21.4.1.1 The materials of construction for tanks and their appurtenances shall be compatible with the liquid to be stored. In case of doubt about the properties of the liquid to be stored, the supplier, producer of the liquid, or other competent authority shall be consulted. Piping materials of construction shall be in accordance with the requirements of Chapter 27, Section 27.4 of this code, Materials of Construction for Piping Systems.

Statement of Problem and Substantiation for Public Comment

This instructs the user where to find information regarding materials of construction approved by this code.

Submitter Information Verification

Submitter Full Name: Richard Kraus
Organization: API/Petroleum Safety Consultant
Affiliation: API
Street Address:
City:
State:
Zip:
Submittal Date: Fri Mar 01 08:52:28 EST 2013

Committee Statement

Committee Action: Rejected
Resolution: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has determined that Chapter 27 adequately addresses materials of construction for piping.

Copyright Assignment

I, Richard Kraus, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

☑️ By checking this box I affirm that I am Richard Kraus, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
21.4.2.1.4

Horizonatal cylindrical and rectangular tanks built according to any of the standards specified in 21.4.2.1.1 shall be permitted to operate at pressures from atmospheric to a gauge pressure of 1.0 psi (6.9 kPa) and shall not exceed a gauge pressure of 2.5 psi (17 kPa) under emergency venting conditions. The same requirement applies to every compartment and any interstitial space of such tanks.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30_Grainawi.pdf</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment
Related Items 11 and 12.

There is confusion on what is intended in NFPA 30 regarding emergency venting. The purpose of this proposal is to clarify that:

1) Table 22.4.1.1(a) is intended for atmospheric tanks and requires the tank pressure not to exceed 2.5 psi.
2) Section 21.4.2.1.4 also states that atmospheric tanks shall have emergency venting that functions at pressures no greater than 2.5 psi.
3) Clarify that the same emergency venting requirements are required for all areas of the tank: the primary tank, each compartment of the primary tank, any interstitial spaces, etc., as outlined in 22.7.1.1.1 and 22.7.1.1.2.
4) If the same emergency venting requirements are used for all areas, then it follows that the emergency venting of the secondary tank (interstitial space) must function at a maximum 2.5 psi.

Applying the same emergency relief venting requirements, which is that the venting mechanism must operate at a maximum 2.5 psig, is the easiest and safest way to assure that atmospheric tanks do not create any additional hazards in a fire situation. The concerns are twofold. First, is the need to assure that any area of the tank not rupturing in an unintended manner (keeping in mind that tanks vented by form of construction will rupture at an intended point on the tank). Second, is the need to assure that the primary tank not buckle or collapse which could push product out of the tank into an ongoing fire. The decision to use 2.5 as the maximum venting pressure was chosen a long time ago. It is a tried and true method. Tanks that have ruptured in fire situations have done so because they did not meet the requirements of this code. Shop fabricated atmospheric tanks, because of their smaller size than field erected tanks, have a greater wetted surface area to volume ratio, which in itself creates a higher potential for emergency venting operation.

Another consideration is the structural strength of the primary tank. If the interstitial space were to overpressurize, the primary tank at some pressure will collapse or buckle which could force product out of the tank, into the fire, further igniting the hazard. This again, is not a condition that has been encountered in double wall shop fabricated tanks.

UL 142, since the introduction of double wall tanks, has required that venting of the secondary tank meet the same requirements as the primary tank. Table 8.1 in UL 142, Emergency venting capacity for primary tanks and interstitial space of secondary containment tanks, uses Table 22.7.3.2, which suggests that NFPA should adopt the same policy.

Further, I have deleted the reference to the UL 142 standard in 22.7.2 because the weak roof to shell joint as a form of emergency venting is no longer allowed in UL 142. UL 2085 does, however, have a performance test for venting by form of construction, so I am proposing to add the UL 2085 standard.

I am also suggesting editorial corrections to the language for the purpose of making sections 22.4.1.1 and 22.7.1.1 easier to read. In section 22.4.1.1, I am proposing to change, “is not permitted to”, to, “shall not” because the first is generally considered to be permissive language. Also, an AHJ does not certify “such” anything, but rather certifies “the construction”.

Submitter Information Verification

Submitter Full Name: Lorri Grainawi
Organization: Steel Tank Institute
Street Address:
City:
State:
Zip:
Submittal Date: Wed May 08 15:11:35 EDT 2013

Committee Statement
Committee Action: Rejected

Resolution: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has discussed the relationships between tank operating pressure (21.4.2.1), the 2.5 psi criterion for internal tank pressure during full fire involvement (22.4), required tank separation distances (22.4), and emergency vent capacity (22.7). After careful consideration, it is the Technical Committee’s determination that additional and detailed study is needed to identify the basis for the 2.5 psi criterion and its originally intended relationship to emergency vent capacity and tank separation distance, before changes to NFPA 30 can be considered. This is particularly true regarding venting by form of construction, since this technique did not exist at the time. To this end, the Technical Committee has decided to defer any action on this and certain other proposed changes to NFPA 30 to the next document revision cycle. In the interim, the Technical Committee will begin a search for any historical data and information related to these issues and will appoint a Task Group to study same and recommend to the Technical Committee appropriate courses of action and amendments to NFPA 30. The Technical Committee notes that this action also addresses Committee Inputs Nos. 11 and 12.

