) Stationary Pump Driven Through Transfer Case PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Transfer Case</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)a</th>
<th>Indicator Status (Driving Compartment)</th>
<th>Indicator Status (Pump Operator’s Panel)</th>
<th>Engine Speed Control at Pump Operator’s Panel</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Throttle Ready”</td>
<td>Yesb</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>On</td>
<td>Engaged, “Pump Engaged” & “Okay to Pump”</td>
<td>None</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Any gear other than neutral and pump gearc</td>
<td>Neutral or engaged</td>
<td>On or off</td>
<td>Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

a Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

b Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.
Chassis transmission shift selector is placed in position for pumping as indicated on the label provided in the driving compartment.

Statement of Problem and Substantiation for Public Comment

Per 16.13.8.1, this case is not a required case, and the test cannot apply to a case where throttle control is supposed to be enabled.

Related Item
First Revision No. 236-NFPA 1901-2013 [Section No. A.16.13.8]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 20 17:05:41 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as seen in attachment A.16.13.8 and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
The test of the engine speed advancement interlock system should verify proper functioning for the conditions of chassis transmission(s), parking brake and pump shift control action status, and indicator status in driving compartment and pump operator’s panel indicated in Table A.16.13.8(a) through Table A.16.13.8(d). Testing should be performed with a qualified person positioned in the driving compartment and a qualified person verifying engine speed control status at the pump operator’s panel. Shifting of the pump transmission/PTO should be done in accordance with the manufacturer’s instructions.

Table A.16.13.8(a) Stationary Pump Driven Through Split-Shaft PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)</th>
<th>Pump Indicator Status (Driving Compartment)</th>
<th>Pump Indicator Status (Pump Operator’s Panel)</th>
<th>Engine Speed Control at Pump Operator’s Panel</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>“Throttle Ready”</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>“Throttle Ready”</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>On</td>
<td>Engaged</td>
<td>“Pump Engaged” & “Okay to Pump”</td>
<td>“Throttle Ready”</td>
<td>Yes</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>Off</td>
<td>Engaged</td>
<td>“Pump Engaged”</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>On</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>X</td>
</tr>
<tr>
<td>Pump gear c</td>
<td>Off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any gear other than neutral and pump gear c</td>
<td>On or off</td>
<td>Road</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any gear other than neutral and pump gear c</td>
<td>On or off</td>
<td>Engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

aRefers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

bEngine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

cChassis transmission shift selector is placed in position for pumping as indicated on the label provided in the driving compartment.

dChassis transmission shift selector is placed in some position other than neutral or the position for pumping as indicated on the label provided in the driving compartment.

Table A.16.13.8(b) Stationary Pump Driven Through Transmission-Mounted PTO, Front-of-Engine Crankshaft PTO, or Engine Flywheel PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)</th>
<th>Indicator Status (Driving Compartment)</th>
<th>Indicator Status (Pump Operator’s)</th>
<th>Engine Speed Control at Pump</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis Transmission Gear Selected</td>
<td>Parking Brake Status</td>
<td>Pump Shift Control Action Status (Driving Compartment)</td>
<td>Operator's Panel</td>
<td>Engine Speed Control at Pump Operator's Panel Requied Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Disengaged</td>
<td>None</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Disengaged</td>
<td>None</td>
<td>Yes‡ - b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Disengaged</td>
<td>None</td>
<td>No X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>On</td>
<td>Engaged</td>
<td>"Pump Engaged" & "Okay to Pump"</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>"Pump Engaged"</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>On</td>
<td>Engaged</td>
<td>"Pump Engaged" & "Okay to Pump"</td>
<td>No X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>Off</td>
<td>Engaged</td>
<td>"Pump Engaged"</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any gear other than neutral</td>
<td>On or off</td>
<td>Disengaged</td>
<td>None</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‡ a Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

‡ b Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

Table A.16.13.8(c) Stationary and Pump-and-Roll Pump
Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

