NOTE: The following draft shows how the draft of the proposed 2012 edition of NFPA 70E looks based on NFPA staff’s reading of the Committee Actions contained in the NFPA 70E Technical Committee Report of the Technical Committees on Electrical Safety in the Workplace (i.e., the Committee Actions in the Report on Proposals). NFPA Staff frequently prepare and make available drafts such as this as an aid to participants in reviewing Technical Committee Reports. Participants are encouraged to review this Report on Proposals and to raise any issues they believe need resolution through the making of appropriate comments. Please submit your public comments on the proposals, not on the draft. As mentioned previously, the draft is only an aid for reviewing the document, incorporating the proposals.

For further information on NFPA codes and standards development rules or on how to participate in the NFPA codes and standards development process, check the NFPA website at www.nfpa.org, or contact NFPA Codes and Standards Administration at 617-770-3000, fax 617-770-3500, or email stds_admin@nfpa.org

NFPA 70E

Electrical Safety in the Workplace®

2012 Edition

IMPORTANT NOTE: This NFPA document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading “Important Notices and Disclaimers Concerning NFPA Documents.” They can also be obtained on request from NFPA or viewed at www.nfpa.org/disclaimers.

This 2009 edition includes the following usability features as aids to the user. Changes other than editorial are highlighted with gray shading within sections and with vertical ruling for large blocks of changed or new text and for new tables and changed or new figures. Where one or more complete paragraphs have been deleted, the deletion is indicated by a bullet (♦) between the paragraphs that remain. The index now has dictionary-style headers with helpful identifiers at the top of every index page.

A reference in brackets [ ] following a section or paragraph indicates material that has been extracted from another NFPA document. As an aid to the user, the complete title and edition of the source documents for extracts are given in Annex A. Extracted text may be edited for consistency and style and may include the revision of internal paragraph references and other references as appropriate. Requests for interpretations or revisions of extracted text shall be sent to the technical committee responsible for the source document.

Information on referenced publications can be found in Annex A and Annex B.
(5) Installations under the exclusive control of an electric utility where such installations:
   a. Consist of service drops or service laterals, and associated metering, or
   b. Are located in legally established easements or rights-of-way designated by or recognized by public service commissions, utility commissions, or other regulatory agencies having jurisdiction for such installations, or
   c. Are on property owned or leased by the electric utility for the purpose of communications, metering, generation, control, transformation, transmission, or distribution of electric energy.

90.3 Standard Arrangement. This standard is divided into the introduction and three chapters, as shown in Figure 90.3. Chapter 1 applies generally for safety-related work practices; Chapter 3 supplements or modifies Chapter 1 with safety requirements for special equipment. Chapter 2 applies to safety-related maintenance requirements for electrical equipment and installations in workplaces.

Annexes are not part of the requirements of this standard but are included for informational purposes only.

<table>
<thead>
<tr>
<th>Applies generally to electrical safety in the workplace</th>
<th>Chapter 1</th>
<th>Safety-Related Work Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety related maintenance requirements</td>
<td>Chapter 2</td>
<td>Safety-Related Maintenance Requirements</td>
</tr>
<tr>
<td>Safety requirements for special equipment; supplements and modifies Chapter 1</td>
<td>Chapter 3</td>
<td>Safety Requirements for Special Equipment</td>
</tr>
</tbody>
</table>

Figure 90.3 Standard Arrangement.

90.4 Organization. This standard is divided into the following three chapters and fifteen annexes:
(1) Chapter 1, Safety-Related Work Practices
(2) Chapter 2, Safety-Related Maintenance Requirements
(3) Chapter 3, Safety Requirements for Special Equipment
(4) Annex A, Referenced Publications
(5) Annex B, Informational References
(6) Annex C, Limits of Approach
(7) Annex D, Incident Energy and Flash Protection Boundary Calculation Methods
(8) Annex E, Electrical Safety Program
(9) Annex F, Hazard/Risk Evaluation Procedure
(10) Annex G, Sample Lockout/Tagout Procedure
(11) Annex H, Simplified, Two-Category, Arc-Rated Clothing System
(12) Annex I, Job Briefing and Planning Checklist
(13) Annex J, Energized Electrical Work Permit
(14) Annex K, General Categories of Electrical Hazards
(15) Annex L, Typical Application of Safeguards in the Cell Line Working Zone
(16) Annex M, Layering of Protective Clothing and Total System Arc Rating
(18) Annex O, Safety-Related Design Requirements

90.5 Mandatory Rules, Permissive Rules, and Explanatory Material.

(A) Mandatory Rules. Mandatory rules of this standard are those that identify actions that are specifically required or prohibited and are characterized by the use of the terms shall or shall not.

(B) Permissive Rules. Permissive rules of this standard are those that identify actions that are allowed but not required, are normally used to describe options or alternative methods, and are characterized by the use of the terms shall be permitted or shall not be required.

(C) Explanatory Material. Explanatory material, such as references to other standards, references to related sections of this standard, or information related to a Code rule, is included in this standard in the form of informational notes. Such notes are informational only and are not enforceable as requirements of this standard. [ROP-13]

Brackets containing section references to another NFPA document are for informational purposes only and are provided as a guide to indicate the source of the extracted text. These bracketed references immediately follow the extracted text.

Informational Note: The format and language used in this standard follow guidelines established by NFPA and published in the NEC Style Manual. Copies of this manual can be obtained from NFPA.

90.6 Formal Interpretations. To promote uniformity of interpretation and application of the provisions of this standard, formal interpretation procedures have been established and are found in the NFPA Regulations Governing Committee Projects.
Chapter 1 Safety-Related Work Practices

ARTICLE 100
Definitions

Scope. This article contains only those definitions essential to the proper application of this standard. It is not intended to include commonly defined general terms or commonly defined technical terms from related codes and standards. In general, only those terms that are used in two or more articles are defined in Article 100. Other definitions are included in the article in which they are used but may be referenced in Article 100. The definitions in this article shall apply wherever the terms are used throughout this standard.

I. General

Accessible (as applied to equipment). Admitting close approach; not guarded by locked doors, elevation, or other effective means. [70, 2008]

Accessible (as applied to wiring methods). Capable of being removed or exposed without damaging the building structure or finish or not permanently closed in by the structure or finish of the building. [70, 2008]

Accessible, Readily (Readily Accessible). Capable of being reached quickly for operation, renewal, or inspections without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders, and so forth. [70, 2008]

Ampacity. The current, in amperes, that a conductor can carry continuously under the conditions of use without exceeding its temperature rating. [70, 2008]

Approved. Acceptable to the authority having jurisdiction.

Arc Flash Hazard. A dangerous condition associated with the possible release of energy caused by an electric arc.

Informational Note No. 1: An arc flash hazard may exist when energized electrical conductors or circuit parts are exposed or when they are within equipment in a guarded or enclosed condition, provided a person is interacting with the equipment in such a manner that could cause an electric arc. Under normal operating conditions, enclosed energized equipment that has been properly installed and maintained is not likely to pose an arc flash hazard.

Informational Note No. 2: See Table 130.8(C)(15)(1) for examples of activities that could pose an arc flash hazard. [ROP-18]

Arc Flash Hazard Analysis. A study investigating a worker’s potential exposure to arc-flash energy, conducted for the purpose of injury prevention and the determination of safe work practices, arc flash protection boundary, and the appropriate levels of PPE.

Arc Flash Suit. A complete arc-rated clothing and equipment system that covers the entire body, except for the hands and feet. [ROP-22]

Informational Note: An arc-flash suit may include pants or overalls, jacket, or a coverall and beekeeper-type hood fitted with a face shield. [ROP-22]

Arc Rating. The value attributed to materials that describes their performance to exposure to an electrical arc discharge. The arc rating is expressed in cal/cm² and is derived from the determined value of the arc thermal performance value (ATPV) or energy of breakopen threshold (EBT) (should a material system exhibit a breakopen response below the ATPV value). Arc rating is reported as either ATPV or EBT, whichever is the lower value. [ROP-24]

Informational Note No. 1: Breakopen is a material response evidenced by the formation of one or more holes in the innermost layer of arc-rated material that would allow flame to pass through the material.

Informational Note No. 2: ATPV is defined in ASTM F 1959-06 as the incident energy on a material or a multi-layer system of materials that results in a 50% probability that sufficient heat transfer through the tested specimen is predicted to cause the onset of a second-degree skin burn injury based on the Stoll curve, cal/cm². [ROP-24]

Informational Note No. 3: EBT is defined in ASTM F 1959-06 as the incident energy on a material or material system that results in a 50% probability of breakopen. Breakopen is defined as a hole with an area of 1.6 cm² (0.5 in²) or an opening with a 2.5 cm (1.0 in.) in any dimension. [ROP-24]

Attachment Plug (Plug Cap) (Plug). A device that, by insertion in a receptacle, establishes a connection between the conductors of the attached flexible cord and the conductors connected permanently to the receptacle. [70, 2008]

Authority Having Jurisdiction (AHJ). An organization, office, or individual responsible for enforcing the requirements of a code or standard, or approving equipment, materials, an installation, or a procedure.

Informational Note: The phrase “authority having jurisdiction,” or its acronym AHJ, is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau; labor department; or health department; building official; electrical inspector; or others having statutory author-
ity. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

Automatic. Performing a function without the necessity of human intervention. [ROP-25]

Balaclava (Sock Hood). An arc-rated hood that protects the neck and head except for facial area of the eyes and nose. [ROP-27]

Bare-Hand Work. A technique of performing work on energized electrical conductors or circuit parts, after the employee has been raised to the potential of the conductor or circuit part.

Barricade. A physical obstruction such as tapes, cones, or A-frame-type wood or metal structures intended to provide a warning about and to limit access to a hazardous area.

Barrier. A physical obstruction that is intended to prevent contact with equipment or energized electrical conductors and circuit parts or to prevent unauthorized access to a work area.

Bonded (Bonding). Connected to establish electrical continuity and conductivity. [70, 2008]

Bonding Jumper. A reliable conductor to ensure the required electrical conductivity between metal parts required to be electrically connected. [70, 2008]

Boundary, Arc Flash. [ROP-30] When an arc flash hazard exists, an approach limit at a distance from a prospective arc source within which a person could receive a second degree burn if an electrical arc flash were to occur.

Informational Note: A second degree burn is possible by an exposure of unprotected skin to an electric arc flash above the incident-energy level of 5 J/cm² (1.2 cal/cm²). [ROP-29]

Boundary, Limited Approach. An approach limit at a distance from an exposed energized electrical conductor or circuit part within which a shock hazard exists.

Boundary, Prohibited Approach. An approach limit at a distance from an exposed energized electrical conductor or circuit part within which work is considered the same as making contact with the electrical conductor or circuit part.

Boundary, Restricted Approach. An approach limit at a distance from an exposed energized electrical conductor or circuit part within which there is an increased risk of shock, due to electrical arc over combined with inadvertent movement, for personnel working in close proximity to the energized electrical conductor or circuit part.

Branch Circuit. The circuit conductors between the final overcurrent device protecting the circuit and the outlet(s). [70, 2008]

Building. Any structure used or intended for supporting or sheltering any use or occupancy. [101, 2009] [ROP-37]

Cabinet. An enclosure that is designed for either surface mounting or flush mounting and is provided with a frame, mat, or trim in which a swinging door or doors are or can be hung. [70, 2008]

Circuit Breaker. A device designed to open and close a circuit by nonautomatic means and to open the circuit automatically on a predetermined overcurrent without damage to itself when properly applied within its rating. [70, 2008]

Informational Note: The automatic opening means can be integral, direct acting with the circuit breaker, or remote from the circuit breaker. [70, 2008]

Conductive. Suitable for carrying electric current. [ROP-38, ROP-39, ROP-40]

Controller. A device or group of devices that serves to govern, in some predetermined manner, the electric power delivered to the apparatus to which it is connected. [70, 2008]

Current-Limiting Overcurrent Protective Device. A device that, when interrupting currents in its current-limiting range, reduces the current flowing in the faulted circuit to a magnitude substantially less than that obtainable in the same circuit if the device were replaced with a solid conductor having comparable impedance.

Cutout. An assembly of a fuse support with either a fuse-holder, fuse carrier, or disconnecting blade. The fuseholder or fuse carrier may include a conducting element (fuse link), or may act as the disconnecting blade by the inclusion of a nonfusible member.

Cutout Box. An enclosure designed for surface mounting that has swinging doors or covers secured directly to and telescoping with the walls of the box proper. [70, 2008]

Deenergized. Free from any electrical connection to a source of potential difference and from electrical charge; not having a potential different from that of the earth.

Device. A unit of an electrical system that carries or controls electric energy as its principal function. [70, 2008]

Disconnecting Means. A device, or group of devices, or other means by which the conductors of a circuit can be disconnected from their source of supply. [70, 2008]

Disconnecting (or Isolating) Switch (Disconnecter, Isolator). A mechanical switching device used for isolating a circuit or equipment from a source of power.
**Electrical Hazard.** A dangerous condition such that contact or equipment failure can result in electric shock, arc flash burn, thermal burn, or blast.

Informational Note: Class 2 power supplies, listed low voltage lighting systems, and similar sources are examples of circuits or systems that are not considered an electrical hazard.

**Electrical Safety.** Recognizing hazards associated with the use of electrical energy and taking precautions so that hazards do not cause injury or death.

**Electrically Safe Work Condition.** A state in which an electrical conductor or circuit part has been disconnected from energized parts, locked/tagged in accordance with established standards, tested to ensure the absence of voltage, and grounded if determined necessary.

**Enclosed.** Surrounded by a case, housing, fence, or wall(s) that prevents persons from accidentally contacting energized parts. [70, 2008] [ROP-49]

**Enclosure.** The case or housing of apparatus, or the fence or walls surrounding an installation to prevent personnel from accidentally contacting energized parts or to protect the equipment from physical damage. [70, 2008] [ROP-49]

**Energized.** Electrically connected to, or is, a source of voltage. [70, 2008]

**Equipment.** A general term, including material, fittings, devices, appliances, luminaires, apparatus, machinery, and the like used as a part of, or in connection with, an electrical installation. [70, 2008] [ROP-50]

**Exposed (as applied to energized electrical conductors or circuit parts).** Capable of being inadvertently touched or approached nearer than a safe distance by a person. It is applied to electrical conductors or circuit parts that are not suitably guarded, isolated, or insulated.

**Exposed (as applied to wiring methods).** On or attached to the surface or behind panels designed to allow access. [70, 2008] [ROP-53, ROP-54]

**Fitting.** An accessory such as a locknut, bushing, or other part of a wiring system that is intended primarily to perform a mechanical rather than an electrical function. [70, 2008] [ROP-55]

**Fuse.** An overcurrent protective device with a circuit-opening fusible part that is heated and severed by the passage of overcurrent through it.

Informational Note: A fuse comprises all the parts that form a unit capable of performing the prescribed functions.

It may or may not be the complete device necessary to connect it into an electrical circuit.

**Ground.** The earth. [70, 2008]

**Grounded (Grounding).** Connected (connecting) to ground or to a conductive body that extends the ground connection. [70, 2008]

**Grounded, Solidly.** Connected to ground without inserting any resistor or impedance device. [70, 2008]

**Grounded Conductor.** A system or circuit conductor that is intentionally grounded. [70, 2008]

**Ground Fault.** An unintentional, electrically conducting connection between an ungrounded conductor of an electrical circuit and the normally non–current-carrying conductors, metallic enclosures, metallic raceways, metallic equipment, or earth.

**Ground-Fault Circuit-Interrupter (GFCI).** A device intended for the protection of personnel that functions to de-energize a circuit or portion thereof within an established period of time when a current to ground exceeds the values established for a Class A device. [70, 2008]

Informational Note: Class A ground-fault circuit-interrupters trip when the current to ground is 6 mA or higher and do not trip when the current to ground is less than 4 mA. For further information, see ANSI/UL 943, Standard for Ground-Fault Circuit Interrupters. [ROP-59, ROP-60]

**Grounding Conductor, Equipment (EGC).** The conductive path installed to connect normally non–current-carrying metal parts of equipment together and to the system grounded conductor or to the grounding electrode conductor, or both. [70, 2008]

Informational Note No. 1: It is recognized that the equipment grounding conductor also performs bonding.

Informational Note No. 2: See NFPA 70, Section 250.118 for a list of acceptable equipment grounding conductors.

**Grounding Electrode.** A conducting object through which a direct connection to earth is established. [70, 2008]

**Grounding Electrode Conductor.** A conductor used to connect the system grounded conductor or the equipment to a grounding electrode or to a point on the grounding electrode system. [70, 2008]

**Guarded.** Covered, shielded, fenced, enclosed, or otherwise protected by means of suitable covers, casings, barriers, rails, screens, mats, or platforms to remove the likelihood of approach or contact by persons or objects to a point of danger. [70, 2008]

**Incident Energy.** The amount of energy impressed on a surface, a certain distance from the source, generated during an electrical arc event. One of the units used to measure
Incident energy is calories per centimeter squared (cal/cm²).