Copyright Assignment

I, Lorri Grainawi, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am Lorri Grainawi, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.4.1.1 Tanks storing Class I, Class II, or Class IIIA stable liquids whose internal pressure is not permitted to exceed the pressure of every compartment of the tank and any interstitial space of the tank shall not exceed a gauge pressure of 2.5 psi (17 kPa). The tanks shall be located in accordance with Table 22.4.1.1(a) and Table 22.4.1.1(b). Where tank spacing is based on a weak roof-to-shell seam, venting by form of construction design, the user shall present evidence certifying such construction to the authority having jurisdiction upon request, certifying the construction complies with this requirement.

Table 22.4.1.1(a) Location of Aboveground Storage Tanks Storing Stable Liquids — Internal Pressure Not to Exceed a Gauge Pressure of 2.5 psi (17 kPa).
<table>
<thead>
<tr>
<th>Type of Tank</th>
<th>Protection</th>
<th>Minimum Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From Property Line</td>
</tr>
<tr>
<td></td>
<td></td>
<td>That Is or Can Be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Built Upon, Including</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Opposite Side of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a Public Way</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Nearest Side of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any Public Way or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from Nearest Important</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building on the Same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Property</td>
</tr>
<tr>
<td>Floating roof</td>
<td>Protection for exposures(^b)</td>
<td>(\frac{1}{2} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{1}{6} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td>Vertical with weak roof-to-shell</td>
<td>None</td>
<td>Diameter of tank but</td>
</tr>
<tr>
<td>seam(^c)</td>
<td></td>
<td>need not exceed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175 ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{1}{6} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td>Horizontal and vertical tanks with</td>
<td>Protection for exposures(^b)</td>
<td>(\frac{1}{2} \times)</td>
</tr>
<tr>
<td>emergency relief venting to limit</td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td>pressures to 2.5 psi (gage pressure</td>
<td></td>
<td>(\frac{1}{6} \times)</td>
</tr>
<tr>
<td>of 17 kPa)</td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td></td>
<td>Approved foam or inerting system(^c)</td>
<td>Approval foam or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inerting system on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tanks not exceeding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 ft in diameter(^d)</td>
</tr>
<tr>
<td></td>
<td>Protection for exposures(^b)</td>
<td>(\frac{1}{2} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{1}{3} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>2 \times diameter of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tank but need not</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exceed 350 ft</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{1}{3} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>diameter of tank</td>
</tr>
<tr>
<td>Protected aboveground tank</td>
<td>None</td>
<td>(\frac{1}{2} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value in Table 22.4.1.1(b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{1}{2} \times)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value in Table 22.4.1.1(b)</td>
</tr>
</tbody>
</table>

For SI units, 1 ft = 0.3 m.

\(^a\) The minimum distance cannot be less than 5 ft (1.5 m).

\(^b\) See definition 3.3.46, Protection for Exposures.

For tanks over 150 ft (45 m) in diameter, use “Protection for Exposures” or “None,” as applicable.

Table 22.4.1.1(b) Reference Table for Use with Tables 22.4.1.1(a), 22.4.1.3, and 22.4.1.5.

<table>
<thead>
<tr>
<th>Tank Capacity (gal)</th>
<th>Minimum Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From Property Line that Is or Can Be Built Upon, Including the Opposite Side of a Public Way</td>
</tr>
<tr>
<td>275 or less</td>
<td>5</td>
</tr>
<tr>
<td>276 to 750</td>
<td>10</td>
</tr>
<tr>
<td>751 to 12,000</td>
<td>15</td>
</tr>
<tr>
<td>12,001 to 30,000</td>
<td>20</td>
</tr>
<tr>
<td>30,001 to 50,000</td>
<td>30</td>
</tr>
<tr>
<td>50,001 to 100,000</td>
<td>50</td>
</tr>
<tr>
<td>100,001 to 500,000</td>
<td>80</td>
</tr>
<tr>
<td>500,001 to 1,000,000</td>
<td>100</td>
</tr>
<tr>
<td>1,000,001 to 2,000,000</td>
<td>135</td>
</tr>
<tr>
<td>2,000,001 to 3,000,000</td>
<td>165</td>
</tr>
<tr>
<td>3,000,001 or more</td>
<td>175</td>
</tr>
</tbody>
</table>

For SI units, 1 ft = 0.3 m; 1 gal = 3.8 L.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30_Grainawi.pdf</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment
Related to Items 11 and 12
There is confusion on what is intended in NFPA 30 regarding emergency venting. The purpose of this proposal is to clarify that:

1) Table 22.4.1.1(a) is intended for atmospheric tanks and requires the tank pressure not to exceed 2.5 psi.
2) Section 21.4.2.1.4 also states that atmospheric tanks shall have emergency venting that functions at pressures no greater than 2.5 psi.
3) Clarify that the same emergency venting requirements are required for all areas of the tank the primary tank, each compartment of the primary tank, any interstitial spaces, etc. as outlined in 22.7.1.1.1 and 22.7.1.1.2.
4) If the same emergency venting requirements are used for all areas, then it follows that the emergency venting of the secondary tank (interstitial space) must function at a maximum 2.5 psi.