Table A.16.13.8(d) Stationary Pump Driven Through Transfer Case PTO

<table>
<thead>
<tr>
<th>Chassis Transmission Gear Selected</th>
<th>Transfer Case</th>
<th>Parking Brake Status</th>
<th>Pump Shift Control Action Status (Driving Compartment)a</th>
<th>Indicator Status (Driving Compartment)</th>
<th>Indicator Status (Pump Operator’s Panel)</th>
<th>Engine Speed Control at Pump Operator’s Panel</th>
<th>Required Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Neutral</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>On or off Road or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pump gearc</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Any gear other than neutral and pump gearc</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>Neutral or engaged</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

a Refers to the physical position of the pump shift control (or status of an electrical control action) in the driving compartment. The indicators associated with a particular pump shift control position might or might not provide indication of a particular status.

b Engine speed control at the pump operator’s panel is permitted for those apparatus that have “Throttle Ready” indication on the pump operator’s panel when the chassis transmission is in neutral and the parking brake is engaged. If there is no “Throttle Ready” indication, there is no engine speed control at the pump operator’s panel.

c Chassis transmission shift selector is placed in position for pumping as indicated on the label provided in...
the driving compartment.

d. Chassis transmission shift selector is placed in some position other than neutral or the position for pumping as indicated on the label provided in the driving compartment.

Statement of Problem and Substantiation for Public Comment

Make the footnotes correct and make symbols consistent across all 4 tables to reduce confusion.

Related Item

First Revision No. 236-NFPA 1901-2013 [Section No. A.16.13.8]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Thu Feb 20 17:12:25 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-65-NFPA 1901-2014
Statement: Revise text as shown and add new tables as seen in attachment for new Table 16.13.8.1 through Table 16.13.8.4. The old tables were deleted from the annex, and recreated to be added to the body of the standard to require testing of each apparatus according to all the possible combinations of pump drive controls to ensure that the engine speed control interlocks are operating correctly and that the indicators and controls meet the requirements of the standard.

Revise annex A text as seen in attachment A.16.13.8 and delete existing annex A tables Table 16.13.8(a), Table 16.13.8(b), Table 16.13.8(c), and Table 16.13.8(d).
Public Comment No. 12-NFPA 1901-2014 [Section No. A.21.9.1.1.1]

A.21.9.1.1.1
The CAFS capacity rating test is performed with the system discharging 2 gpm (7.6 L/min) of water for every 1 SCFM (28.3 L/min at standard temperature and pressure) of compressed air discharge. This test verifies that the system is capable of these capacities without failure of any component of the CAFS. It is recognized that in actual fire fighting use, the ratio of waterflow to airflow might vary depending on how wet or dry the CAF stream is desired for a particular application.

Statement of Problem and Substantiation for Public Comment

Per 21.2.2.1 air flow from a CAF system is measured in SCMM. These numbers give the same ratio as the US units.

Related Item
Public Input No. 201-NFPA 1901-2013 [Section No. 6.7.3 [Excluding any Sub-Sections]]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-36-NFPA 1901-2014
Statement: Separating English and metric statements since they are not equivalent and to make easily understood. Revise annex A material as seen in attachment A.21.9.1.1.1 to be consistent.
A.28.6.10
For apparatus that will be exposed to freezing temperatures, consideration should be given to a winterization system to include a small tank for antifreeze solution and proper valves to inject a mixture of antifreeze into the pump and hose reel system. It can be very difficult to drain a piston or plunger type pump and hose reel with a standard drain valve. Air blow out systems could be used on trucks with air systems. An antifreeze injection system is a simple and effective way to winterize the pump and hose reel system.

Statement of Problem and Substantiation for Public Comment

This may be a typo, or may be the use of a seldom used term. These pumps are much more often called plunger pumps than plunge pumps, although plunge is used occasionally.

Related Item
First Revision No. 242-NFPA 1901-2013 [New Section after 26.11.3]

Submitter Information Verification

Submitter Full Name: Thomas Stalnaker
Organization: Goshen Fire Company
Street Address:
City:
State:
Zip:
Submittal Date: Fri Feb 21 15:45:25 EST 2014

Committee Statement

Committee Action: Rejected but see related SR
Resolution: SR-87-NFPA 1901-2014
Statement: Delete section. UHP hose is more like hydraulic hose and must be preconnected to for a tight connection. Bleeder valves are prone to leakage and are not recommended.
Annex A material associated with 28.6.10 will now be associated with 28.8.6.1.
Renumber annex A material accordingly and edit as shown in attachment A.28.6.1.