**Incident Energy Analysis.** A study used to predict the incident energy of an arc flash for a specified set of conditions. [ROP-19]

**Insulated.** Separated from other conducting surfaces by a dielectric (including air space) offering a high resistance to the passage of current.

Informational Note: When an object is said to be insulated, it is understood to be insulated for the conditions to which it is normally subject. Otherwise, it is, within the purpose of these rules, uninsulated.

**Interrupter Switch.** A switch capable of making, carrying, and interrupting specified currents.

**Interrupting Rating.** The highest current at rated voltage that a device is intended to interrupt under standard test conditions. [70, 2008]

Informational Note: Equipment intended to interrupt current at other than fault levels may have its interrupting rating implied in other ratings, such as horsepower or locked rotor current.

**Isolated (as applied to location).** Not readily accessible to persons unless special means for access are used. [70, 2008]

**Labeled.** Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

**Listed.** Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or services meets appropriate designated standards or has been tested and found suitable for a specified purpose.

Informational Note: The means for identifying listed equipment may vary for each organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. Use of the system employed by the listing organization allows the authority having jurisdiction to identify a listed product. [ROP-61]

**Luminaire.** A complete lighting unit consisting of a lamp or lamps, together with the parts designed to distribute the light, to position and protect the lamps and ballast (where applicable), and to connect the lamps to the power supply. It may also include parts to protect the light source or the ballast or to distribute the light. A lampholder is not a luminaire. [70, 2008]

**Motor Control Center.** An assembly of one or more enclosed sections having a common power bus and principally containing motor control units. [70, 2008]

**Neutral Conductor.** The conductor connected to the neutral point of a system that is intended to carry current under normal conditions. [70, 2008] [ROP-62, ROP-63]

**Outlet.** A point on the wiring system at which current is taken to supply utilization equipment. [70, 2008]

**Overcurrent.** Any current in excess of the rated current of equipment or the ampacity of a conductor. It may result from overload, short circuit, or ground fault. [70, 2008]

Informational Note: A current in excess of rating may be accommodated by certain equipment and conductors for a given set of conditions. Therefore, the rules for overcurrent protection are specific for particular situations.

**Overload.** Operation of equipment in excess of normal, full-load rating, or of a conductor in excess of rated ampacity that, when it persists for a sufficient length of time, would cause damage or dangerous overheating. A fault, such as a short circuit or ground fault, is not an overload. [70, 2008]

**Panelboard.** A single panel or group of panel units designed for assembly in the form of a single panel, including buses and automatic overcurrent devices, and equipped with or without switches for the control of light, heat, or power circuits; designed to be placed in a cabinet or cutout box placed in or against a wall, partition, or other support; and accessible only from the front. [70, 2008]

**Premises Wiring (System).** Interior and exterior wiring, including power, lighting, control, and signal circuit wiring together with all their associated hardware, fittings, and wiring devices, both permanently and temporarily installed. This includes: (a) wiring from the service point or power source to the outlets; or (b) wiring from and including the power source to the outlets where there is no service point.

Such wiring does not include wiring internal to appliances, luminaires, motors, controllers, motor control centers, and similar equipment. [70, 2008]

**Qualified Person.** One who has skills and knowledge related to the construction and operation of the electrical equipment and installations and has received safety training to recognize and avoid the hazards involved. [70, 2008]

**Raceway.** An enclosed channel of metal or nonmetallic materials designed expressly for holding wires, cables, or
busbars, with additional functions as permitted in this standard. Raceways include, but are not limited to, rigid metal conduit, rigid nonmetallic conduit, intermediate metal conduit, liquidtight flexible conduit, flexible metallic tubing, flexible metal conduit, electrical metallic tubing, electrical nonmetallic tubing, underfloor raceways, cellular concrete floor raceways, cellular metal floor raceways, surface raceways, wireways, and busways. [70, 2008]

**Receptacle.** A receptacle is a contact device installed at the outlet for the connection of an attachment plug. A single receptacle is a single contact device with no other contact device on the same yoke. A multiple receptacle is two or more contact devices on the same yoke. [70, 2008] [ROP-65, ROP-66]

- **Service Conductors.** The conductors from the service point to the service disconnecting means. [70, 2008]
- **Service Drop.** The overhead service conductors from the last pole or other aerial support to and including the splices, if any, connecting to the service-entrance conductors at the building or other structure. [70, 2008] [ROP-68, ROP-69, ROP-67]
- **Service Lateral.** The underground service conductors between the street main, including any risers at a pole or other structure or from transformers, and the first point of connection to the service-entrance conductors in a terminal box, meter, or other enclosure, inside or outside the building. Where there is no terminal box, meter, or other enclosure, the point of connection is considered to be the point of entrance of the service conductors into the building. [70, 2008]

- **Service Point.** The point of connection between the facilities of the serving utility and the premises wiring. [70, 2008]
- **Shock Hazard.** A dangerous condition associated with the possible release of energy caused by contact or approach to energized electrical conductors or circuit parts.

- **Short-Circuit Current Rating.** The prospective symmetrical fault current at a nominal voltage to which an apparatus or system is able to be connected without sustaining damage exceeding defined acceptance criteria. [70, 2008]

- **Single-Line Diagram.** A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used in the circuit or system.

- **Special Permission.** The written consent of the authority having jurisdiction. [70, 2008]

- **Step Potential.** A ground potential gradient difference that can cause current flow from foot to foot through the body.

- **Structure.** That which is built or constructed. [70, 2008]

- **Switch, Isolating.** A switch intended for isolating an electric circuit from the source of power. It has no interrupting rating, and it is intended to be operated only after the circuit has been opened by some other means. [70, 2008]

- **Switchboard.** A large single panel, frame, or assembly of panels on which are mounted on the face, back, or both, switches, overcurrent and other protective devices, buses, and usually instruments. Switchboards are generally accessible from the rear as well as from the front and are not intended to be installed in cabinets. [70, 2008]

- **Switchgear, Arc-Resistant.** Equipment designed to withstand the effects of an internal arcing fault and that directs the internally released energy away from the employee.

- **Switchgear, Metal-Clad.** A switchgear assembly completely enclosed on all sides and top with sheet metal, having drawerout switching and interrupting devices, and all live parts enclosed within grounded metal compartments.

- **Switchgear, Metal-Enclosed.** A switchgear assembly completely enclosed on all sides and top with sheet metal (except for ventilating openings and inspection windows), containing primary power circuit switching, interrupting devices, or both, with buses and connections. This assembly may include control and auxiliary devices. Access to the interior of the enclosure is provided by doors, removable covers, or both. Metal-enclosed switchgear is available in non-arc-resistant or arc-resistant constructions.

- **Switching Device.** A device designed to close, open, or both, one or more electric circuits.

- **Touch Potential.** A ground potential gradient difference that can cause current flow from hand to hand, hand to foot, or another path, other than foot to foot, through the body.

- **Ungrounded.** Not connected to ground or to a conductive body that extends the ground connection. [70, 2008]

- **Unqualified Person.** A person who is not a qualified person.

- **Utilization Equipment.** Equipment that utilizes electric energy for electronic, electromechanical, chemical, heating, lighting, or similar purposes. [70, 2008]

- **Ventilated.** Provided with a means to permit circulation of air sufficient to remove an excess of heat, fumes, or vapors. [70, 2008]

- **Voltage (of a Circuit).** The greatest root-mean-square (rms) (effective) difference of potential between any two conductors of the circuit concerned. [70, 2008]

  Informational Note: Some systems, such as 3-phase 4-wire, single-phase 3-wire, and 3-wire direct-current, may have various circuits of various voltages.
Voltage, Nominal. A nominal value assigned to a circuit or system for the purpose of conveniently designating its voltage class (e.g., 120/240 volts, 480Y/277 volts, 600 volts). The actual voltage at which a circuit operates can vary from the nominal within a range that permits satisfactory operation of equipment. [70, 2008]

Informational Note: See ANSI C84.1-2006, Electric Power Systems and Equipment — Voltage Ratings (60 Hz). [ROP-72]

* Working On (energized electrical conductors or circuit parts). Intentionally coming in contact with energized electrical conductors or circuit parts with the hands, feet, or other body parts, with tools, probes, or with test equipment, regardless of the personal protective equipment a person is wearing. There are two categories of “working on”: Diagnostic (testing) is taking readings or measurements of electrical equipment with approved test equipment that does not require making any physical change to the equipment; repair is any physical alteration of electrical equipment (such as making or tightening connections, removing or replacing components, etc.). [ROP-73]

---

**ARTICLE 105**

Application of Safety-Related Work Practices [ROP-76]

105.1 Scope. Chapter 1 covers electrical safety-related work practices and procedures for employees who are exposed to an electrical hazard in workplaces covered in the scope of this standard. Electric circuits and equipment not included in the scope of this standard might present a hazard to employees working near such facilities. [ROP-76, ROP-77]

105.2 Purpose. These practices and procedures are intended to provide for employee safety relative to specific identified electrical hazards in the workplace. [ROP-76]

Informational Note: For general categories of electrical hazards, see Annex K.

105.3 Responsibility [ROP-80]. The employer shall provide the safety-related work practices and shall train the employee who shall then implement them. [ROP-76]

105.4 Organization. Chapter 1 of this standard is divided into four articles. Article 100 provides definitions for terms used in one or more of the chapters of this document. Article 110 provides general requirements for electrical safety-related work practices. Article 120 provides requirements for establishing an electrically safe work condition. Article 130 provides requirements for work involving electrical hazards. [ROP-76]

---

**ARTICLE 110**

General Requirements for Electrical Safety-Related Work Practices

110.1 Relationships with Contractors (Outside Service Personnel, etc.).

(A) Host Employer Responsibilities.

(1) The host employer shall inform contract employers of:
   a. Known hazards that are covered by this standard, that are related to the contract employer’s work, and that might not be recognized by the contract employer or its employees
   b. Information about the employer’s installation that the contract employer needs to make the assessments required by Chapter 1

(2) The host employer shall report observed contract-employer-related violations of this standard to the contract employer.

(B) Contract Employer Responsibilities.

(1) The contract employer shall ensure that each of his or her employees is instructed in the hazards communicated to the contract employer by the host employer. This instruction is in addition to the basic training required by this standard.

(2) The contract employer shall ensure that each of his or her employees follows the work practices required by this standard and safety-related work rules required by the host employer.

(3) The contract employer shall advise the host employer of:
   a. Any unique hazards presented by the contract employer’s work,
   b. Any unanticipated hazards found during the contract employer’s work that the host employer did not mention, and
   c. The measures the contractor took to correct any violations reported by the host employer under paragraph (A)(2) of this section and to prevent such violation from recurring in the future.

(C) Documentation. There shall be a documented meeting between the host employer and the contract employer. [ROP-89]

110.2 Training Requirements.

(A) Safety Training. The training requirements contained in this section shall apply to employees who face a risk of
electrical hazard that is not reduced to a safe level by the applicable electrical installation requirements. Such employees shall be trained to understand the specific hazards associated with electrical energy. They shall be trained in safety-related work practices and procedural requirements as necessary to provide protection from the electrical hazards associated with their respective job or task assignments. Employees shall be trained to identify and understand the relationship between electrical hazards and possible injury.

Informational Note: For further information concerning installation requirements, see NFPA 70®, National Electrical Code®, 2008 edition.

(B) Type of Training. The training required by this section shall be classroom or on-the-job type, or a combination of the two. The degree of training provided shall be determined by the risk to the employee.

(C) Emergency Procedures. Employees responsible for taking action in case of emergency shall be trained in methods of release of victims from contact with exposed energized electrical conductors or circuit parts. Employees shall be regularly instructed in methods of first aid and emergency procedures, such as approved methods of resuscitation, if their duties warrant such training. Training of employees in approved methods of resuscitation, including cardiopulmonary resuscitation and automatic external defibrillator (AED) use, shall be certified by the employer annually. [ROP-93] [ROP-92]

(D) Employee Training.

(1) Qualified Person. A qualified person shall be trained and knowledgeable of the construction and operation of equipment or a specific work method and be trained to recognize and avoid the electrical hazards that might be present with respect to that equipment or work method.

(a) Such persons shall also be familiar with the proper use of the special precautionary techniques, personal protective equipment, including arc-flash, insulating and shielding materials, and insulated tools and test equipment. A person can be considered qualified with respect to certain equipment and methods but still be unqualified for others.

(b) Such persons permitted to work within the Limited Approach Boundary of exposed energized electrical conductors and circuit parts operating at 50 volts or more shall, at a minimum, be additionally trained in all of the following:

(1) The skills and techniques necessary to distinguish exposed energized electrical conductors and circuit parts from other parts of electrical equipment

(2) The skills and techniques necessary to determine the nominal voltage of exposed energized electrical conductors and circuit parts

(3) The approach distances specified in Table 130.4(C)(1) and the corresponding voltages to which the qualified person will be exposed

(4) The decision-making process necessary to determine the degree and extent of the hazard and the personal protective equipment and job planning necessary to perform the task safely

(c) An employee who is undergoing on-the-job training for the purpose of obtaining the skills and knowledge necessary to be considered a qualified person and who, in the course of such training, has demonstrated an ability to perform specific duties safely at his or her level of training and who is under the direct supervision of a qualified person shall be considered to be a qualified person for the performance of those specific duties. [ROP-97] [ROP-98]

(d) Tasks that are performed less often than once per year shall require retraining before the performance of the work practices involved.

(e) Employees shall be trained to select an appropriate voltage detector and shall demonstrate how to use a device to verify the absence of voltage, including interpreting indications provided by the device. The training shall include information that enables the employee to understand all limitations of each specific voltage detector that may be used.

(f) The employer shall determine, through regular supervision and through inspections conducted on at least an annual basis that each employee is complying with the safety-related work practices required by this standard. [ROP-100]

(2) Unqualified Persons. Unqualified persons shall be trained in and be familiar with any electrical safety-related practices necessary for their safety. [ROP-101]

(3) Retraining. An employee shall receive additional training (or retraining) under any of the following conditions:

(a) If the supervision or annual inspections indicate that the employee is not complying with the safety-related work practices

(b) If new technology, new types of equipment, or changes in procedures necessitate the use of safety-related work practices that are different from those that the employee would normally use

(c) If he or she must employ safety-related work practices that are not normally used during his or her regular job duties

(d) Retraining shall be performed at intervals not to exceed 3 years. [ROP-104]

(E) Training Documentation. The employer shall document that each employee has received the training required by paragraph 110.2 (D). This documentation shall be made
when the employee demonstrates proficiency in the work practices involved and shall be maintained for the duration of the employee’s employment. The documentation shall contain the content of the training, each employee’s name, and dates of training. [ROP-105]

Informational Note: Employment records that indicate that an employee has received the required training are an acceptable means of meeting this requirement.

110.3 Electrical Safety Program.

(A) General. The employer shall implement and document an overall electrical safety program that directs activity appropriate for the electrical hazards; voltage, energy level, and circuit conditions. [ROP-107]

Informational Note No. 1: Safety-related work practices are just one component of an overall electrical safety program.


(B) Awareness and Self-Discipline. The electrical safety program shall be designed to provide an awareness of the potential electrical hazards to employees who work in an environment with the presence of electrical hazards. The program shall be developed to provide the required self-discipline for all employees who must perform work that may involve electrical hazards. The program shall instill safety principles and controls. [ROP-108]

(C) Electrical Safety Program Principles. The electrical safety program shall identify the principles upon which it is based.

Informational Note: For examples of typical electrical safety program principles, see Annex E.

(D) Electrical Safety Program Controls. An electrical safety program shall identify the controls by which it is measured and monitored.

Informational Note: For examples of typical electrical safety program controls, see Annex E.

(E) Electrical Safety Program Procedures. An electrical safety program shall identify the procedures for working within the Limited Approach Boundary and for working within the arc flash boundary before work is started. [ROP-111]

Informational Note: For an example of a typical electrical safety program procedure, see Annex E.

(F) Hazard/Risk Evaluation Procedure. An electrical safety program shall identify a hazard/risk evaluation procedure to be used before work is started within the Limited Approach Boundary and before work is started within the arc flash boundary of energized electrical conductors and circuit parts operating at 50 volts or more or where an electrical hazard exists. The procedure shall identify the hazard/risk process that shall be used by employees to evaluate tasks before work is started. [ROP-113]

Informational Note No. 1: The hazard/risk evaluation procedure may include identifying when a second person could be required and the training and equipment that person should have.

Informational Note No. 2: For an example of a Hazard/Risk Analysis Evaluation Procedure Flow Chart, see Annex F.

Informational Note No. 3: For an example of a Hazard/Risk Evaluation Procedure, see Annex F.

(G) Job Briefing.