Applying the same emergency relief venting requirements, which is that the venting mechanism must operate at a maximum 2.5 psig, is the easiest and safest way to assure that atmospheric tanks do not create any additional hazards in a fire situation. The concerns are twofold. First, is the need to assure that any area of the tank not rupturing in an unintended manner (keeping in mind that tanks vented by form of construction will rupture at an intended point on the tank). Second, is the need to assure that the primary tank not buckle or collapse which could push product out of the tank into an ongoing fire. The decision to use 2.5 as the maximum venting pressure was chosen a long time ago. It is a tried and true method. Tanks that have ruptured in fire situations have done so because they did not meet the requirements of this code. Shop fabricated atmospheric tanks, because of their smaller size than field erected tanks, have a greater wetted surface area to volume ratio, which in itself creates a higher potential for emergency venting operation.

Another consideration is the structural strength of the primary tank. If the interstitial space were to overpressurize, the primary tank at some pressure will collapse or buckle which could force product out of the tank, into the fire, further igniting the hazard. This again, is not a condition that has been encountered in double wall shop fabricated tanks.

UL 142, since the introduction of double wall tanks, has required that venting of the secondary tank meet the same requirements as the primary tank. Table 8.1 in UL 142, Emergency venting capacity for primary tanks and interstitial space of secondary containment tanks, uses Table 22.7.3.2, which suggests that NFPA should adopt the same policy.

Further, I have deleted the reference to the UL 142 standard in 22.7.2 because the weak roof to shell joint as a form of emergency venting is no longer allowed in UL 142. UL 2085 does, however, have a performance test for venting by form of construction, so I am proposing to add the UL 2085 standard.

I am also suggesting editorial corrections to the language for the purpose of making sections 22.4.1.1 and 22.7.1.1 easier to read. In section 22.4.1.1, I am proposing to change, "is not permitted to", to, "shall not" because the first is generally considered to be permissive language. Also, an AHJ does not certify "such" anything, but rather certifies "the construction".

Submitter Information Verification

Submitter Full Name: Lorri Grainawi
Organization: Steel Tank Institute
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 09 11:44:07 EDT 2013

Committee Statement
Committee Action: Rejected

Resolution: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has discussed the relationships between tank operating pressure (21.4.2.1), the 2.5 psi criterion for internal tank pressure during full fire involvement (22.4), required tank separation distances (22.4), and emergency vent capacity (22.7). After careful consideration, it is the Technical Committee's determination that additional and detailed study is needed to identify the basis for the 2.5 psi criterion and its originally intended relationship to emergency vent capacity and tank separation distance, before changes to NFPA 30 can be considered. This is particularly true regarding venting by form of construction, since this technique did not exist at the time. To this end, the Technical Committee has decided to defer any action on this and certain other proposed changes to NFPA 30 to the next document revision cycle. In the interim, the Technical Committee will begin a search for any historical data and information related to these issues and will appoint a Task Group to study same and recommend to the Technical Committee appropriate courses of action and amendments to NFPA 30. The Technical Committee notes that this action also addresses Committee Inputs Nos. 11 and 12.

Copyright Assignment

I, Lorri Grainawi, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am Lorri Grainawi, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
Public Comment No. 27-NFPA 30-2013 [New Section after 22.7]

TITLE OF NEW CONTENT
No recommendation provided.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30_Holmes.pdf</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

Yes, 2.5 psi limit should be mandated for the interstice. This will give a safety factor of 2 for venting (5 psi test pressure of the tank) (we know steel tanks can handle more than 5 psi). Emergency vents are rated a 2.5 psi, any other rating will require testing of the vent for airflow.

When large AST's have properly installed safety accessories, additional diking should not be necessary. The OPV, etc. are sufficient to prevent spills or accidental liquid discharges, thus additional measures such as dikes are not necessary.

Submitter Information Verification

Submitter Full Name: Bradford Holmes
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 09 14:30:41 EDT 2013

Committee Statement
Committee Action: Rejected

Resolution: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has discussed the relationships between tank operating pressure (21.4.2.1), the 2.5 psi criterion for internal tank pressure during full fire involvement (22.4), required tank separation distances (22.4), and emergency vent capacity (22.7). After careful consideration, it is the Technical Committee's determination that additional and detailed study is needed to identify the basis for the 2.5 psi criterion and its originally intended relationship to emergency vent capacity and tank separation distance, before changes to NFPA 30 can be considered. This is particularly true regarding venting by form of construction, since this technique did not exist at the time. To this end, the Technical Committee has decided to defer any action on this and certain other proposed changes to NFPA 30 to the next document revision cycle. In the interim, the Technical Committee will begin a search for any historical data and information related to these issues and will appoint a Task Group to study same and recommend to the Technical Committee appropriate courses of action and amendments to NFPA 30. The Technical Committee notes that this action also addresses Committee Inputs Nos. 11 and 12.

Copyright Assignment

I, Bradford Holmes, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

☑️ By checking this box I affirm that I am Bradford Holmes, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.7.1.1 Every aboveground storage tank shall have emergency relief venting designed for use when the tank is exposed to a fire. The vent shall be in the form of construction in accordance with 22.7.2 or a device or devices that will relieve excessive internal pressure caused by an exposure fire. The vent shall be in the form of construction in accordance with 22.7.2 or a device or devices that will relieve excessive internal pressure caused by an exposure fire. above the limits defined in 22.4.1.1(s), or 22.4.1.3, as applicable.

22.7.1.1.1 This requirement shall apply to each compartment of a compartmented tank, the interstitial space (annulus) of a secondary containment–type tank, and the enclosed space of tanks of closed-top dike construction.

22.7.1.1.2 This requirement shall also apply to spaces or enclosed volumes, such as those intended for insulation, membranes, or weather shields, that are capable of containing liquid because of a leak from the primary vessel. The insulation, membrane, or weather shield shall not interfere with emergency venting.

22.7.1.1.3 Tanks storing Class IIIB liquids that are larger than 12,000 gal (45,400 L) capacity and are not within the diked area or the drainage path of tanks storing Class I or Class II liquids shall not be required to meet the requirements of 22.7.1.
Statement of Problem and Substantiation for Public Comment

Related to Items 11 and 12
There is confusion on what is intended in NFPA 30 regarding emergency venting. The purpose of this proposal is to clarify that:
1) Table 22.4.1.1(a) is intended for atmospheric tanks and requires the tank pressure not to exceed 2.5 psi.
2) Section 21.4.2.1.4 also states that atmospheric tanks shall have emergency venting that functions at pressures no greater than 2.5 psi.
3) Clarify that the same emergency venting requirements are required for all areas of the tank the primary tank, each compartment of the primary tank, any interstitial spaces, etc. as outlined in 22.7.1.1.1 and 22.7.1.1.2.
4) If the same emergency venting requirements are used for all areas, then it follows that the emergency venting of the secondary tank (interstitial space) must function at a maximum 2.5 psi.

Applying the same emergency relief venting requirements, which is that the venting mechanism must operate at a maximum 2.5 psig, is the easiest and safest way to assure that atmospheric tanks do not create any additional hazards in a fire situation. The concerns are twofold. First, is the need to assure that any area of the tank not rupturing in an unintended manner (keeping in mind that tanks vented by form of construction will rupture at an intended point on the tank). Second, is the need to assure that the primary tank not buckle or collapse which could push product out of the tank into an ongoing fire. The decision to use 2.5 as the maximum venting pressure was chosen a long time ago. It is a tried and true method. Tanks that have ruptured in fire situations have done so because they did not meet the requirements of this code. Shop fabricated atmospheric tanks, because of their smaller size than field erected tanks, have a greater wetted surface area to volume ratio, which in itself creates a higher potential for emergency venting operation.

Another consideration is the structural strength of the primary tank. If the interstitial space were to overpressurize, the primary tank at some pressure will collapse or buckle which could force product out of the tank, into the fire, further igniting the hazard. This again, is not a condition that has been encountered in double wall shop fabricated tanks. UL 142, since the introduction of double wall tanks, has required that venting of the secondary tank meet the same requirements as the primary tank. Table 8.1 in UL 142, Emergency venting capacity for primary tanks and interstitial space of secondary containment tanks, uses Table 22.7.3.2, which suggests that NFPA should adopt the same policy.

Further, I have deleted the reference to the UL 142 standard in 22.7.2 because the weak roof to shell joint as a form of emergency venting is no longer allowed in UL 142. UL 2085 does, however, have a performance test for venting by form of construction, so I am proposing to add the UL 2085 standard.

I am also suggesting editorial corrections to the language for the purpose of making sections 22.4.1.1 and 22.7.1.1 easier to read. In section 22.4.1.1, I am proposing to change, "is not permitted to", to, "shall not" because the first is generally considered to be permissive language. Also, an AHJ does not certify "such" anything, but rather certifies "the construction".