(1) General. Before starting each job, the employee in charge shall conduct a job briefing with the employees involved. The briefing shall cover such subjects as hazards associated with the job, work procedures involved, special precautions, energy source controls, and personal protective equipment requirements. Additional job briefings shall be held if changes that might affect the safety of employees occur during the course of the work. [ROP-116]

(2) Repetitive or Similar Tasks. If the work or operations to be performed during the work day or shift are repetitive and similar, at least one job briefing shall be conducted before the start of the first job of the day or shift. [ROP-116]

(3) Routine Work. Prior to starting work, a brief discussion shall be satisfactory if the work involved is routine and if the employee is qualified for the task. A more extensive discussion shall be conducted if either of the following apply: [ROP-119]

(1) The work is complicated or particularly hazardous.

(2) The employee cannot be expected to recognize and avoid the hazards involved in the job.

Informational Note: For an example of a job briefing form and planning checklist, see Annex I.

(H) Electrical Safety Auditing.

(1) Electrical Safety Program. The electrical safety program shall be audited to help ensure that the principles and procedures of the electrical safety program are still in compliance with the latest requirements and regulations. The frequency of the audit shall not exceed three years. [ROP-122]

(2) Field Work. Auditing of field work shall be performed to help assure that the requirements contained in the procedures of the electrical safety program are being followed.
ARTICLE 110 — GENERAL REQUIREMENTS FOR ELECTRICAL SAFETY-RELATED WORK PRACTICES

110.4 Use of Equipment.

(A) Test Instruments and Equipment.

(1) Testing. Only qualified persons shall perform tasks such as testing, troubleshooting, voltage measuring, etc., within the Limited Approach Boundary of energized electrical conductors or circuit parts operating at 50 volts or more or where an electrical hazard exists. [ROP-271a] [ROP-295]

(2) Rating. Test instruments, equipment, and their accessories shall be rated for circuits and equipment to which they will be connected. Test instruments and equipment and their accessories shall be designed for the environment to which they will be exposed, and for the manner in which they will be used.

Informational Note: See ANSI/ISA-61010-1 (82.02.01)/UL 61010-1, Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements, for rating and design requirements for voltage measurement and test instruments intended for use on electrical systems 1000 volts and below.

(3) Design. Test instruments, equipment, and their accessories shall be designed for the environment to which they will be exposed, and for the manner in which they will be used.

(4) Visual Inspection. Test instruments and equipment and all associated test leads, cables, power cords, probes, and connectors shall be visually inspected for external defects and damage before each use. If there is a defect or evidence of damage that might expose an employee to injury, the defective or damaged item shall be removed from service, and no employee shall use it until repairs and tests necessary to render the equipment safe have been made.

(5) Operation Verification. When test instruments are used for testing the absence of voltage on conductors or circuit parts operating at 50 volts or more, the operation of the test instrument shall be verified before and after an absence of voltage test is performed. [ROP-148]

(B) Portable Electric Equipment. This section applies to the use of cord-and-plug-connected equipment, including cord sets (extension cords).

(1) Handling. Portable equipment shall be handled in a manner that will not cause damage. Flexible electric cords connected to equipment shall not be used for raising or lowering the equipment. Flexible cords shall not be fas-

tened with staples or hung in such a fashion as could damage the outer jacket or insulation.

(2) Grounding-Type Equipment.

(a) A flexible cord used with grounding-type utilization equipment shall contain an equipment grounding conductor.

(b) Attachment plugs and receptacles shall not be connected or altered in a manner that would interrupt continuity of the equipment grounding conductor. Additionally, these devices shall not be altered in order to allow use in a manner that was not intended by the manufacturer.

(c) Adapters that interrupt the continuity of the equipment grounding conductor shall not be used.


(a) Frequency of Inspection. Before each use, portable cord-and-plug-connected equipment shall be visually inspected for external defects (such as loose parts or deformed and missing pins) and for evidence of possible internal damage (such as a pinched or crushed outer jacket).

Exception: Cord-and-plug-connected equipment and flexible cord sets (extension cords) that remain connected once they are put in place and are not exposed to damage shall not be required to be visually inspected until they are relocated.

(b) Defective Equipment. If there is a defect or evidence of damage that might expose an employee to injury, the defective or damaged item shall be removed from service, and no employee shall use it until repairs and tests necessary to render the equipment safe have been made.

(c) Proper Mating. When an attachment plug is to be connected to a receptacle, the relationship of the plug and receptacle contacts shall first be checked to ensure that they are of mating configurations.

(d) Conductive Work Locations. Portable electric equipment used in highly conductive work locations (such as those inundated with water or other conductive liquids) or in job locations where employees are likely to contact water or conductive liquids shall be approved for those locations. In job locations where employees are likely to contact or be drenched with water or conductive liquids, ground-fault circuit-interrupter protection for personnel shall also be used.

Informational Note: The hazard/risk evaluation procedure could also include identifying when the use of portable tools and equipment powered by sources other than 120 volts ac such as batteries, air, hydraulics, etc. should be used to minimize the potential for injury from electrical hazards for tasks performed in conductive or wet locations.
(4) Connecting Attachment Plugs.

(a) Employees’ hands shall not be wet when plugging and unplugging flexible cords and cord-and-plug-connected equipment if energized equipment is involved.

(b) Energized plug and receptacle connections shall be handled only with insulating protective equipment if the condition of the connection could provide a conductive path to the employee’s hand (if, for example, a cord connector is wet from being immersed in water).

(c) Locking-type connectors shall be secured after connection.

(C) GFCI Protection. Employees shall be provided with GFCI protection where required by applicable state, federal or local codes and standards. Listed cord sets or devices incorporating listed ground-fault circuit-interrupter protection for personnel identified for portable use shall be permitted. [ROP-147]

(I) Devices. GFCI protection devices shall be tested per manufacturer’s instructions. [ROP-147]

(2) Outdoors. GFCI protection shall be provided when an employee is outdoors and operating or using cord and plug connected equipment supplied by 125 volt, 15-, 20-, or 30-ampere circuits. Where employees working outdoors operate or use equipment supplied by other than 125 volt, 15-, 20-, or 30-ampere circuits, an assured equipment grounding conductor program shall be implemented. [ROP-147]

(D) GFCI Protection Devices. GFCI protection devices shall be tested per manufacturer’s instructions.

(E) Overcurrent Protection Modification. Overcurrent protection of circuits and conductors shall not be modified, even on a temporary basis, beyond that permitted by applicable portions of electrical codes and standards dealing with overcurrent protection.

Informational Note: For further information concerning electrical codes and standards dealing with overcurrent protection, refer to Article 240 of NFPA 70, National Electrical Code.

110.5 Underground Electrical Lines and Equipment.

Before excavation starts and where there exists reasonable possibility of contacting electrical or utility lines or equipment, the employer shall take the necessary steps to contact the appropriate owners or authorities to identify and mark the location of the electrical lines or equipment. A hazard analysis shall be performed to identify the appropriate safe work practices that shall be utilized during the excavation. [ROP-151]

ARTICLE 120
Establishing an Electrically Safe Work Condition

120.1 Process of Achieving an Electrically Safe Work Condition. An electrically safe work condition shall be achieved when performed in accordance with the procedures of 120.2 and verified by the following process:

(1) Determine all possible sources of electrical supply to the specific equipment. Check applicable up-to-date drawings, diagrams, and identification tags.

(2) After properly interrupting the load current, open the disconnecting device(s) for each source.

(3) Wherever possible, visually verify that all blades of the disconnecting devices are fully open or that drawout-type circuit breakers are withdrawn to the fully disconnected position.

(4) Apply lockout/tagout devices in accordance with a documented and established policy.

(5) Use an adequately rated voltage detector to test each phase conductor or circuit part to verify they are deenergized. Test each phase conductor or circuit part both phase-to-phase and phase-to-ground. Before and after each test, determine that the voltage detector is operating satisfactorily.

Informational Note: See ANSI/ISA-61010-1 (82.02.01)/UL 61010-1, Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements, for rating and design requirements for voltage measurement and test instruments intended for use on electrical systems 1000 V and below.

(6) Where the possibility of induced voltages or stored electrical energy exists, ground the phase conductors or circuit parts before touching them. Where it could be reasonably anticipated that the conductors or circuit parts being deenergized could contact other exposed energized conductors or circuit parts, apply ground connecting devices rated for the available fault duty.

120.2 Deenergized Electrical Conductors or Circuit Parts That Have Lockout/Tagout Devices Applied. Each employer shall identify, document, and implement lockout/tagout procedures conforming to Article 120 to safeguard employees from exposure to electrical hazards. The lockout/tagout procedure shall be appropriate for the experience and training of the employees and conditions as they exist in the workplace.

(A) General. All electrical circuit conductors and circuit parts shall be considered energized until the source(s) of energy is (are) removed, at which time they shall be considered deenergized. All electrical conductors and circuit
parts shall not be considered to be in an electrically safe work condition until all of the applicable requirements of Article 120 have been met.

Informational Note: See 120.1 for the six-step procedure to verify an electrically safe work condition.

Electrical conductors and circuit parts that have been disconnected, but not under lockout/tagout, tested, and grounded (where appropriate) shall not be considered to be in an electrically safe work condition, and safe work practices appropriate for the circuit voltage and energy level shall be used. Lockout/tagout requirements shall apply to fixed, permanently installed equipment, to temporarily installed equipment, and to portable equipment.

(B) Principles of Lockout/Tagout Execution.

(1) Employee Involvement. Each person who could be exposed directly or indirectly to a source of electrical energy shall be involved in the lockout/tagout process.

Informational Note: An example of direct exposure is the qualified electrician who works on the motor starter control, the power circuits, or the motor. An example of indirect exposure is the person who works on the coupling between the motor and compressor.

(2) Training. All persons who could be exposed shall be trained to understand the established procedure to control the energy and their responsibility in executing the procedure. New (or reassigned) employees shall be trained (or retrained) to understand the lockout/tagout procedure as related to their new assignment. Retraining shall be required as the established procedure is revised. [ROP-168]

(3) Plan. A plan shall be developed on the basis of the existing electrical equipment and system and shall utilize up-to-date diagrammatic drawing representation(s).

[ROP-154]

(4) Identification. The lockout/tagout device shall be unique and readily identifiable as a lockout/tagout device.

(5) Voltage. Voltage shall be removed and absence of voltage verified.

(6) Coordination. The established electrical lockout/tagout procedure shall be coordinated with all of the employer’s procedures associated with lockout/tagout of other energy sources.

(C) Responsibility.

(1) Procedures. The employer shall establish lockout/tagout procedures for the organization, provide training to employees, provide equipment necessary to execute the details of the procedure, audit execution of the procedures to ensure employee understanding/compliance, and audit the procedure for improvement opportunity and completeness.

(2) Form of Control. Two forms of hazardous electrical energy control shall be permitted: simple lockout/tagout and complex lockout/tagout. [See 120.2(D).] For the simple lockout/tagout, the qualified person shall be in charge. For the complex lockout/tagout, the person in charge shall have overall responsibility. [ROP-155]

Informational Note: For an example of a lockout/tagout procedure, see Annex G.

(3) Audit Procedures. An audit shall be conducted at least annually by a qualified person and shall cover at least one lockout/tagout in progress and the procedure details. The audit shall be designed to correct deficiencies in the established electrical lockout/tagout procedure or in employee understanding. [ROP-156]

(D) Hazardous Electrical Energy Control Procedure [ROP-158].

(1) Simple Lockout/Tagout Procedure. All lockout/tagout procedures that involve only a qualified person(s) deenergizing one set of conductors or circuit part source for the sole purpose of safeguarding employees from exposure to electrical hazards shall be considered to be a simple lockout/tagout. Simple lockout/tagout plans shall not be required to be written for each application. Each worker shall be responsible for his or her own lockout/tagout. [ROP-159] [ROP-160]

(2) Complex Lockout/Tagout Procedure.

(a) A complex lockout/tagout plan shall be permitted where one or more of the following exist:
(1) Multiple energy sources
(2) Multiple crews
(3) Multiple crafts
(4) Multiple locations
(5) Multiple employers
(6) Multiple disconnecting means [ROP-164]
(7) Particular sequences
(8) A job or task that continues for more than one work period

(b) All complex lockout/tagout procedures shall require a written plan of execution that identifies the person in charge.

(c) The complex lockout/tagout procedure shall vest primary responsibility in a qualified person for a set number of employees working under the protection of a group lockout or tagout device (such as an operation lock). The person in charge shall be held accountable for safe execution of the complex lockout/tagout. [ROP-162]

(d) Each authorized employee shall affix a personal lockout or tagout device to the group lockout device, group
lockbox, or comparable mechanism when he or she begins work, and shall remove those devices when he or she stops working on the machine or equipment being serviced or maintained.

(e) The complex lockout/tagout procedure shall address all the concerns of employees who might be exposed. All complex lockout/tagout plans shall identify the method to account for all persons who might be exposed to electrical hazards in the course of the lockout/tagout.

(3) Coordination.

(a) The established electrical lockout/tagout procedure shall be coordinated with all other employer’s procedures for control of exposure to electrical energy sources such that all employer’s procedural requirements are adequately addressed on a site basis.

(b) The procedure for control of exposure to electrical hazards shall be coordinated with other procedures for control of other hazardous energy sources such that they are based on similar/identical concepts.

(c) The electrical lockout/tagout procedure shall always include voltage testing requirements where there might be direct exposure to electrical energy hazards.

(d) Electrical lockout/tagout devices shall be permitted to be similar to lockout/tagout devices for control of other hazardous energy sources, such as pneumatic, hydraulic, thermal, and mechanical, provided such devices are used only for control of hazardous energy and for no other purpose.

(E) Equipment.

(1) Lock Application. Energy isolation devices for machinery or equipment installed after January 2, 1990, shall be capable of accepting a lockout device.

(2) Lockout/Tagout Device. Each employer shall supply, and employees shall use, lockout/tagout devices and equipment necessary to execute the requirements of 120.2(E). Locks and tags used for control of exposure to electrical energy hazards shall be unique, shall be readily identifiable as lockout/tagout devices, and shall be used for no other purpose.

(3) Lockout Device.

(a) A lockout device shall include a lock (either keyed or combination).

(b) The lockout device shall include a method of identifying the individual who installed the lockout device.

(c) A lockout device shall be permitted to be only a lock, provided the lock is readily identifiable as a lockout device, in addition to having a means of identifying the person who installed the lock.

(d) Lockout devices shall be attached to prevent operation of the disconnecting means without resorting to undue force or the use of tools.

(e) Where a tag is used in conjunction with a lockout device, the tag shall contain a statement prohibiting unauthorized operation of the disconnecting means or unauthorized removal of the device.

(f) Lockout devices shall be suitable for the environment and for the duration of the lockout.

(g) Whether keyed or combination locks are used, the key or combination shall remain in the possession of the individual installing the lock or the person in charge, when provided by the established procedure.

(4) Tagout Device.

(a) A tagout device shall include a tag together with an attachment means.

(b) The tagout device shall be readily identifiable as a tagout device and suitable for the environment and duration of the tagout.

(c) A tagout device attachment means shall be capable of holding the tag in place against the force exerted at a right angle to the disconnecting means surface. The tag attachment means shall be nonreusable, attachable by hand, self-locking, and nonreleasable, equal to an all-environmental tolerant nylon cable tie.

(d) Tags shall contain a statement prohibiting unauthorized operation of the disconnecting means or removal of the tag.

(e) A “hold card tagging tool” on an overhead conductor in conjunction with a hotline tool to install the tagout device safely on a disconnect that is isolated from the work(s) shall be permitted.

(5) Electrical Circuit Interlocks. Up-to-date diagrammatic drawings shall be consulted to ensure that no electrical circuit interlock operation can result in reenergizing the circuit being worked on.

(6) Control Devices. Locks/tags shall be installed only on circuit disconnecting means. Control devices, such as push-buttons or selector switches, shall not be used as the primary isolating device.

(F) Procedures. The employer shall maintain a copy of the procedures required by this section and shall make the procedures available to all employees.

(1) Planning. The procedure shall require planning, including 120.2(F)(1)(a) through 120.2(F)(2)(n).

(a) Locating Sources. Up-to-date single-line drawings shall be considered a primary reference source for such information. When up-to-date drawings are not available, the employer shall be responsible for ensuring that an equally effective means of locating all sources of energy is employed. [ROP-171]
(b) Exposed Persons. The plan shall identify persons
who might be exposed to an electrical hazard and the per-
sonal protective equipment required during the execution of
the job or task.

(c) Person In Charge. The plan shall identify the per-
son in charge and his or her responsibility in the
lockout/tagout. [ROP-172]

(d) Simple Lockout/Tagout. Simple lockout/tagout
procedure shall be in accordance with 120.2(D)(2). [ROP-
172]

(e) Complex Lockout/Tagout. Complex lockout/tagout
procedure shall be in accordance with 120.2(D)(3). [ROP-
172]

(2) Elements of Control. The procedure shall identify el-
ements of control.

(a) Deenergizing Equipment (Shutdown). The proce-
dure shall establish the person who performs the switching
and where and how to deenergize the load.

(b) Stored Energy. The procedure shall include re-
quirements for releasing stored electric or mechanical en-
ergy that might endanger personnel. All capacitors shall be
discharged, and high capacitance elements shall also be
short-circuited and grounded before the associated equip-
ment is touched or worked on. Springs shall be released or
physical restraint shall be applied when necessary to immo-
obilize mechanical equipment and pneumatic and hydraulic
pressure reservoirs. Other sources of stored energy shall be
blocked or otherwise relieved.