Submitter Information Verification

Submitter Full Name: Lorri Grainawi
Organization: Steel Tank Institute
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 09 11:54:11 EDT 2013
Committee Statement

Committee Action: Rejected

Resolution: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has discussed the relationships between tank operating pressure (21.4.2.1), the 2.5 psi criterion for internal tank pressure during full fire involvement (22.4), required tank separation distances (22.4), and emergency vent capacity (22.7). After careful consideration, it is the Technical Committee's determination that additional and detailed study is needed to identify the basis for the 2.5 psi criterion and its originally intended relationship to emergency vent capacity and tank separation distance, before changes to NFPA 30 can be considered. This is particularly true regarding venting by form of construction, since this technique did not exist at the time. To this end, the Technical Committee has decided to defer any action on this and certain other proposed changes to NFPA 30 to the next document revision cycle. In the interim, the Technical Committee will begin a search for any historical data and information related to these issues and will appoint a Task Group to study same and recommend to the Technical Committee appropriate courses of action and amendments to NFPA 30. The Technical Committee notes that this action also addresses Committee Inputs Nos. 11 and 12.

Copyright Assignment

I, Lorri Grainawi, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am Lorri Grainawi, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.7.1.1
Every aboveground storage tank shall have emergency relief venting in the form of construction or a device or devices that will relieve excessive internal pressure caused by an exposure fire. This requirement shall be verifiable by the ability to test any compartment or interstitial space for integrity and measure its volume for capacity. Each compartment of the primary tank, and any secondary containment or interstice, shall be vented at 2.5 psig.

22.7.1.1.1
This requirement shall apply to each compartment of a compartmented tank, the interstitial space (annulus) of a secondary containment–type tank, and the enclosed space of tanks of closed-top dike construction.

22.7.1.1.2
This requirement shall also apply to spaces or enclosed volumes, such as those intended for insulation, membranes, or weather shields, that are capable of containing liquid because of a leak from the primary vessel. The insulation, membrane, or weather shield shall not interfere with emergency venting.

22.7.1.1.3
Tanks storing Class IIIB liquids that are larger than 12,000 gal (45,400 L) capacity and are not within the diked area or the drainage path of tanks storing Class I or Class II liquids shall not be required to meet the requirements of 22.7.1.1.
Statement of Problem and Substantiation for Public Comment

Emergency venting is singly the most important safety feature of an aboveground tank. Ensuring the fact that all compartments or interstices are testable, therefore not leaking into other spaces, is critical to the tank's integrity. Then insuring that each specific volume has been individually protected with emergency venting capability will ensure the safety of all personnel and property.

Related Item
Public Input No. 12-NFPA 30-2012 [Chapter 1]

Submitter Information Verification

Submitter Full Name: Carl Greer
Organization: Service Welding & Machine Co.
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 09 12:59:14 EDT 2013

Committee Statement

Committee Action: Rejected
Resolution: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has discussed the relationships between tank operating pressure (21.4.2.1), the 2.5 psi criterion for internal tank pressure during full fire involvement (22.4), required tank separation distances (22.4), and emergency vent capacity (22.7). After careful consideration, it is the Technical Committee's determination that additional and detailed study is needed to identify the basis for the 2.5 psi criterion and its originally intended relationship to emergency vent capacity and tank separation distance, before changes to NFPA 30 can be considered. This is particularly true regarding venting by form of construction, since this technique did not exist at the time. To this end, the Technical Committee has decided to defer any action on this and certain other proposed changes to NFPA 30 to the next document revision cycle. In the interim, the Technical Committee will begin a search for any historical data and information related to these issues and will appoint a Task Group to study same and recommend to the Technical Committee appropriate courses of action and amendments to NFPA 30. The Technical Committee notes that this action also addresses Committee Inputs Nos. 11 and 12.

Copyright Assignment

I, Carl Greer, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.
By checking this box I affirm that I am Carl Greer, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.7.1.1.1
This requirement shall apply to each compartment of a compartmented tank, the interstitial space (annulus) of a secondary containment–type tank, and the enclosed space of tanks of closed-top dike construction and shall be limited to a gauge pressure of 2.5 psi under emergency venting conditions in the primary tank as well as in the interstice of the secondary containment tanks.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30_22.7.1.1.1.docx</td>
<td>Cover Sheet</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

Not inserting this phrase will allow the interstice to reach pressures in excess of the primary of 2.5 psi. This could result in the failure of the tank top or shell resulting in injury or damage to any persons or property in the vicinity of the tank.

Submitter Information Verification

Submitter Full Name: ALEX RALSTON
Organization: PETCON INC
Street Address:
City:
State:
Zip:
Submittal Date: Wed Apr 24 08:06:10 EDT 2013

Committee Statement
Committee Action: Rejected

Resolution: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has discussed the relationships between tank operating pressure (21.4.2.1), the 2.5 psi criterion for internal tank pressure during full fire involvement (22.4), required tank separation distances (22.4), and emergency vent capacity (22.7). After careful consideration, it is the Technical Committee's determination that additional and detailed study is needed to identify the basis for the 2.5 psi criterion and its originally intended relationship to emergency vent capacity and tank separation distance, before changes to NFPA 30 can be considered. This is particularly true regarding venting by form of construction, since this technique did not exist at the time. To this end, the Technical Committee has decided to defer any action on this and certain other proposed changes to NFPA 30 to the next document revision cycle. In the interim, the Technical Committee will begin a search for any historical data and information related to these issues and will appoint a Task Group to study same and recommend to the Technical Committee appropriate courses of action and amendments to NFPA 30. The Technical Committee notes that this action also addresses Committee Inputs Nos. 11 and 12.