(c) Disconnecting Means. The procedure shall identify
how to verify that the circuit is deenergized (open).

(d) Responsibility. The procedure shall identify the
person who is responsible to verify that the lockout/tagout
procedure is implemented and who is responsible to ensure
that the task is completed prior to removing locks/tags. A
mechanism to accomplish lockout/tagout for multiple
(complex) jobs/tasks where required, including the person
responsible for coordination, shall be included.

(e) Verification. The procedure shall verify that equip-
ment cannot be restarted. The equipment operating con-
trols, such as pushbuttons, selector switches, and electrical
interlocks, shall be operated or otherwise it shall be verified
that the equipment cannot be restarted.

(f) Testing. The procedure shall establish the follow-
ing:

(1) What voltage detector will be used, the required per-
sonal protective equipment, and who will use it to
verify proper operation of the voltage detector before
and after use

(2) A requirement to define the boundary of the work area

(3) A requirement to test before touching every exposed
conductor or circuit part(s) within the defined boundary
of the work area

(4) A requirement to retest for absence of voltage when
circuit conditions change or when the job location has
been left unattended

(5) Where there is no accessible exposed point to take volt-
age measurements, planning considerations shall in-
clude methods of verification.

(g) Grounding. Grounding requirements for the circuit
shall be established, including whether the temporary pro-
tective grounding equipment shall be installed for the du-
ration of the task or temporarily are established by the
procedure. Grounding needs or requirements shall be per-
mitted to be covered in other work rules and might not be
part of the lockout/tagout procedure. [ROP-175]

(h) Shift Change. A method shall be identified in the
procedure to transfer responsibility for lockout/tagout to
another person or to the person in charge when the job or
task extends beyond one shift.

(i) Coordination. The procedure shall establish how
coordination is accomplished with other jobs or tasks in
progress, including related jobs or tasks at remote locations,
including the person responsible for coordination.

(j) Accountability for Personnel. A method shall be
identified in the procedure to account for all persons who
could be exposed to hazardous energy during the
lockout/tagout.

(k) Lockout/Tagout Application. The procedure shall
clearly identify when and where lockout applies, in addi-
tion to when and where tagout applies, and shall address the
following:

(1) Lockout shall be defined as installing a lockout device
on all sources of hazardous energy such that operation of
the disconnecting means is prohibited and forcible
removal of the lock is required to operate the discon-
necting means.

(2) Tagout shall be defined as installing a tagout device on
all sources of hazardous energy, such that operation of
the disconnecting means is prohibited. The tagout de-
vice shall be installed in the same position available for
the lockout device.

(3) Where it is not possible to attach a lock to existing
disconnecting means, the disconnecting means shall not
be used as the only means to put the circuit in an elec-
trically safe work condition.

(4) The use of tagout procedures without a lock shall be
permitted only in cases where equipment design pre-
cludes the installation of a lock on an energy isolation
device(s). When tagout is employed, at least one addi-
tional safety measure shall be employed. In such cases,
the procedure shall clearly establish responsibilities and
accountability for each person who might be exposed
to electrical hazards.

Informational Note: Examples of additional safety mea-
asures include the removal of an isolating circuit element
such as fuses, blocking of the controlling switch, or opening an extra disconnecting device to reduce the likelihood of inadvertent energization.

(l) Removal of Lockout/Tagout Devices. The procedure shall identify the details for removing locks or tags when the installing individual is unavailable. When locks or tags are removed by someone other than the installer, the employer shall attempt to locate that person prior to removing the lock or tag. When the lock or tag is removed because the installer is unavailable, the installer shall be informed prior to returning to work.

(m) Release for Return to Service. The procedure shall identify steps to be taken when the job or task requiring lockout/tagout is completed. Before electric circuits or equipment are reenergized, appropriate tests and visual inspections shall be conducted to verify that all tools, mechanical restraints and electrical jumpers, short circuits, and temporary protective grounding equipment have been removed, so that the circuits and equipment are in a condition to be safely energized. Where appropriate, the employees responsible for operating the machines or process shall be notified when circuits and equipment are ready to be energized, and such employees shall provide assistance as necessary to safely energize the circuits and equipment. The procedure shall contain a statement requiring the area to be inspected to ensure that nonessential items have been removed. One such step shall ensure that all personnel are clear of exposure to dangerous conditions resulting from reenergizing the service and that blocked mechanical equipment or grounded equipment is cleared and prepared for return to service. [ROP-176]

(n) Temporary Release for Testing/Positioning. The procedure shall clearly identify the steps and qualified persons’ responsibilities when the job or task requiring lockout/tagout is to be interrupted temporarily for testing or positioning of equipment; then the steps shall be identical to the steps for return to service.

Informational Note: See 110.4(A) for requirements when using test instruments and equipment.

120.3 Temporary Protective Grounding Equipment.

(A) Placement. Temporary protective grounding equipment shall be placed at such locations and arranged in such a manner as to prevent each employee from being exposed to hazardous differences in electrical potential. [ROP-180]

(B) Capacity. Temporary protective grounding equipment shall be capable of conducting the maximum fault current that could flow at the point of grounding for the time necessary to clear the fault. [ROP-181]

(C) Equipment Approval. Temporary protective grounding equipment shall meet the requirements of ASTM F 855, Standard Specification for Temporary Protective Grounds to be Used on De-energized Electric Power Lines and Equipment.

(D) Impedance. Temporary protective grounding equipment and connections shall have an impedance low enough to cause immediate operation of protective devices in case of accidental energizing of the electric conductors or circuit parts. [ROP-182]

130.2 Electrically Safe Working Conditions. [ROP-190]. Energized electrical conductors and circuit parts to which an employee might be exposed shall be put into an electrically safe work condition if any of the following conditions exist:

(1) The employee is within the Limited Approach Boundary.
(2) The employee is within the Arc Flash Boundary.
(3) The employee interacts with equipment where conductors or circuit parts are not exposed, but an increased risk of arc flash hazard exists. [ROP-190]

Informational Note: See definition of arc flash hazard in Article 100. [ROP-190]

(A) Energized Work [ROP-190].

(1) Greater Hazard. Energized work shall be permitted where the employer can demonstrate that deenergizing introduces additional or increased hazards.
(2) Infeasibility. Energized work shall be permitted where the employer can demonstrate that the task to be performed is infeasible in a deenergized state due to equipment design or operational limitations.
(3) Less Than 50 Volts. Energized electrical conductors and circuit parts that operate at less than 50 volts shall not be required to be deenergized where the capacity of the source and any overcurrent protection between the energy source and the worker are considered and it is determined that there will be no increased exposure to electrical burns or to explosion due to electric arcs. [ROP-193]

Informational Note No. 1: Examples of increased or additional hazards include, but are not limited to, interruption of...
(B) Energized Electrical Work Permit.

(1) When Required. When working within the limited approach boundary or the arc flash boundary of exposed energized electrical conductors or circuit parts that are not placed in an electrically safe work condition (i.e., for the reasons of increased or additional hazards or infeasibility per 130.1), work to be performed shall be considered energized electrical work and shall be performed by written permit only. [ROP-199]

(2) Elements of Work Permit. The energized electrical work permit shall include, but not be limited to, the following items: [ROP-201]

(1) A description of the circuit and equipment to be worked on and their location
(2) Justification for why the work must be performed in an energized condition [130.2(A)]
(3) A description of the safe work practices to be employed [130.3(B)]
(4) Results of the shock hazard analysis [130.4(A)]
(5) Determination of shock protection boundaries [130.4(B) and Table 130.4(C)(1) and Table 130.4(C)(2)]
(6) Results of the arc flash boundary analysis (130.5)
   a. The arc flash boundary
   b. The necessary personal protective equipment to safely perform the assigned task.
   c. The available incident energy or Hazard Risk Category. [ROP-201]
(7) Means employed to restrict the access of unqualified persons from the work area [130.3(A)(2)]
(8) Evidence of completion of a job briefing, including a discussion of any job-specific hazards [110.3(G)]
(9) Energized work approval (authorizing or responsible management, safety officer, or owner, etc.) signature(s)

(3) Exemptions to Work Permit. Work performed within the Limited Approach Boundary of energized electrical conductors or circuit parts by qualified persons related to tasks such as testing, troubleshooting, voltage measuring, etc., shall be permitted to be performed without an energized electrical work permit, provided appropriate safe work practices and personal protective equipment in accordance with Chapter 1 are provided and used. If the purpose of crossing the Limited Approach Boundary is only for visual inspection and the Restricted Approach Boundary will not be crossed, then an energized electrical work permit shall not be required.

Informational Note: For an example of an acceptable energized electrical work permit, see Annex J.

130.3 Working While Exposed to Electrical Hazards [ROP-129].

(A) General. Safety-related work practices shall be used to safeguard employees from injury while they are exposed to electrical hazards from electrical conductors or circuit parts that are or can become energized. The specific safety-related work practices shall be consistent with the nature and extent of the associated electrical hazards.

(1) Energized Electrical Conductors and Circuit Parts — Safe Work Condition. Before an employee works within the Limited Approach Boundary, energized electrical conductors and circuit parts to which an employee might be exposed shall be put into an electrically safe work condition, unless work on energized components can be justified according to 130.1. [ROP-131]

(2) Energized Electrical Conductors and Circuit Parts — Unsafe Work Condition. Only qualified persons shall be permitted to work on electrical conductors or circuit parts that have not been put into an electrically safe work condition.

(B) Working Within the Limited Approach Boundary of Exposed Electrical Conductors or Circuit Parts that Are or Might Become Energized [ROP-137].

(1) Electrical Hazard Analysis. If the energized electrical conductors or circuit parts operating at 50 volts or more are not placed in an electrically safe work condition, other safety-related work practices shall be used to protect employees who might be exposed to the electrical hazards involved. Such work practices shall protect each employee from arc flash and from contact with energized electrical conductors or circuit parts operating at 50 volts or more directly with any part of the body or indirectly through some other conductive object. Work practices that are used shall be suitable for the conditions under which the work is to be performed and for the voltage level of the energized electrical conductors or circuit parts. Appropriate safety-related work practices shall be determined before any person is exposed to the electrical hazards involved by using...
ARTICLE 130 — WORK INVOLVING ELECTRICAL HAZARDS

130.4 Approach Boundaries to Energized Electrical Conductors or Circuit Parts [ROP-186]

(A) Shock Hazard Analysis. A shock hazard analysis shall determine the voltage to which personnel will be exposed, boundary requirements, and the personal protective equipment necessary in order to minimize the possibility of electric shock to personnel.

(B) Shock Protection Boundaries. The shock protection boundaries identified as Limited, Restricted, and Prohibited Approach Boundaries shall be applicable where approaching personnel are exposed to energized electrical conductors or circuit parts. Table 130.4(C)(1) shall be used for the distances associated with various ac system voltages. Table 130.4(C)(2) shall be used for the distances associated with various dc system voltages. [ROP-206]

Informational Note: In certain instances, the Arc Flash Protection Boundary might be a greater distance from the energized electrical conductors or circuit parts than the Limited Approach Boundary. The Shock Protection Boundaries and the Arc Flash Hazard Boundary are independent of each other. [ROP-207]

(C) Approach to Exposed Energized Electrical Conductors or Circuit Parts Operating at 50 Volts or More. No qualified person shall approach or take any conductive object closer to exposed energized electrical conductors or circuit parts operating at 50 volts or more than the Restricted Approach Boundary set forth in Table 130.4(C)(1) and Table 130.4(C)(2), unless any of the following apply: [ROP-214]

(1) The qualified person is insulated or guarded from the energized electrical conductors or circuit parts operating at 50 volts or more. Insulating gloves or insulating gloves and sleeves are considered insulation only with regard to the energized parts upon which work is being performed. If there is a need for an uninsulated part of the qualified person’s body to cross the Prohibited Approach Boundary, a combination of Sections 130.4(C)(1), 130.4(C)(2), and 130.4(C)(3) shall be used to protect the uninsulated body parts. [ROP-214]

(2) The energized electrical conductors or circuit part operating at 50 volts or more are insulated from the qualified person and from any other conductive object at a different potential.

(D) Approach by Unqualified Persons. Unless permitted by 130.4(D)(2), no unqualified person shall be permitted to approach nearer than the Limited Approach Boundary of energized conductors and circuit parts. [ROP-216]

(1) Working At or Close to the Limited Approach Boundary. Where one or more unqualified persons are working at or close to the Limited Approach Boundary, the designated person in charge of the work space where the electrical hazard exists shall advise the unqualified person(s) of the electrical hazard and warn him or her to stay outside of the Limited Approach Boundary.

(2) Entering the Limited Approach Boundary. Where there is a need for an unqualified person(s) to cross the Limited Approach Boundary, a qualified person shall advise him or her of the possible hazards and continuously escort the unqualified person(s) while inside the Limited Approach Boundary. Under no circumstance shall the escorted unqualified person(s) be permitted to cross the Restricted Approach Boundary.

130.5 Arc Flash Hazard Analysis. An arc flash hazard analysis shall determine the Arc Flash Protection Boundary, the incident energy at the working distance, and the personal protective equipment that people within the Arc Flash Protection Boundary shall use. [ROP-222]

The arc flash hazard analysis shall be updated when a major modification or renovation takes place. It shall be reviewed periodically, not to exceed five years, to account for changes in the electrical distribution system that could affect the results of the arc flash hazard analysis.

The arc flash hazard analysis shall take into consideration the design of the overcurrent protective device and its opening time, including its condition of maintenance. [ROP-223, ROP-229]

Exception: The requirements of 130.8(C)(15) and 130.8(C)(16) shall be permitted to be used in lieu of a detailed incident energy analysis. [ROP-223, ROP-229]

Informational Note No. 1: Improper or inadequate maintenance can result in increased opening time of the overcurrent protective device, thus increasing the incident energy.

Informational Note No. 2: Both larger and smaller available short-circuit currents could result in higher available arc flash energies. If the available short-circuit current increases without a decrease in the opening time of the overcurrent protective device, the arc flash energy will increase. If the available short-circuit current decreases, resulting in a longer opening time for the overcurrent protective device, arc flash energies could also increase. [ROP-339]
Informational Note No. 3: The occurrence of arcing fault inside an enclosure produces a variety of physical phenomena very different from a bolted fault. For example, the arc energy resulting from an arc developed in the air will cause a sudden pressure increase and localized overheating. Equipment and design practices are available to minimize the energy levels and the number of at-risk procedures that require an employee to be exposed to high level energy sources. Proven designs such as arc-resistant switchgear, remote racking (insertion or removal), remote opening and closing of switching devices, high-resistance grounding of low voltage and 5 kV (nominal) systems, current limitation, and specification of covered bus within equipment are techniques available to reduce the hazard of the system. [ROP-195]

Informational Note No. 4: For additional direction for performing maintenance on overcurrent protective devices, see Chapter 2, Safety-Related Maintenance Requirements. [ROP-195]

Informational Note No. 5: An arc flash hazard analysis may not be necessary for some three-phase systems rated less than 240 volts. See IEEE 1584 for more information. [ROP-195]

---

Table 130.4(C)(1) Approach Boundaries to Energized Electrical Conductors or Circuit Parts for Shock Protection for ac Systems (All dimensions are distance from energized electrical conductor or circuit part to employee.) [ROP-212]

<table>
<thead>
<tr>
<th>(1) Nominal System Voltage Range, Phase to Phase</th>
<th>(2) Limited Approach Boundary</th>
<th>(3) Restricted Approach Boundary; Includes Inadvertent Movement Adder</th>
<th>(4) Prohibited Approach Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 50</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>50 to 300</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.07 m (3 ft 6 in.)</td>
<td>Avoid contact</td>
</tr>
<tr>
<td>301 to 750</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.07 m (3 ft 6 in.)</td>
<td>304.8 mm (1 ft 0 in.)</td>
</tr>
<tr>
<td>751 to 15 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.53 m (5 ft 0 in.)</td>
<td>660.4 mm (2 ft 2 in.)</td>
</tr>
<tr>
<td>15.1 kV to 36 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1.83 m (6 ft 0 in.)</td>
<td>787.4 mm (2 ft 7 in.)</td>
</tr>
<tr>
<td>36.1 kV to 46 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>2.44 m (8 ft 0 in.)</td>
<td>838.2 mm (2 ft 9 in.)</td>
</tr>
<tr>
<td>46.1 kV to 72.5 kV</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>2.44 m (8 ft 0 in.)</td>
<td>991 mm (3 ft 3 in.)</td>
</tr>
<tr>
<td>72.6 kV to 121 kV</td>
<td>3.25 m (10 ft 8 in.)</td>
<td>2.44 m (8 ft 0 in.)</td>
<td>1.016 m (3 ft 4 in.)</td>
</tr>
<tr>
<td>138 kV to 145 kV</td>
<td>3.36 m (11 ft 0 in.)</td>
<td>3.05 m (10 ft 0 in.)</td>
<td>1,158 m (3 ft 10 in.)</td>
</tr>
<tr>
<td>161 kV to 169 kV</td>
<td>3.56 m (11 ft 8 in.)</td>
<td>3.56 m (11 ft 8 in.)</td>
<td>1.295 m (4 ft 3 in.)</td>
</tr>
<tr>
<td>230 kV to 242 kV</td>
<td>3.97 m (13 ft 0 in.)</td>
<td>3.97 m (13 ft 0 in.)</td>
<td>1.727 m (5 ft 8 in.)</td>
</tr>
<tr>
<td>345 kV to 362 kV</td>
<td>4.68 m (15 ft 4 in.)</td>
<td>4.68 m (15 ft 4 in.)</td>
<td>2.794 m (9 ft 2 in.)</td>
</tr>
<tr>
<td>500 kV to 550 kV</td>
<td>5.8 m (19 ft 0 in.)</td>
<td>5.8 m (19 ft 0 in.)</td>
<td>3.607 m (11 ft 10 in.)</td>
</tr>
<tr>
<td>765 kV to 800 kV</td>
<td>7.24 m (23 ft 9 in.)</td>
<td>7.24 m (23 ft 9 in.)</td>
<td>4.852 m (15 ft 11 in.)</td>
</tr>
</tbody>
</table>