Copyright Assignment

I, ALEX RALSTON, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am ALEX RALSTON, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
Public Comment No. 23-NFPA 30-2013 [Section No. 22.7.2]

22.7.2 Weak Roof-to-Shell Seam Construction Venting by Form of Construction.

If used, a weak roof-to-shell seam shall be constructed to fail preferential to any other seam and shall be designed in accordance with API Standard 650, Welded Steel Tanks for Oil Storage. If used, the secondary containment of Protected Tanks labeled UL 2085, shall be constructed to fail preferentially above the liquid level, as evidenced by the UL required marking.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30_Grainawi.pdf</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment
Related to Items 11 and 12

There is confusion on what is intended in NFPA 30 regarding emergency venting. The purpose of this proposal is to clarify that:

1) Table 22.4.1.1(a) is intended for atmospheric tanks and requires the tank pressure not to exceed 2.5 psi.
2) Section 21.4.2.1.4 also states that atmospheric tanks shall have emergency venting that functions at pressures no greater than 2.5 psi.
3) Clarify that the same emergency venting requirements are required for all areas of the tank: the primary tank, each compartment of the primary tank, any interstitial spaces, etc. as outlined in 22.7.1.1.1 and 22.7.1.1.2.
4) If the same emergency venting requirements are used for all areas, then it follows that the emergency venting of the secondary tank (interstitial space) must function at a maximum 2.5 psi.

Applying the same emergency relief venting requirements, which is that the venting mechanism must operate at a maximum 2.5 psig, is the easiest and safest way to assure that atmospheric tanks do not create any additional hazards in a fire situation. The concerns are twofold. First, is the need to assure that any area of the tank not rupturing in an unintended manner (keeping in mind that tanks vented by form of construction will rupture at an intended point on the tank). Second, is the need to assure that the primary tank not buckle or collapse which could push product out of the tank into an ongoing fire. The decision to use 2.5 as the maximum venting pressure was chosen a long time ago. It is a tried and true method. Tanks that have ruptured in fire situations have done so because they did not meet the requirements of this code. Shop fabricated atmospheric tanks, because of their smaller size than field erected tanks, have a greater wetted surface area to volume ratio, which in itself creates a higher potential for emergency venting operation.

Another consideration is the structural strength of the primary tank. If the interstitial space were to overpressurize, the primary tank at some pressure will collapse or buckle which could force product out of the tank, into the fire, further igniting the hazard. This again, is not a condition that has been encountered in double wall shop fabricated tanks.

UL 142, since the introduction of double wall tanks, has required that venting of the secondary tank meet the same requirements as the primary tank. Table 8.1 in UL 142, Emergency venting capacity for primary tanks and interstitial space of secondary containment tanks, uses Table 22.7.3.2, which suggests that NFPA should adopt the same policy.

Further, I have deleted the reference to the UL 142 standard in 22.7.2 because the weak roof to shell joint as a form of emergency venting is no longer allowed in UL 142. UL 2085 does, however, have a performance test for venting by form of construction, so I am proposing to add the UL 2085 standard.

I am also suggesting editorial corrections to the language for the purpose of making sections 22.4.1.1 and 22.7.1.1 easier to read. In section 22.4.1.1, I am proposing to change, “is not permitted to”, to, “shall not” because the first is generally considered to be permissive language. Also, an AHJ does not certify “such” anything, but rather certifies “the construction”.

Submitter Information Verification

Submitter Full Name: Lorri Grainawi
Organization: Steel Tank Institute
Street Address: City: State: Zip:
Submittal Date: Thu May 09 12:03:55 EDT 2013

Committee Statement
<table>
<thead>
<tr>
<th>Committee Action:</th>
<th>Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution:</td>
<td>The NFPA 30 Technical Committee on Tank Storage and Piping Systems has discussed the relationships between tank operating pressure (21.4.2.1), the 2.5 psi criterion for internal tank pressure during full fire involvement (22.4), required tank separation distances (22.4), and emergency vent capacity (22.7). After careful consideration, it is the Technical Committee's determination that additional and detailed study is needed to identify the basis for the 2.5 psi criterion and its originally intended relationship to emergency vent capacity and tank separation distance, before changes to NFPA 30 can be considered. This is particularly true regarding venting by form of construction, since this technique did not exist at the time. To this end, the Technical Committee has decided to defer any action on this and certain other proposed changes to NFPA 30 to the next document revision cycle. In the interim, the Technical Committee will begin a search for any historical data and information related to these issues and will appoint a Task Group to study same and recommend to the Technical Committee appropriate courses of action and amendments to NFPA 30. The Technical Committee notes that this action also addresses Committee Inputs Nos. 11 and 12.</td>
</tr>
</tbody>
</table>

Copyright Assignment

I, Lorri Grainawi, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

☑ By checking this box I affirm that I am Lorri Grainawi, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.11.4.1

The capacity of the listed primary tank shall not exceed the capacities given in Table 22.11.4.1.

Table 22.11.4.1 Maximum Capacities for Secondary Containment–Type Aboveground Storage Tanks

<table>
<thead>
<tr>
<th>Liquid Classification</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>gal</td>
<td>Capacity Gallons</td>
</tr>
<tr>
<td>l</td>
<td>Capacity Liters</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>50,000</td>
</tr>
<tr>
<td>45</td>
<td>189</td>
</tr>
<tr>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td>II and IIIA</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>50,000</td>
</tr>
<tr>
<td>75</td>
<td>189</td>
</tr>
<tr>
<td>700</td>
<td>250</td>
</tr>
</tbody>
</table>

Additional Proposed Changes

File Name	Description	Approved
DOC043013-04302013120847.pdf | Cover Sheet | |

Statement of Problem and Substantiation for Public Comment

NFPA has recognized secondary containment tanks as a form of spill control since the 199X Edition. The requirements of 22.11.4.2 through 22.11.4.10 were promulgated to assure safe storage. Other fire codes (IFC) and environmental regulations (EPA SPCC) also recognize shop-fabricated secondary containment tanks as a form of spill control, particularly with the inclusion of safety controls during tank filling operations. The International Fire Code requires listed secondary containment tanks. Listed secondary containment tanks can be shop-fabricated in capacities as large as 50,000 gallons. Larger tanks will reduce the number of fill operations, thereby further reducing the risk of spills from overfills. Overfills are the most common cause of releases from shop-fabricated AST's.
Submitter Full Name: JASON GREER
Organization: GREER TANK & WELDING, INC.
Street Address:
City:
State:
Zip:
Submittal Date: Tue Apr 30 12:17:18 EDT 2013

Committee Statement

Committee Action: Rejected

Copyright Assignment

I, JASON GREER, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

☐ By checking this box I affirm that I am JASON GREER, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.11.4.1
The capacity of the listed primary tank shall not exceed the capacities given in Table 22.11.4.1.

Table 22.11.4.1 Maximum Capacities for Secondary Containment–Type Aboveground Storage Tanks

<table>
<thead>
<tr>
<th>Liquid Classification</th>
<th>Capacity Gallons</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>50,000</td>
</tr>
<tr>
<td>45</td>
<td>189</td>
</tr>
<tr>
<td>400</td>
<td>250</td>
</tr>
<tr>
<td>II and IIIA</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>50,000</td>
</tr>
<tr>
<td>75</td>
<td>189</td>
</tr>
<tr>
<td>700</td>
<td>250</td>
</tr>
</tbody>
</table>

Additional Proposed Changes
File Name Description Approved
30_Mott-Smith_M-SCG_Comments_on_Secondary_Containment_Tanks_as_Spill_Control.pdf Cover Sheet

Statement of Problem and Substantiation for Public Comment
Many states that require secondary containment for shop-fabricated tanks have owners that are caught between the regulations of the State and NFPA with the current limitation on tank size. Data shows that double-wall tanks with overfill protection/shut-off devices have not been a problem. Larger tanks will reduce the number of fill operations and reduce the risk of overfills. The Florida Leak Autopsy Study demonstrated that overfills are the most common cause of releases from shop-fabricated AST’s.
Committee Statement

Committee Action: Rejected

Copyright Assignment

I, Marshall Mott-Smith, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

By checking this box I affirm that I am Marshall Mott-Smith, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.11.4.1 The capacity of the listed primary tank shall not exceed the capacities given in Table 22.11.4.1.

Table 22.11.4.1 Maximum Capacities for Secondary Containment–Type Aboveground Storage Tanks

<table>
<thead>
<tr>
<th>Liquid Classification</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50,000</td>
</tr>
<tr>
<td>II and IIIA</td>
<td>189</td>
</tr>
<tr>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>75</td>
<td>189</td>
</tr>
<tr>
<td>700</td>
<td>250</td>
</tr>
</tbody>
</table>

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30_Greer.pdf</td>
<td>Approved</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

NFPA has recognized secondary containment tanks as a form of spill control since the 199X Edition. The requirements of 22.11.4.2 through 22.11.4.10 were promulgated to assure safe storage. Other fire codes (IFC) and environmental regulations (EPA SPCC) also recognize shop-fabricated secondary containment tanks as a form of spill control, particularly with the inclusion of safety controls during tank filling operations. The International Fire Code requires listed secondary containment tanks. Listed secondary containment tanks can be shop-fabricated in capacities as large as 50,000 gallons. Larger tanks require measureably more heat input to heat the greater mass before problems will occur and therefore are not a detriment to safety.