Note: For Arc Flash Protection Boundary, see 130.5(A).
1 See definition in Article 100 and text in 130.4(D)(2) and Annex C for elaboration.
2 For single-phase systems, select the range that is equal to the system’s maximum phase-to-ground voltage multiplied by 1.732.
3 A condition in which the distance between the conductor and a person is not under the control of the person. The term is normally applied to overhead line conductors supported by poles.
**Table 130.4(C)(2) Approach boundaries** to energized electrical conductors or circuit parts for Shock Protection, DC Voltage Systems [ROP-214a]

<table>
<thead>
<tr>
<th>Nominal Potential Difference</th>
<th>Limited Approach Boundary</th>
<th>Restricted Approach Boundary, Includes Inadvertent Movement Adder</th>
<th>Prohibited Approach Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exposed Movable Conductor$^2$</td>
<td>Exposed Fixed Circuit Part</td>
<td>Exposed Movable Conductor$^2$</td>
</tr>
<tr>
<td>Less than 100 V</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
</tr>
<tr>
<td>100 V to 300 V</td>
<td>3.0 m (10 ft 0 in)</td>
<td>1.0 m (3 ft 6 in)</td>
<td>300 mm (1 ft 0 in)</td>
</tr>
<tr>
<td>301 V to 1 kV</td>
<td>3.0 m (10 ft 0 in)</td>
<td>1.0 m (3 ft 6 in)</td>
<td>450 mm (1 ft 5 in)</td>
</tr>
<tr>
<td>1.1kV to 5 kV</td>
<td>3.0 m (10 ft 0 in)</td>
<td>1.5 m (5 ft 0 in)</td>
<td>660 mm (2 ft 2in)</td>
</tr>
<tr>
<td>5 kV to 15 kV</td>
<td>3.0 m (10 ft 0 in)</td>
<td>1.5 m (5 ft 0 in)</td>
<td>800 mm (2 ft 9 in)</td>
</tr>
<tr>
<td>15.1 kV to 45 kV</td>
<td>3.0 m (10 ft 0 in)</td>
<td>2.5 m (8 ft 0in)</td>
<td>1.0 m (3 ft 2 in)</td>
</tr>
<tr>
<td>45.1 kV to 75 kV</td>
<td>3.0 m (10 ft 0 in)</td>
<td>2.5 m (8 ft 0 in)</td>
<td>1.2 m (4 ft 0 in)</td>
</tr>
<tr>
<td>75.1 kV to 150 kV</td>
<td>3.4 m (10 ft 8 in)</td>
<td>3.0 m (10 ft 0 in)</td>
<td>1.6 m (5 ft 3 in)</td>
</tr>
<tr>
<td>150.1 kV to 250 kV</td>
<td>4.0 m (11 ft 8 in)</td>
<td>4.0 m (11 ft 8 in)</td>
<td>3.5 m (11 ft 6 in)</td>
</tr>
<tr>
<td>250.1 kV to 500 kV</td>
<td>6.0 m (20 ft 0 in)</td>
<td>6.0 m (20 ft 0 in)</td>
<td>5.0 m (16 ft 5 in)</td>
</tr>
<tr>
<td>500.1 kV to 800 kV</td>
<td>8.0 m (26 ft 0 in)</td>
<td>8.0 m (26 ft 0 in)</td>
<td>8.0 m (26 ft 0 in)</td>
</tr>
</tbody>
</table>

$^1$All dimensions are distance from exposed energized electrical conductors or circuit parts to worker.

$^2$A condition in which the distance between the conductor and a person is not under the control of the person. The term is normally applied to overhead line conductors supported by poles.

(A) Arc Flash Protection Boundary. The arc flash boundary for systems 50 volts and greater shall be the distance at which the incident energy equals 5 J/cm$^2$ (1.2 cal/cm$^2$). [ROP-223, ROP-237]

Informational Note: For information on estimating the Arc Flash Protection Boundary, see Annex D.

(B) Protective Clothing and Other Personal Protective Equipment (PPE) for Application with an Arc Flash Hazard Analysis. Where it has been determined that work will be performed within the Arc Flash Protection Boundary identified by 130.5(A), one of the following methods shall be used for the selection of protective clothing and other personal protective equipment for each work task, and the requirements of 130.8 shall apply, regardless of the method used to select the equipment: [ROP-244, ROP-245]

(1) Incident Energy Analysis. The incident energy analysis shall determine, and the employer shall document, the incident energy exposure of the worker (in calories per square centimeter). The incident energy exposure level shall be based on the working distance of the employee’s face and chest areas from a prospective arc source for the specific task to be performed. Arc-rated clothing and other personal protective equipment (PPE) shall be used by the employee based on the incident energy exposure associated with the specific task. Recognizing that incident energy increases as the distance from the arc flash decreases, additional PPE shall be used for any parts of the body that are closer than the distance at which the incident energy was determined.

Informational Note: For information on estimating the incident energy, see Annex D. For guidance on selection of arc-rated clothing and other personal protective equipment (PPE), see Table H.3 in Annex H. [ROP-247]

(2) Hazard/Risk Categories. The requirements of 130.8(C)(15) and 130.8(C)(16) shall be permitted to be used for the selection and use of personal and other protective equipment.

(C) Equipment Labeling. Electrical equipment such as switchboards, panelboards, industrial control panels, meter socket enclosures, and motor control centers that are likely to require examination, adjustment, servicing, or maintenance while energized shall be field marked with a label containing all the following information:

(1) Only one of the following:
   a. Available incident energy
b. Minimum arc rating of clothing
(2) Date of arc flash hazard analysis
(3) Nominal system voltage
(4) Arc flash boundary

[ROP-260]
The method of calculating and data to support the information for the label shall be documented. [ROP-266]

Informational Note: ANSI Z535.4-1998 Product Safety Signs and Labels provides guidelines for the design of safety signs and labels for application to products.

[ROP-268]

130.6 Work Within the Limited Approach Boundary of Uninsulated Overhead Lines.

(A) Uninsulated and Energized. Where work is performed in locations containing uninsulated energized overhead lines that are not guarded or isolated, precautions shall be taken to prevent employees from contacting such lines directly with any unguarded parts of their body or indirectly through conductive materials, tools, or equipment. Where the work to be performed is such that contact with uninsulated energized overhead lines is possible, the lines shall be deenergized and visibly grounded at the point of work, or suitably guarded.

(B) Determination of Insulation Rating. A qualified person shall determine if the overhead electrical lines are insulated for the voltage at which the lines are operating.

[ROP-276]

(C) Deenergizing or Guarding. If the lines are to be deenergized, arrangements shall be made with the person or organization that operates or controls the lines to deenergize them and visibly ground them at the point of work. If arrangements are made to use protective measures, such as guarding, isolating, or insulation, these precautions shall prevent each employee from contacting such lines directly with any part of his or her body or indirectly through conductive materials, tools, or equipment.

(D) Employer and Employee Responsibility. The employer and employee shall be responsible for ensuring that guards or protective measures are satisfactory for the conditions. Employees shall comply with established work methods and the use of protective equipment.

(E) Approach Distances for Unqualified Persons. When unqualified persons are working on the ground or in an elevated position near overhead lines, the location shall be such that the employee and the longest conductive object the employee might contact do not come closer to any unguarded, energized overhead power line than the Limited Approach Boundary in Table 130.4(C)(1), Column 2.

Informational Note: Objects that are not insulated for the voltage involved should be considered to be conductive.

(F) Vehicular and Mechanical Equipment.

(1) Elevated Equipment. Where any vehicle or mechanical equipment structure will be elevated near energized overhead lines, they shall be operated so that the Limited Approach Boundary distance of Table 130.4(C)(1), Column 2, is maintained. However, under any of the following conditions, the clearances shall be permitted to be reduced:

(1) If the vehicle is in transit with its structure lowered, the Limited Approach Boundary to overhead lines in Table 130.4(C)(1), Column 2, shall be permitted to be reduced by 1.83 m (6 ft). If insulated barriers, rated for the voltages involved, are installed and they are not part of an attachment to the vehicle, the clearance shall be permitted to be reduced to the design working dimensions of the insulating barrier.

(2) If the equipment is an aerial lift insulated for the voltage involved, and if the work is performed by a qualified person, the clearance (between the uninsulated portion of the aerial lift and the power line) shall be permitted to be reduced to the Restricted Approach Boundary given in Table 130.4(C)(1), Column 4.

(2) Equipment Contact. Employees standing on the ground shall not contact the vehicle or mechanical equipment or any of its attachments, unless either of the following conditions apply:

(1) The employee is using protective equipment rated for the voltage.

(2) The equipment is located so that no uninsulated part of its structure (that portion of the structure that provides a conductive path to employees on the ground) can come closer to the line than permitted in 130.6(F)(1).

(3) Equipment Grounding. If any vehicle or mechanical equipment capable of having parts of its structure elevated near energized overhead lines is intentionally grounded, employees working on the ground near the point of grounding shall not stand at the grounding location whenever there is a possibility of overhead line contact. Additional precautions, such as the use of barricades, dielectric overshoe footwear, or insulation, shall be taken to protect employees from hazardous ground potentials (step and touch potential).

Informational Note: Upon contact of the elevated structure with the energized lines, hazardous ground potentials can develop within a few feet or more outward from the grounded point.

130.7 Other Precautions for Personnel Activities.

(A) Alertness.
(1) **When Hazardous.** Employees shall be instructed to be alert at all times when they are working within the Limited Approach Boundary of energized electrical conductors or circuit parts operating at 50 volts or more and in work situations where electrical hazards might exist.

(2) **When Impaired.** Employees shall not be permitted to work within the Limited Approach Boundary of energized electrical conductors or circuit parts operating at 50 volts or more, or where other electrical hazards exist, while their alertness is recognizably impaired due to illness, fatigue, or other reasons.

(3) **Changes in Scope.** Employees shall be instructed to be alert for changes in the job or task that may lead the person outside of the electrically safe work condition or expose the person to additional hazards that were not part of the original plan.

(B) **Blind Reaching.** Employees shall be instructed not to reach blindly into areas that might contain exposed energized electrical conductors or circuit parts where an electrical hazard exists.

(C) **Illumination.**

(1) **General.** Employees shall not enter spaces containing electrical hazards unless illumination is provided that enables the employees to perform the work safely.

(2) **Obstructed View of Work Area.** Where lack of illumination or an obstruction precludes observation of the work to be performed, employees shall not perform any task within the Limited Approach Boundary of energized electrical conductors or circuit parts operating at 50 volts or more or where an electrical hazard exists.

(D) **Conductive Articles Being Worn.** Conductive articles of jewelry and clothing (such as watchbands, bracelets, rings, key chains, necklaces, metalized aprons, cloth with conductive thread, metal headgear, or metal frame glasses) shall not be worn where they present an electrical contact hazard with exposed energized electrical conductors or circuit parts.

(E) **Conductive Materials, Tools, and Equipment Being Handled.**

(1) **General.** Conductive materials, tools, and equipment that are in contact with any part of an employee’s body shall be handled in a manner that prevents accidental contact with energized electrical conductors or circuit parts. Such materials and equipment include, but are not limited to, long conductive objects, such as ducts, pipes and tubes, conductive hose and rope, metal-lined rules and scales, steel tapes, pulling lines, metal scaffold parts, structural members, bull floats, and chains.

(2) **Approach to Energized Electrical Conductors and Circuit Parts.** Means shall be employed to ensure that conductive materials approach exposed energized electrical conductors or circuit parts no closer than that permitted by 130.2.

(F) **Confined or Enclosed Work Spaces.** When an employee works in a confined or enclosed space (such as a manhole or vault) that contains exposed energized electrical conductors or circuit parts operating at 50 volts or more or where an electrical hazard exists, employees shall provide, and the employee shall use, protective shields, protective barriers, or insulating materials as necessary to avoid inadvertent contact with these parts and the effects of the electrical hazards.

(G) **Doors and Hinged Panels.** Doors, hinged panels, and the like shall be secured to prevent their swinging into an employee and causing the employee to contact exposed energized electrical conductors or circuit parts rating at 50 volts or more or where an electrical hazard exists if movement of the door, hinged panel, and the like is likely to create a hazard. [ROP-281]

(H) **Housekeeping Duties.** Employees shall not perform housekeeping duties inside the Limited Approach Boundary where there is a possibility of contact with energized electrical conductors or circuit parts, unless adequate safeguards (such as insulating equipment or barriers) are provided to prevent contact. Electrically conductive cleaning materials (including conductive solids such as steel wool, metalized cloth, and silicone carbide, as well as conductive liquid solutions) shall not be used inside the Limited Approach Boundary unless procedures to prevent electrical contact are followed. [ROP-282]

(I) **Occasional Use of Flammable Materials.** Where flammable materials are present only occasionally, electric equipment capable of igniting them may not be used, unless measures are taken to prevent hazardous conditions from developing. Such materials include, but are not limited to, flammable gases, vapors, or liquids; combustible dust; and ignitable fibers or flyings.

Informational Note: Electrical installation requirements for locations where flammable materials are present on a regular basis are contained in NFPA 70, National Electrical Code.

(J) **Anticipating Failure.** When there is evidence that electric equipment could fail and injure employees, the electric equipment shall be deenergized unless the employer can demonstrate that deenergizing introduces additional or increased hazards or is infeasible because of equipment design or operational limitation. Until the equipment is deenergized or repaired, employees shall be protected from hazards associated with the impending failure.
of the equipment by suitable barricades and other alerting techniques necessary for safety of the employees. [ROP-284]  
Informational Note: See 130.8(E) for alerting techniques. [ROP-284]

(K) Routine Opening and Closing of Circuits. Load-rated switches, circuit breakers, or other devices specifically designed as disconnecting means for the opening, reversing, or closing of circuits under load conditions. Cable connectors not of the load-break type, fuses, terminal lugs, and cable splice connections shall not be permitted to be used for such purposes, except in an emergency.

(L) Reclosing Circuits After Protective Device Operation. After a circuit is deenergized by the automatic operation of a circuit protective device, the circuit shall not be manually reenergized until it has been determined that the equipment and circuit can be safely energized. The repetitive manual reclosing of circuit breakers or reenergizing circuits through replaced fuses shall be prohibited. When it is determined that the automatic operation of a device was caused by an overload rather than a fault condition, examination of the circuit or connected equipment shall not be required before the circuit is reenergized. [ROP-286]

130.8 Personal and Other Protective Equipment.

(A) General. Employees working in areas where electrical hazards are present shall be provided with, and shall use, protective equipment that is designed and constructed for the specific part of the body to be protected and for the work to be performed.

Informational Note No. 1: The PPE requirements of 130.8 are intended to protect a person from arc flash and shock hazards. While some situations could result in burns to the skin, even with the protection selected, burn injury should be reduced and survivable. Due to the explosive effect of some arc events, physical trauma injuries could occur. The PPE requirements of 130.8 do not address protection against physical trauma other than exposure to the thermal effects of an arc flash.

Informational Note No. 2: When incident energy exceeds 40 cal/cm² at the working distance, greater emphasis may be necessary with respect to de-energizing before working within the Limited Approach Boundary of the exposed electrical conductors or circuit parts.

(B) Care of Equipment. Protective equipment shall be maintained in a safe, reliable condition. The protective equipment shall be visually inspected before each use. Protective equipment shall be stored in a manner to prevent damage from physically damaging conditions and from moisture, dust, or other deteriorating agents.

Informational Note: Specific requirements for periodic testing of electrical protective equipment are given in 130.8(C)(14) and 130.8(F).

(C) Personal Protective Equipment.

(1) General. When an employee is working within the Restricted Approach Boundary, the worker shall wear personal protective equipment in accordance with 130.4. When an employee is working within the Arc Flash Protection Boundary, he or she shall wear protective clothing and other personal protective equipment in accordance with 130.5. All parts of the body inside the Arc Flash Protection Boundary shall be protected. [ROP-296]

(2) Movement and Visibility. When arc-rated clothing is worn to protect an employee, it shall cover all ignitable clothing and shall allow for movement and visibility.

(3) Head, Face, Neck, and Chin (Head Area) Protection. Employees shall wear nonconductive head protection wherever there is a danger of head injury from electric shock or burns due to contact with energized electrical conductors or circuit parts or from flying objects resulting from electrical explosion. Employees shall wear nonconductive protective equipment for the face, neck, and chin whenever there is a danger of injury from exposure to electric arcs or flashes or from flying objects resulting from electrical explosion. If employees use hairnets and/or beard nets, these items must be arc rated. [ROP-298]

Informational Note: See 130.8(C)(10)(b) and (c) for arc flash protective requirements.

(4) Eye Protection. Employees shall wear protective equipment for the eyes whenever there is danger of injury from electric arcs, flashes, or from flying objects resulting from electrical explosion.

(5) Hearing Protection. Employees shall wear hearing protection whenever working within the arc flash boundary. [ROP-294]

(6) Body Protection. Employees shall wear arc-rated clothing wherever there is possible exposure to an electric arc flash above the threshold incident-energy level for a second-degree burn [5 J/cm² (1.2 cal/cm²)]. [ROP-299]

(7) Hand and Arm Protection. Hand and arm protection shall be provided in accordance with (a), (b), and (c) below.

(a) Shock Protection. Employees shall wear rubber insulating gloves with leather protectors where there is a danger of hand injury from electric shock due to contact with energized electrical conductors or circuit parts. Employees shall wear rubber insulating gloves with leather protectors and rubber insulating sleeves where there is a danger of hand and arm injury from electric shock due to contact with energized electrical conductors or circuit parts. Rubber insulating gloves shall be rated for the voltage for which the gloves will be exposed.
(8) Foot Protection. Where insulated footwear is used as protection against step and touch potential, dielectric overshoes shall be required. Insulated soles shall not be used as primary electrical protection.

(9) Factors in Selection of Protective Clothing. Clothing and equipment that provide worker protection from shock and arc flash hazards shall be utilized. If arc-rated clothing is required, it shall cover associated parts of the body as well as all flammable apparel while allowing movement and visibility. [ROP-306, ROP-372]

Clothing and equipment required for the degree of exposure shall be permitted to be worn alone or integrated with flammable, nonmelting apparel. Garments that are not arc-rated shall not be permitted to be used to increase the arc rating of a clothing system. [ROP-306, ROP-372]

Informational Note: Protective clothing includes shirts, pants, coveralls, jackets, and parkas worn routinely by workers who, under normal working conditions, are exposed to momentary electric arc and related thermal hazards. Arc-rated rainwear worn in inclement weather is included in this category of clothing.

(a) Layering. Nonmelting, flammable fiber garments shall be permitted to be used as underlayers in conjunction with arc-rated garments in a layered system for added protection. If nonmelting, flammable fiber garments are used as underlayers, the system arc rating shall be sufficient to prevent breakopen of the innermost arc-rated layer at the expected arc exposure incident energy level to prevent ignition of flammable underlayers. Garments that are not arc-rated shall not be permitted to be used to increase the arc rating of a clothing system. [ROP-373]

Informational Note: A typical layering system might include cotton underwear, a cotton shirt and trouser, and an arc-rated coverall. Specific tasks might call for additional arc-rated layers to achieve the required protection level.

(b) Outer Layers. Garments worn as outer layers over arc-rated clothing, such as jackets or rainwear, shall also be made from arc-rated material.

(c) Underlayers. Meltalbe fibers such as acetate, nylon, polyester, polypropylene, and spandex shall not be permitted in fabric underlayers (underwear) next to the skin.

Exception: An incidental amount of elastic used on non-melting fabric underwear or socks shall be permitted.

Informational Note No. 1: Arc-rated garments (e.g., shirts, trousers, and coveralls) worn as underlayers that neither ignite nor melt and drip in the course of an exposure to electric arc and related thermal hazards generally provide a higher system arc rating than nonmelting, flammable fiber underlayers.

Informational Note No. 2: Arc-rated underwear or undergarments used as underlayers generally provide a higher system arc rating than nonmelting, flammable fiber underwear or undergarments used as underlayers.

Exception: Where it is necessary to use rubber insulating gloves without leather protectors, the requirements of ASTM F 496, Standard Specification for In-Service Care of Insulating Gloves and Sleeves, shall be met.

Informational Note: Table 130.8(C)(15)(1) provides further information on tasks where rubber insulating gloves are required.

(b) Arc Flash Protection. Hand and arm protection shall be worn where there is possible exposure to arc flash burn. The apparel described in 130.8(C)(10)(d) shall be required for protection of hands from burns. Arm protection shall be accomplished by the apparel described in 130.8(C)(6).

(c) Maintenance and Use. Electrical protective equipment shall be maintained in a safe, reliable condition. Insulating equipment shall be inspected for damage before each day’s use and immediately following any incident that can reasonably be suspected of having caused damage. Insulating gloves shall be given an air test, along with the inspection. Electrical protective equipment shall be subjected to periodic electrical tests. Test voltages and the maximum intervals between tests shall be in accordance with Table 130.8(C)(7)(c).

Table 130.8(C)(7)(c) Rubber Insulating Equipment, Maximum Test Intervals

<table>
<thead>
<tr>
<th>Rubber Insulating Equipment</th>
<th>When to Test</th>
<th>Governing Standard° for Test Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blankets</td>
<td>Before first issue; every 12 months thereafter¹</td>
<td>ASTM F 479</td>
</tr>
<tr>
<td>Covers</td>
<td>If insulating value is suspect</td>
<td>ASTM F 478</td>
</tr>
<tr>
<td>Gloves</td>
<td>Before first issue; every 6 months thereafter¹</td>
<td>ASTM F 496</td>
</tr>
<tr>
<td>Line hose</td>
<td>If insulating value is suspect</td>
<td>ASTM F 478</td>
</tr>
<tr>
<td>Sleeves</td>
<td>Before first issue; every 12 months thereafter¹</td>
<td>ASTM F 496</td>
</tr>
</tbody>
</table>

°ASTM F 478, Standard Specification for In-Service Care of Insulating Line Hose and Covers; ASTM F 479, Standard Specification for In-Service Care of Insulating Blankets; ASTM F 496, Standard Specification for In-Service Care of Insulating Gloves and Sleeves.

¹If the insulating equipment has been electrically tested but not issued for service, it may not be placed into service unless it has been electrically tested within the previous 12 months.

Informational Note: See OSHA 1910.137 and ASTM F 496, Standard Specification for In-Service Care of Insulating Gloves and Sleeves.

Informational Note: Table 130.8(C)(15)(1) provides further information on tasks where rubber insulating gloves are required.
(d) Coverage. Clothing shall cover potentially exposed areas as completely as possible. Shirt sleeves shall be fastened at the wrists, and shirts and jackets shall be closed at the neck.

(e) Fit. Tight-fitting clothing shall be avoided. Loose-fitting clothing provides additional thermal insulation because of air spaces. Arc-rated apparel shall fit properly such that it does not interfere with the work task.

(f) Interference. The garment selected shall result in the least interference with the task but still provide the necessary protection. The work method, location, and task could influence the protective equipment selected.

(10) Arc Flash Protective Equipment.

(a) Arc Flash Suits. Arc flash suit design shall permit easy and rapid removal by the wearer. The entire arc flash suit, including the hood’s face shield, shall have an arc rating that is suitable for the arc flash exposure. When the incident energy exposure is greater than 12 cal/cm², a suitably rated arc flash suit hood shall be used. When exterior air is supplied into the hood, the air hoses and pump housing shall be either covered by arc-rated materials or constructed of nonmelting and nonflammable materials. [ROP-376, ROP-377]

(b) Head Protection. [ROP-380]

(1) An arc rated balaclava shall be used with an arc rated faceshield when the back of the head is within the Arc Flash Protection Boundary. Arc rated balaclavas shall cover the neck and head other than the eyes, nose and mouth area. An arc rated hood shall be permitted to be used instead of an arc rated faceshield and balaclava. [ROP-380]

(2) An arc rated hood shall be used when the anticipated incident energy exposure exceeds 12 calories/cm². [ROP-380]

(c) Face Protection. Face shields shall have an arc rating suitable for the arc flash exposure. Face shields with a wrap-around guarding to protect the face, chin, forehead, ears, neck area shall be used. Face shields without an arc rating shall not be used. Eye protection (safety glasses or goggles) shall always be worn under face shields or hoods. [ROP-376, ROP-377]

Informational Note: Face shields made with energy-absorbing formulations that can provide higher levels of protection from the radiant energy of an arc flash are available, but these shields are tinted and can reduce visual acuity and color perception. Additional illumination of the task area might be necessary when these types of arc-protective face shields are used.

(d) Hand Protection.

(1) Leather protectors or arc-rated gloves shall be worn where required for arc flash protection. [ROP-378]

(2) Where insulating rubber gloves are used for shock protection, leather protectors shall be worn over the rubber gloves.

Informational Note: Rubber insulating gloves, arc rated gloves, or leather protectors provide hand protection against arc flash hazard. Leather protectors for rubber insulating gloves provide protection suitable up to 8 cal/cm². During high arc flash exposures leather can shrink and cause a decrease in protection. The leather protectors worn over rubber insulating gloves provide additional arc flash protection for the hands up to 8 cal/cm². [ROP-375]

(e) Foot Protection. Heavy-duty leather work shoes provide some arc flash protection to the feet and shall be used in all exposures greater than 4 cal/cm². [ROP-379]

(11) Clothing Material Characteristics. Arc-rated clothing shall meet the requirements described in 130.8(C)(12) and 130.8(C)(12).

Informational Note No. 1: Arc-rated materials, such as flame-retardant treated cotton, meta-aramid, para-aramid, and poly-benzimidazole (PBI) fibers, provide thermal protection. These materials can ignite but will not continue to burn after the ignition source is removed. Arc-rated fabrics can reduce burn injuries during an arc flash exposure by providing a thermal barrier between the arc flash and the wearer.

Informational Note No. 2: Non-arc-rated cotton, polyester-cotton blends, nylon, nylon-cotton blends, silk, rayon, and wool fabrics are flammable. Fabrics, zipper tapes, and findings made of these materials can ignite and continue to burn on the body, resulting in serious burn injuries. [ROP-381]

Informational Note No. 3: Rayon is a cellulose-based (wood pulp) synthetic fiber that is a flammable but nonmelting material.

Clothing consisting of fabrics, zipper tapes, and findings made from flammable synthetic materials that melt at temperatures below 315°C (600°F), such as acetate, acrylic, nylon, polyester, polyethylene, polypropylene, and spandex, either alone or in blends, shall not be used. [ROP-381]

Informational Note: These materials melt as a result of arc flash exposure conditions, form intimate contact with the skin, and aggravate the burn injury.

Exception: Fiber blends that contain materials that melt, such as acetate, acrylic, nylon, polyester, polyethylene, polypropylene, and spandex shall be permitted if such blends in fabrics meet the requirements of ASTM F 1506, Standard Performance Specification for Textile Material for Wearing Apparel for Use by Electrical Workers Exposed to Momentary Electric Arc and Related Thermal Hazards, and if such blends in fabrics do not exhibit evidence of a melting and sticking hazard during arc testing according to ASTM F 1959, Standard Test Method for Determining the Arc Thermal Performance Value of Materials for Clothing [see also 130.8(C)(12)].
(12) Clothing and Other Apparel Not Permitted. Clothing and other apparel (such as hard hat liners and hair nets) made from materials that do not meet the requirements of 130.8(C)(11) regarding melting, or made from materials that do not meet the flammability requirements shall not be permitted to be worn.

Informational Note: Some arc-rated fabrics, such as non-FR modacrylic and nondurable flame-retardant treatments of cotton, are not recommended for industrial electrical or utility applications.

Exception No. 1: Nonmelting, flammable (non-arc-rated) materials shall be permitted to be used as underlayers to arc-rated clothing, as described in 130.8(C)(11), and also shall be permitted to be used for Hazard/Risk Category 0 as described in Table 130.8(C)(16).

Exception No. 2: Where the work to be performed inside the Arc Flash Protection Boundary exposes the worker to multiple hazards, such as airborne contaminants, under special permission by the authority having jurisdiction and where it can be shown that the level of protection is adequate to address the arc flash hazard, non-arc-rated Personnel Protective Equipment shall be permitted.

(13) Care and Maintenance of Arc-rated Clothing and Arc-rated Arc Flash Suits.

(a) Inspection. Arc-rated apparel shall be inspected before each use. Work clothing or arc flash suits that are contaminated, or damaged to the extent their protective qualities are impaired, shall not be used. Protective items that become contaminated with grease, oil, or flammable liquids or combustible materials shall not be used.

(b) Manufacturer’s Instructions. The garment manufacturer’s instructions for care and maintenance of arc-rated apparel shall be followed.

(c) Storage. Arc-rated apparel shall be stored in a manner that prevents physical damage; damage from moisture, dust, or other deteriorating agents; or contamination from flammable or combustible materials.

(d) Cleaning, Repairing, and Affixing Items. When arc-rated clothing is cleaned, manufacturer’s instructions shall be followed to avoid loss of protection. When arc-rated clothing is repaired, the same arc-rated materials used to manufacture the arc-rated clothing shall be used to provide repairs. When trim, name tags, and/or logos are affixed to arc-rated clothing, guidance in ASTM F 1506, Standard Performance Specification for Textile Material for Wearing Apparel for Use by Electrical Workers Exposed to Momentary Electric Arc and Related Thermal Hazards, shall be followed [see Table 130.8(C)(14)].

(14) Standards for Personal Protective Equipment (PPE). Personal protective equipment (PPE) shall conform to the standards given in Table 130.8(C)(14). [ROP-306]

Informational Note: Non-arc-rated or flammable fabrics are not covered by a standard in Table 130.8(C)(14). See 130.8(C)(11) and 130.8(C)(12).

<table>
<thead>
<tr>
<th>Table 130.8(C)(14) Standards on Protective Equipment [ROP-305]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Subject</strong></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Aprons- Insulating</td>
</tr>
<tr>
<td>Eye and Face Protection-General</td>
</tr>
<tr>
<td>Fall Protection</td>
</tr>
</tbody>
</table>
Table 130.8(C)(14) Continued

<table>
<thead>
<tr>
<th>Subject</th>
<th>Document Title</th>
<th>Document Number and Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloves and Sleeves—In-Service Care</td>
<td>Standard Specification for In-Service Care of Insulating Gloves and Sleeves</td>
<td>ASTM F496 - 08</td>
</tr>
<tr>
<td>Gloves—Rubber Insulating</td>
<td>Standard Specification for Rubber Insulating Gloves</td>
<td>ASTM D120 - 09</td>
</tr>
<tr>
<td>Head Protection—Hard Hats</td>
<td>Personal Protection - Protective Headwear for Industrial Workers,</td>
<td>ANSI/ISEA Z89.1-2009</td>
</tr>
<tr>
<td>Rainwear Arc-Rated</td>
<td>Standard Specification for Arc and Flame Resistant Rainwear</td>
<td>ASTM F1891 - 06</td>
</tr>
<tr>
<td>Sleeves—Insulating</td>
<td>Standard Specification for Rubber Insulating Sleeves</td>
<td>ASTM D1051 - 08</td>
</tr>
</tbody>
</table>

(15) Selection of Personal Protective Equipment When Required for Various Tasks. Where selected in lieu of the incident energy analysis of 130.5(B)(1), Table 130.8(C)(15)(1) shall be used to determine the hazard/risk category and requirements for use of rubber insulating gloves and insulated and insulating hand tools for a task. The assumed maximum short-circuit current capacities and maximum fault clearing times for various tasks are listed in Table 130.8(C)(15)(1). For tasks not listed, or for power systems with greater than the assumed maximum short-circuit current capacity or with longer than the assumed maximum fault clearing times, an incident energy analysis shall be required in accordance with 130.5. [ROP-321]

Informational Note No. 1: The hazard/risk category, work tasks, and protective equipment identified in Table 130.8(C)(15)(1) were identified by a task group and the hazard/risk category, protective clothing, and equipment selected were based on the collective experience of the task group. The protective clothing and equipment are generally based on determination of estimated exposure levels. [ROP-319]

In several cases, where the risk of an arc flash incident is considered low, very low, or extremely low by the task group, the hazard/risk category number has been reduced by 1, 2, or 3 numbers, respectively. [ROP-319]

Informational Note No. 2: The collective experience of the task group is that in most cases closed doors do not provide enough protection to eliminate the need for PPE for instances where the state of the equipment is known to readily change (e.g., doors open or closed, rack in or rack out). The premise used by the Task Group is considered to be reasonable, based on the consensus judgment of the full NFPA 70E Technical Committee. [ROP-201, ROP-319, ROP-340, ROP-341]