Related Item
Public Input No. 15-NFPA 30-2012 [New Section after 21.3.5]
Submitter Full Name: Carl Greer
Organization: Service Welding & Machine Co.
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 09 12:44:44 EDT 2013

Committee Statement

Committee Action: Rejected

Copyright Assignment

I, Carl Greer, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

☑️ By checking this box I affirm that I am Carl Greer, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.11.4.1 The capacity of the listed primary tank shall not exceed the capacities given in Table 22.11.4.1.

Table 22.11.4.1 Maximum Capacities for Secondary Containment–Type Aboveground Storage Tanks

<table>
<thead>
<tr>
<th>Liquid Classification</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50,000</td>
</tr>
<tr>
<td>II and III</td>
<td>189</td>
</tr>
<tr>
<td>IIIA</td>
<td>250</td>
</tr>
<tr>
<td>III</td>
<td>50,000</td>
</tr>
<tr>
<td>II</td>
<td>189</td>
</tr>
<tr>
<td>III</td>
<td>250</td>
</tr>
</tbody>
</table>

Additional Proposed Changes

File Name: 30_Roggelin.pdf

Statement of Problem and Substantiation for Public Comment

NFPA has recognized secondary containment tanks as a form of spill control since the 199X Edition. The requirements of 22.11.4.2 through 22.11.4.10 were promulgated to assure safe storage. Other fire codes (IFC) and environmental regulations (EPA SPCC) also recognize shop-fabricated secondary containment tanks as a form of spill control, particularly with the inclusion of safety controls during tank filling operations. The International Fire Code requires listed secondary containment tanks. Listed secondary containment tanks can be shop-fabricated in capacities as large as 50,000 gallons. Larger tanks will reduce the number of fill operations, thereby further reducing the risk of spills from overfills. Overfills are the most common cause of releases from shop-fabricated AST's.
Submitter Full Name: ERNEST M ROGGELIN
Organization: PINELLAS CHD
Street Address:
City:
State:
Zip:
Submittal Date: Thu May 09 13:26:14 EDT 2013

Committee Statement

Committee Action: Rejected

Copyright Assignment

I, ERNEST M ROGGELIN, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

☑ By checking this box I affirm that I am ERNEST M ROGGELIN, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein; I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature.
22.11.4.1
The capacity of the listed primary tank shall not exceed the capacities given in Table 22.11.4.1.

Table 22.11.4.1 Maximum Capacities for Secondary Containment–Type Aboveground Storage Tanks

<table>
<thead>
<tr>
<th>Liquid Classification Capacity</th>
<th>gal L</th>
<th>I 12,000 45,400 II and IIA 20,000 75,700</th>
</tr>
</thead>
</table>

maximum capacity allowed by the listing for shop fabricated secondary containment tank construction.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>30_22.11.4.1.docx</td>
<td>Cover Sheet</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Comment

I am recommending that NFPA follow the EPA SPCC Rules and the International Fire Code and not require diking with listed shop-fabricated aboveground tanks storing Class I liquids over 12,000 gals and Class II & III liquids over 20,000 gals. The 10 safety features required for tanks below the above capacities should be adequate for capacities over the above capacities.

It doesn't make sense for a double-wall tank to also be inside a dike just because of its capacity.

Submitter Information Verification

Submitter Full Name: ALEX RALSTON
Organization: PETCON INC
Street Address:
City:
State:
Zip:
Submittal Date: Tue Apr 23 08:24:07 EDT 2013

Committee Statement
Committee Action: Rejected but see related SR
Resolution: SR-13-NFPA 30-2013
Statement: The NFPA 30 Technical Committee on Tank Storage and Piping Systems has been persuaded that the capacities given in former Table 22.11.4.1 are not technically justified. Spill prevention for these tanks is not related to the limit on capacity; it is entirely dependent on the provisions set forth in 22.11.4.2 through 22.11.4.10. Therefore the Technical Committee has decided to raise the capacity limits to 50,000 gallons, which is reasonable, given the fact that this is the maximum practical size for factory-built secondary containment-type tanks.

Copyright Assignment
I, ALEX RALSTON, hereby irrevocably grant and assign to the National Fire Protection Association (NFPA) all and full rights in copyright in this Public Comment (including both the Proposed Change and the Statement of Problem and Substantiation). I understand and intend that I acquire no rights, including rights as a joint author, in any publication of the NFPA in which this Public Comment in this or another similar or derivative form is used. I hereby warrant that I am the author of this Public Comment and that I have full power and authority to enter into this copyright assignment.

☑ By checking this box I affirm that I am ALEX RALSTON, and I agree to be legally bound by the above Copyright Assignment and the terms and conditions contained therein. I understand and intend that, by checking this box, I am creating an electronic signature that will, upon my submission of this form, have the same legal force and effect as a handwritten signature