<table>
<thead>
<tr>
<th>Tasks Performed on Energized Equipment</th>
<th>Hazard/Risk Category</th>
<th>Rubber Insulating Gloves</th>
<th>Insulated Insulating Hand Tools</th>
<th>Maximum Available Short Circuit Current &amp; Clearing Time</th>
<th>Arc Flash Boundary (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panelboards or Other Equipment Rated 240 V and Below</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Perform infrared thermography and other non-contact inspections outside the restricted approach boundary</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
</tbody>
</table>
### Table 130.8(C)(15)(1) Continued

<table>
<thead>
<tr>
<th>Tasks Performed on Energized Equipment</th>
<th>Hazard/Risk Category</th>
<th>Rubber Insulating Gloves</th>
<th>Insulated Insulating Hand Tools</th>
<th>Maximum Available Short Circuit Current &amp; Clearing Time</th>
<th>Arc Flash Boundary (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker (CB) or fused switch operation with covers on</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>CB or fused switch operation with covers off</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Remove/install CBs or fused switches</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts of utilization equipment fed directly by a branch circuit of the panelboard</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Panelboards, Switchboards, and Other Equipment Rated &gt; 240V and up to 600V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform infrared thermography and other non-contact inspections outside the restricted approach boundary</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>30</td>
</tr>
<tr>
<td>Circuit breaker (CB) or fused switch operation with covers on</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>CB or fused switch operation with covers off</td>
<td>1</td>
<td>Y</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>30</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>30</td>
</tr>
<tr>
<td>Remove/install CBs or fused switches</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>30</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>30</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>30</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts of utilization equipment fed directly by a branch circuit of the panelboard or switchboard</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>25kA @ 0.03 sec (2 cycles)</td>
<td>30</td>
</tr>
<tr>
<td>600 V Class Motor Control Centers (MCCs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform infrared thermography and other non-contact inspections outside the restricted approach boundary</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>CB or fused switch or starter operation with enclosure doors closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>Tasks Performed on Energized Equipment</td>
<td>Hazard/Risk Category</td>
<td>Rubber Insulating Gloves</td>
<td>Insulated &amp; Insulating Hand Tools</td>
<td>Maximum Available Short Circuit Current &amp; Clearing Time</td>
<td>Arc Flash Boundary (inches)</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>CB or fused switch or starter operation with enclosure doors open</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>65kA @ 0.33 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts 120 V or below, exposed</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>15</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts&gt; 120 V, exposed</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Insertion or removal of individual starter “buckets” from MCC</td>
<td>4</td>
<td>Y</td>
<td>N</td>
<td>42kA @ 0.33 sec (20 cycles)</td>
<td>165</td>
</tr>
<tr>
<td>Application of temporary protective grounding equipment, after voltage test</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>42kA @ 0.33 sec (20 cycles)</td>
<td>165</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>42kA @ 0.33 sec (20 cycles)</td>
<td>165</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts of utilization equipment fed directly by a branch circuit of the motor control center</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>600 V Class Switchgear (with power circuit breakers or fused switches)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform infrared thermography and other non-contact inspections outside the restricted approach boundary</td>
<td>2</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>CB or fused switch operation with enclosure doors closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>CB or fused switch operation with enclosure doors open</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts 120 V or below, exposed</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts&gt; 120 V, exposed</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Insertion or removal (racking) of CBs from cubicles, doors open or closed</td>
<td>4</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Tasks Performed on Energized Equipment</td>
<td>Hazard/Risk Category</td>
<td>Rubber Insulating Gloves</td>
<td>Insulated &amp; Insulating Hand Tools</td>
<td>Maximum Available Short Circuit Current &amp; Clearing Time</td>
<td>Arc Flash Boundary (inches)</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Application of temporary protective grounding equipment after voltage test</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>2</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td><strong>Other 600 V Class (277 V through 600 V, nominal) Equipment</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting or small power transformers (600 V, maximum)</td>
<td>2</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.5 sec (30 cycles)</td>
<td>235</td>
</tr>
<tr>
<td>Revenue meters (kW-hour, at primary voltage and current) – insertion or removal</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Cable trough or tray cover removal or installation</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Miscellaneous equipment cover removal or installation</td>
<td>1</td>
<td>N</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Application of temporary protective grounding equipment, after voltage test</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td>Insertion or removal of plug-in devices into or from busways</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>65kA @ 0.03 sec (2 cycles)</td>
<td>55</td>
</tr>
<tr>
<td><strong>NEMA E2 (fused contactor) Motor Starters, 2.3 kV through 7.2 kV</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform infrared thermography and other non-contact inspections outside the restricted approach boundary</td>
<td>3</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Contactor operation with enclosure doors closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Contactor operation with enclosure doors open</td>
<td>2</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Tasks Performed on Energized Equipment</td>
<td>Hazard/Risk Category</td>
<td>Rubber Insulating Gloves</td>
<td>Insulated &amp; Insulating Hand Tools</td>
<td>Maximum Available Short Circuit Current &amp; Clearing Time</td>
<td>Arc Flash Boundary (inches)</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts 120 V or below, exposed</td>
<td>0</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts &gt; 120 V, exposed</td>
<td>3</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Insertion or removal (racking) of starters from cubicles, doors open or closed</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Application of temporary protective grounding equipment, after voltage test</td>
<td>3</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>3</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Insertion or removal (racking) of starters from cubicles of arc-resistant construction, tested in accordance with IEEE C37.20.7, doors closed only</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>Metal Clad Switchgear, 1 kV through 38 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform infrared thermography and other non-contact inspections outside the restricted approach boundary</td>
<td>3</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>CB operation with enclosure doors closed</td>
<td>2</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Reading a panel meter while operating a meter switch</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>CB operation with enclosure doors open</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts 120 V or below, exposed</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>15</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts &gt; 120 V, exposed</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>20</td>
</tr>
<tr>
<td>Insertion or removal (racking) of CBs from cubicles, doors open or closed</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Application of temporary protective grounding equipment, after voltage test</td>
<td>4</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>3</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
</tbody>
</table>
### Table 130.8(C)(15)(1) Continued

<table>
<thead>
<tr>
<th>Tasks Performed on Energized Equipment</th>
<th>Hazard/Risk Category</th>
<th>Rubber Insulating Gloves</th>
<th>Insulated Insulating Hand Tools</th>
<th>Maximum Available Short Circuit Current &amp; Clearing Time</th>
<th>Arc Flash Boundary (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening voltage transformer or control power transformer compartments</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Arc-Resistant Switchgear Type 1 or 2 (for clearing times of &lt; 0.5 sec with a perspective fault current not to exceed the arc-resistant rating of the equipment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB operation with enclosure door closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>Insertion or removal (racking) of CBs from cubicles, doors closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>Insertion or removal of CBs from cubicles with door open</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Work on control circuits with energized electrical conductors and circuit parts 120 V or below, exposed</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>15</td>
</tr>
<tr>
<td>Insertion or removal (racking) of ground and test device with door closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Insertion or removal (racking) of voltage transformers on or off the bus door closed</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Other Equipment 1 kV through 38 kV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal-enclosed interrupter switchgear, fused or unfused</td>
<td>0</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>0</td>
</tr>
<tr>
<td>Switch operation of arc-resistant-type construction, tested in accordance with IEEE C37.20.7, doors closed only</td>
<td>2</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>4</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>4</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>3</td>
<td>N</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Outdoor disconnect switch operation (hookstick operated)</td>
<td>3</td>
<td>Y</td>
<td>Y</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Outdoor disconnect switch operation (gang-operated, from grade)</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Insulated cable examination, in manhole or other confined space</td>
<td>4</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
<tr>
<td>Insulated cable examination, in open area</td>
<td>2</td>
<td>Y</td>
<td>N</td>
<td>35kA @ 0.2 sec (12 cycles)</td>
<td>420</td>
</tr>
</tbody>
</table>

Notes:

1. Rubber insulating gloves are gloves rated for the maximum line-to-line voltage upon which work will be done.
2. Insulated and insulating hand tools are tools rated and tested for the maximum line-to-line voltage upon which work will be done, and are manufactured and tested in accordance with ASTM F 1505, Standard Specification for Insulated and Insulating Hand Tools.
3. Y = yes (required), N = no (not required).
4. The use of “N” does not indicate that rubber insulating gloves, insulated and insulating hand tools are not required in all cases. Rubber insulating gloves, insulated and insulating hand tools may be required by 130.4, 130.8 (C) (7), and 130.8(D).
5. For systems rated less than 1000 volts, the fault currents and upstream protective device clearing times are based on an 18 in. working distance.
6. For systems rated 1 kV and greater, the Hazard/Risk Categories are based on a 36 in. working distance.
For equipment protected by upstream current limiting fuses with arcing fault current in their current limiting range (½ cycle fault clearing time or less), the hazard/risk category required may be reduced by one number.

For power systems up to 600V the Arc Flash Boundary was determined by using the following information:
When 0.03 second trip time was used, that indicated MCC or panelboard equipment protected by a molded-case circuit breaker. Working distance used is (455 mm) 18”, arc gap used is 32mm for switchgear and 25 mm for MCC, protective device type 0 for all. When 0.33 or 0.5 second trip time was used, that indicated a LVPCB (drawout circuit breaker) in switchgear. Working distance is (610 mm) 24”, arc gap used is 32 mm, protective device type 0 for all.
All numbers were rounded up or down depending on closest multiple of “5”.

For power systems from 1 kV to 38 kV the Arc Flash Boundary was determined by using the following information: No maximum values were given in the 2009 edition of the NFPA 70E for short circuit current or operating time. Two sets of equations were performed [35 kA AIC and 0.2 second operating time] and [26 kA AIC and 0.2 second operating time]. 0.2 seconds was used by adding the typical maximum total clearing time of the circuit breaker to an estimated value for relay operation. This coincides with the IEEE 1584 values of 0.18 second operating time and 0.08 tripping time rounded off. A short-circuit current of 35 kA was used as a maximum (HRC-4@~40 cal/cm²) and 26 kA was used to compare the effects of lowering the short circuit current (HRC-4@~30 cal/cm²). Working distance used was (909 mm) 36”, arc gap was (455 mm) 6”, protective device type 0 for all.

Protective Clothing and Personal Protective Equipment. Once the Hazard/Risk Category has been identified from Table 130.8(C)(15)(1) (including associated notes) and the requirements of 130.8(C)(9), Table 130.8(C)(16) shall be used to determine the required PPE for the task. Table 130.8(C)(16) lists the requirements for protective clothing and other protective equipment based on Hazard/Risk Category numbers 0 through 4. This clothing and equipment shall be used when working within the Arc Flash Protection Boundary. [ROP-363]

<table>
<thead>
<tr>
<th>Tasks Performed on Energized Equipment</th>
<th>Hazard/Risk Category</th>
<th>Rubber Insulating Gloves</th>
<th>Insulated and Insulating Hand Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Batteries, Direct-Current Switchboards and other DC supply sources &gt;100V &lt;250V Notes 5, 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is &gt;=1 kA and &lt;4 kA</td>
<td>1a</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is &gt;=4 kA and &lt;10 kA</td>
<td>2a</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is &gt;=10 kA and &lt;15kA</td>
<td>3a</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

| Storage Batteries, Direct-Current Switchboards and other DC supply sources >=250V <=600V Notes 5, 6 | | | |
| Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is >=1 kA and <1.5 kA. | 1a | Y | Y |
| Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is >=1.5 kA and <3 kA. | 2a | Y | Y |
| Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is >=3 kA and <7 kA. | 3a | Y | Y |
| Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is >=7 kA and <10 kA. | 4a | Y | Y |

General Notes (applicable to the entire table):
(a) If acid exposure is possible, the clothing shall be protective from acid and arc rated to the hazard according to ASTM F1891 or equivalent and evaluated by ASTM F1296 for acid protection.
(b) In clean rooms or other electrical installations, which cannot allow leather protectors for arc flash exposure, ASTM F496 shall be followed for using rubber insulating gloves without leather protectors and the rubber gloves chosen shall be arc rated to the potential exposure level of the HRC category.
Informational Note No. 1: See Annex H for a suggested simplified approach to ensure adequate PPE for electrical workers within facilities with large and diverse electrical systems.

Informational Note No. 2: The PPE requirements of this section are intended to protect a person from arc flash and shock hazards. While some situations could result in burns to the skin, even with the protection described in Table 130.8(C)(16), burn injury should be reduced and survivable. Due to the explosive effect of some arc events, physical trauma injuries could occur. The PPE requirements of this section do not address protection against physical trauma other than exposure to the thermal effects of an arc flash. [ROP-363]

Informational Note: The arc rating for a particular clothing system can be obtained from the arc rated clothing manufacturer. [ROP-363]

Table 130.8(C)(16) Protective Clothing and Personal Protective Equipment (PPE) [ROP-363]

<table>
<thead>
<tr>
<th>Hazard/Risk Category</th>
<th>Protective Clothing and PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>0</strong></td>
<td>Protective Clothing, nonmelting or untreated natural fiber (i.e. untreated cotton, wool, rayon, or silk or blends of these materials) with a fabric weight of at least 4.5 oz/yd²</td>
</tr>
<tr>
<td></td>
<td>Shirt (long sleeve)</td>
</tr>
<tr>
<td></td>
<td>Pants (long)</td>
</tr>
<tr>
<td><strong>Protective Equipment</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Safety glasses or safety goggles (SR)</td>
</tr>
<tr>
<td></td>
<td>Hearing protection (ear canal inserts)</td>
</tr>
<tr>
<td></td>
<td>Leather gloves (Note 1)</td>
</tr>
<tr>
<td></td>
<td>Leather shoes</td>
</tr>
<tr>
<td><strong>1</strong></td>
<td>Arc-rated clothing, minimum arc rating of 4 cal/cm² (16.74 J/cm²) (Note 3)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated long-sleeve shirt and pants or arc-rated coverall</td>
</tr>
<tr>
<td></td>
<td>Arc-rated face shield (Note 2) or arc flash suit hood</td>
</tr>
<tr>
<td></td>
<td>Arc-rated jacket, parka, rainwear, or hard hat liner (AN)</td>
</tr>
<tr>
<td><strong>Protective Equipment</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard hat</td>
</tr>
<tr>
<td></td>
<td>Safety glasses or safety goggles (SR)</td>
</tr>
<tr>
<td></td>
<td>Hearing protection (ear canal inserts)</td>
</tr>
<tr>
<td></td>
<td>Leather gloves (Note 1)</td>
</tr>
<tr>
<td></td>
<td>Leather work shoes</td>
</tr>
<tr>
<td><strong>3</strong></td>
<td>Arc-rated clothing selected so that the system arc rating meets the required minimum arc rating of 25 cal/cm² (104.6 J/cm²) (Note 3)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated long-sleeve shirt (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated pants (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated coverall (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit jacket (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit pants (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit hood</td>
</tr>
<tr>
<td></td>
<td>Arc-rated gloves (Note 1)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated jacket, parka, rainwear, or hard hat liner (AN)</td>
</tr>
<tr>
<td><strong>Protective Equipment</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard hat</td>
</tr>
<tr>
<td></td>
<td>Safety glasses or safety goggles (SR)</td>
</tr>
<tr>
<td></td>
<td>Hearing protection (ear canal inserts)</td>
</tr>
<tr>
<td></td>
<td>Leather work shoes</td>
</tr>
<tr>
<td><strong>4</strong></td>
<td>Arc-rated clothing selected so that the system arc rating meets the required minimum arc rating of 40 cal/cm² (167.56 J/cm²) (Note 3)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated long-sleeve shirt (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated pants (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated coverall (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit jacket (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit pants (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit hood</td>
</tr>
<tr>
<td></td>
<td>Arc-rated gloves (Note 1)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated jacket, parka, rainwear, or hard hat liner (AN)</td>
</tr>
<tr>
<td><strong>Protective Equipment</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard hat</td>
</tr>
<tr>
<td></td>
<td>Safety glasses or safety goggles (SR)</td>
</tr>
<tr>
<td></td>
<td>Hearing protection (ear canal inserts)</td>
</tr>
<tr>
<td></td>
<td>Leather work shoes</td>
</tr>
</tbody>
</table>
Table 130.8(C)(16)  Continued

<table>
<thead>
<tr>
<th>Hazard/Risk Category</th>
<th>Protective Clothing and PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arc-rated long-sleeve shirt (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated pants (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated coverall (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit jacket (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit pants (AR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit hood</td>
</tr>
<tr>
<td></td>
<td>Arc-rated gloves (Note 1)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated jacket, parka, rainwear, or hard hat liner (AN)</td>
</tr>
</tbody>
</table>

**Protective Equipment**

- Hard hat
- Safety glasses or safety goggles (SR)
- Hearing protection (ear canal inserts)
- Leather work shoes

AN = As needed (optional)
AR = As required
SR = Selection required

Notes:

1. If rubber insulating gloves with leather protectors are required by Table 130.7(C)(9), additional leather or arc-rated gloves are not required. The combination of rubber insulating gloves with leather protectors satisfies the arc flash protection requirement.

2. Faceshields are to have wrap-around guarding to protect not only the face but also the forehead, ears, and neck, or, alternatively, an arc-rated arc flash suit is required to be worn.

3. Arc rating is defined in Article 100 and can be either ATPV or EBT. ATPV is defined in ASTM F 1959, Standard Test Method for Determining the Arc Thermal Performance Value of Materials for Clothing, as the incident energy on a material or a multilayer system of materials that results in a 50% probability that sufficient heat transfer through the tested specimen is predicted to cause the onset of a second-degree skin burn injury based on the Stoll curve, cal/cm². EBT is defined in ASTM F 1959 as the incident energy on a material or material system that results in a 50% probability of breakopen. Arc rating is reported as either ATPV or EBT, whichever is the lower value.

(D) Other Protective Equipment.

1. **Insulated Tools and Equipment.** Employees shall use insulated tools and/or handling equipment when working inside the Limited Approach Boundary of exposed energized electrical conductors or circuit parts where tools or handling equipment might make accidental contact. Table 130.8(C)(15)(1) provides further information for tasks that require insulated and insulating hand tools. Insulated tools shall be protected from damage to the insulating material.

   Informational Note: See 130.4(B), Shock Protection Boundaries.

   (a) Requirements for Insulated Tools. The following requirements shall apply to insulated tools:

   1. Insulated tools shall be rated for the voltages on which they are used.
   2. Insulated tools shall be designed and constructed for the environment to which they are exposed and the manner in which they are used.
   3. Insulated tools and equipment shall be inspected prior to each use. The inspection shall look for damage to the insulation or damage that may limit the tool from performing its intended function or could increase the potential for an incident (e.g., damaged tip on a screwdriver).

   (b) Fuse or Fuse Holding Equipment. Fuse or fuse holder handling equipment, insulated for the circuit voltage, shall be used to remove or install a fuse if the fuse terminals are energized.

   (c) Ropes and Handlines. Ropes and handlines used within the Limited Approach Boundary of exposed energized electrical conductors or circuit parts operating at 50 volts or more, or used where an electrical hazard exists, shall be nonconductive.

   (d) Fiberglass-Reinforced Plastic Rods. Fiberglass-reinforced plastic rod and tube used for live line tools shall meet the requirements of applicable portions of electrical codes and standards dealing with electrical installation requirements.


   (e) Portable Ladders. Portable ladders shall have non-conductive side rails if they are used where the employee or ladder could contact exposed energized electrical conductors or circuit parts operating at 50 volts or more or where an electrical hazard exists. Nonconductive ladders shall meet the requirements of ANSI standards for ladders listed in Table 130.8(F).

   (f) Protective Shields. Protective shields, protective barriers, or insulating materials shall be used to protect each employee from shock, burns, or other electrically related injuries while that employee is working within the Limited Approach Boundary of energized conductors or circuit parts that might be accidentally contacted or where dangerous electric heating or arcing might occur. When normally enclosed energized conductors or circuit parts are exposed for maintenance or repair, they shall be guarded to
(g) Rubber Insulating Equipment. Rubber insulating equipment used for protection from accidental contact with energized conductors or circuit parts shall meet the requirements of the ASTM standards listed in Table 130.8(F).

(h) Voltage-Rated Plastic Guard Equipment. Plastic guard equipment for protection of employees from accidental contact with energized conductors or circuit parts, or for protection of employees or energized equipment or material from contact with ground, shall meet the requirements of the ASTM standards listed in Table 130.8(F).

(i) Physical or Mechanical Barriers. Physical or mechanical (field-fabricated) barriers shall be installed no closer than the Restricted Approach Boundary distance given in Table 130.4(C)(1). While the barrier is being installed, the Restricted Approach Boundary distance specified in Table 130.4(C)(1) shall be maintained, or the energized conductors or circuit parts shall be placed in an electrically safe work condition.

(E) Alerting Techniques.

(1) Safety Signs and Tags. Safety signs, safety symbols, or accident prevention tags shall be used where necessary to warn employees about electrical hazards that might endanger them. Such signs and tags shall meet the requirements of ANSI Z535, Series of Standards for Safety Signs and Tags, given in Table 130.8(F).

Informational Note: Safety signs, tags, and barricades used to identify energized “look-alike” equipment can be employed as an additional preventive measure.

(2) Barricades. Barricades shall be used in conjunction with safety signs where it is necessary to prevent or limit employee access to work areas containing energized conductors or circuit parts. Conductive barricades shall not be used where it might cause an electrical hazard. Barricades shall be placed no closer than the Limited Approach Boundary given in Table 130.4(C)(1).

(3) Attendants. If signs and barricades do not provide sufficient warning and protection from electrical hazards, an attendant shall be stationed to warn and protect employees. The primary duty and responsibility of an attendant providing manual signaling and alerting shall be to keep unqualified employees outside a work area where the unqualified employee might be exposed to electrical hazards. An attendant shall remain in the area as long as there is a potential for employees to be exposed to the electrical hazards.

(4) Look-Alike Equipment. Where work performed on equipment that is deenergized and placed in an electrically safe condition exists in a work area with other energized equipment that is similar in size, shape, and construction, one of the alerting methods in 130.8(E)(1), (2), or (3) shall be employed to prevent the employee from entering look-alike equipment.

(F) Standards for Other Protective Equipment. Other protective equipment required in 130.8(D) shall conform to the standards given in Table 130.8(F).
### Table 130.8(F) Standards on Other Protective Equipment [ROP-383]

<table>
<thead>
<tr>
<th>Subject</th>
<th>Document</th>
<th>Document Number and Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blankets</td>
<td>Standard Specification for Rubber Insulating Blankets</td>
<td>ASTM D1048 - 05</td>
</tr>
<tr>
<td>Blankets – In-service Care</td>
<td>Standard Specification for In-Service Care of Insulating Blankets</td>
<td>ASTM F479 - 06</td>
</tr>
<tr>
<td></td>
<td>American National Standard for Ladders - Fixed - Safety Requirements</td>
<td>ANSI A14.3-2008</td>
</tr>
<tr>
<td></td>
<td>American National Standard Safety Requirements for Job Made Wooden Ladders</td>
<td>ANSI A14.4-2009</td>
</tr>
<tr>
<td>Line Hose</td>
<td>Standard Specification for Rubber Insulating Line Hose</td>
<td>ASTM D1050 - 05e1</td>
</tr>
<tr>
<td>Line Hose and Covers – In-service Care</td>
<td>Standard Specification for In-Service Care of Insulating Line Hose and Covers</td>
<td>ASTM F478 - 09</td>
</tr>
<tr>
<td>Plastic Guard</td>
<td>Standard Test Methods and Specifications for Electrically Insulating Plastic Guard Equipment for Protection of Workers</td>
<td>ASTM F712 - 06</td>
</tr>
<tr>
<td>PVC Sheeting</td>
<td>Standard Specification for PVC Insulating Sheeting</td>
<td>ASTM F1742 - 03e1</td>
</tr>
<tr>
<td>Safety Signs and Tags</td>
<td>Series of Standards for Safety Signs and Tags</td>
<td>ANSI Z535 SERIES</td>
</tr>
<tr>
<td>Temporary Protective Grounds-Test Specification</td>
<td>Standard Specifications for Temporary Protective Grounds to Be Used on De-energized Electric Power Lines and Equipment</td>
<td>ASTM F855 - 09</td>
</tr>
</tbody>
</table>
**Chapter 2 Safety-Related Maintenance Requirements**

**ARTICLE 200**

**Introduction**

**200.1 Scope.** Chapter 2 addresses the following requirements:

1. Chapter 2 covers practical safety-related maintenance requirements for electrical equipment and installations in workplaces as included in 90.2. These requirements identify only that maintenance directly associated with employee safety.

2. Chapter 2 does not prescribe specific maintenance methods or testing procedures. It is left to the employer to choose from the various maintenance methods available to satisfy the requirements of Chapter 2.

3. For the purpose of Chapter 2, maintenance shall be defined as preserving or restoring the condition of electrical equipment and installations, or parts of either, for the safety of employees who work where exposed to electrical hazards. Repair or replacement of individual portions or parts of equipment shall be permitted without requiring modification or replacement of other portions or parts that are in a safe condition. [ROP-385]


**ARTICLE 205**

**General Maintenance Requirements**

**205.1 Qualified Persons.** Employees who perform maintenance on electrical equipment and installations shall be qualified persons as required in Chapter 1 and shall be trained in, and familiar with, the specific maintenance procedures and tests required.

**205.2 Single Line Diagram.** A single line diagram, where provided for the electrical system, shall be maintained in a legible condition and shall be kept current. [ROP-388]

**205.3 General Maintenance Requirements.** Overcurrent protective devices shall be maintained in accordance with the manufacturers’ instructions or industry consensus standards. Maintenance, tests, and inspections shall be documented. [ROP-390]

**205.4 Spaces About Electrical Equipment.** All working space and clearances required by electrical codes and standards shall be maintained.

Informational Note: For further information concerning spaces about electrical equipment, see Article 105, Parts II and III, of NFPA 70, *National Electrical Code*.

**205.5 Grounding and Bonding.** Equipment, raceway, cable tray, and enclosure bonding and grounding shall be maintained to ensure electrical continuity.

**205.6 Guarding of Energized Conductors and Circuit Parts.** Enclosures shall be maintained to guard against accidental contact with energized conductors and circuit parts and other electrical hazards.

**205.7 Safety Equipment.** Locks, interlocks, and other safety equipment shall be maintained in proper working condition to accomplish the control purpose.

**205.8 Clear Spaces.** Access to working space and escape passages shall be kept clear and unobstructed.

**205.9 Identification of Components.** Identification of components, where required, and safety-related instructions (operating or maintenance), if posted, shall be securely attached and maintained in legible condition.

**205.10 Warning Signs.** Warning signs, where required, shall be visible, securely attached, and maintained in legible condition.

**205.11 Identification of Circuits.** Circuit or voltage identification shall be securely affixed and maintained in updated and legible condition.

**205.12 Single and Multiple Conductors and Cables.** Electrical cables and single and multiple conductors shall be maintained free of damage, shorts, and ground that would present a hazard to employees.

**205.13 Flexible Cords and Cables.** Flexible cords and cables shall be maintained to avoid strain and damage.

1. **Damaged Cords and Cables.** Cords and cables shall not have worn, frayed, or damaged areas that present an electrical hazard to employees.
**ARTICLE 210**
Substations, Switchgear Assemblies, Switchboards, Panelboards, Motor Control Centers, and Disconnect Switches

210.1 Enclosures. Enclosures shall be kept free of material that would create a hazard.

210.2 Area Enclosures. Fences, physical protection, enclosures, or other protective means, where required to guard against unauthorized access or accidental contact with exposed energized conductors and circuit parts, shall be maintained.

210.3 Conductors. Current-carrying conductors (buses, switches, disconnects, joints, and terminations) and bracing shall be maintained to:
1. Conduct rated current without overheating
2. Withstand available fault current

210.4 Insulation Integrity. Insulation integrity shall be maintained to support the voltage impressed.

210.5 Protective Devices. Protective devices shall be maintained to adequately withstand or interrupt available fault current.

Informational Note: Failure to properly maintain protective devices can have an adverse effect on the arc flash hazard analysis incident energy values.

**ARTICLE 215**
Premises Wiring

215.1 Covers for Wiring System Components. Covers for wiring system components shall be in place with all associated hardware, and there shall be no unprotected openings.

215.2 Open Wiring Protection. Open wiring protection, such as location or barriers, shall be maintained to prevent accidental contact.

215.3 Raceways and Cable Trays. Raceways and cable trays shall be maintained to provide physical protection and support for conductors.

**ARTICLE 220**
Controller Equipment

220.1 Scope. This article shall apply to controllers, including electrical equipment that governs the starting, stopping, direction of motion, acceleration, speed, and protection of rotating equipment and other power utilization apparatus in the workplace.

220.2 Protection and Control Circuitry. Protection and control circuitry used to guard against accidental contact with energized conductors and circuit parts and to prevent other electrical or mechanical hazards shall be maintained.

**ARTICLE 225**
Fuses and Circuit Breakers

225.1 Fuses. Fuses shall be maintained free of breaks or cracks in fuse cases, ferrules, and insulators. Fuse clips shall be maintained to provide adequate contact with fuses. Fuseholders for current-limiting fuses shall not be modified to allow the insertion of fuses that are not current-limiting.

225.2 Molded-Case Circuit Breakers. Molded-case circuit breakers shall be maintained free of cracks in cases and cracked or broken operating handles.

225.3 Circuit Breaker Testing After Electrical Faults [ROP-400]. Circuit breakers that interrupt faults approaching their interrupting ratings shall be inspected and tested in accordance with the manufacturer’s instructions.

**ARTICLE 230**
Rotating Equipment

230.1 Terminal Boxes. Terminal chambers, enclosures, and terminal boxes shall be maintained to guard against accidental contact with energized conductors and circuit parts and other electrical hazards.
230.2 Guards, Barriers, and Access Plates. Guards, barriers, and access plates shall be maintained to prevent employees from contacting moving or energized parts.

ARTICLE 235
Hazardous (Classified) Locations

235.1 Scope. This article covers maintenance requirements in those areas identified as hazardous (classified) locations.

Informational Note: These locations need special types of equipment and installation to ensure safe performance under conditions of proper use and maintenance. It is important that inspection authorities and users exercise more than ordinary care with regard to installation and maintenance. The maintenance for specific equipment and materials is covered elsewhere in Chapter 2 and is applicable to hazardous (classified) locations. Other maintenance will ensure that the form of construction and of installation that makes the equipment, and materials suitable for the particular location are not compromised.

The maintenance needed for specific hazardous (classified) locations depends on the classification of the specific location. The design principles and equipment characteristics, for example, use of positive pressure ventilation, explosionproof, nonincendive, intrinsically safe, and purged and pressurized equipment, that were applied in the installation to meet the requirements of the area classification must also be known. With this information, the employer and the inspection authority are able to determine whether the installation as maintained has retained the condition necessary for a safe workplace.

235.2 Maintenance Requirements for Hazardous (Classified) Locations. Equipment and installations in these locations shall be maintained such that the following apply:

1. No energized parts are exposed. Exception to (1): Intrinsically safe and nonincendive circuits.
2. There are no breaks in conduit systems, fittings, or enclosures from damage, corrosion, or other causes.
3. All bonding jumpers are securely fastened and intact.
4. All fittings, boxes, and enclosures with bolted covers have all bolts installed and bolted tight.
5. All threaded conduit shall be wrenchtight and enclosure covers shall be tightened in accordance with the manufacturer’s instructions.
6. There are no open entries into fittings, boxes, or enclosures that would compromise the protection characteristics.
7. All close-up plugs, breathers, seals, and drains are securely in place.
8. Marking of luminaires (lighting fixtures) for maximum lamp wattage and temperature rating is legible and not exceeded.
9. Required markings are secure and legible.

ARTICLE 240
Batteries and Battery Rooms

240.1 Ventilation. Ventilation systems, forced or natural, shall be maintained to prevent buildup of explosive mixtures. This maintenance shall include a functional test of any associated detection and alarm systems.

240.2 Eye and Body Wash Apparatus. Eye and body wash apparatus shall be maintained in operable condition. [ROP-446]

ARTICLE 245
Portable Electric Tools and Equipment

245.1 Maintenance Requirements for Portable Electric Tools and Equipment. Attachment plugs, receptacles, cover plates, and cord connectors shall be maintained such that the following apply:

1. There are no breaks, damage, or cracks exposing energized conductors and circuit parts.
2. There are no missing cover plates.
3. Terminations have no stray strands or loose terminals.
4. There are no missing, loose, altered, or damaged blades, pins, or contacts.
5. Polarity is correct.

ARTICLE 250
Personal Safety and Protective Equipment

250.1 Maintenance Requirements for Personal Safety and Protective Equipment. Personal safety and protective equipment such as the following shall be maintained in a safe working condition:

1. Grounding equipment
2. Hot sticks
Rubber gloves, sleeves, and leather protectors
Voltage test indicators
Blanket and similar insulating equipment
Insulating mats and similar insulating equipment
Protective barriers
External circuit breaker rack-out devices
Portable lighting units
Safety grounding equipment
Dielectric footwear
Protective clothing
Bypass jumpers
Insulated and insulating hand tools

250.2 Inspection and Testing of Protective Equipment and Protective Tools.

(A) Visual. Safety and protective equipment and protective tools shall be visually inspected for damage and defects before initial use and at intervals thereafter, as service conditions require, but in no case shall the interval exceed 1 year, unless specified otherwise by the respective ASTM standards.

(B) Testing. The insulation of protective equipment and protective tools, such as items (1) through (14) of 250.1, shall be verified by the appropriate test and visual inspection to ascertain that insulating capability has been retained before initial use, and at intervals thereafter, as service conditions require, but in no case shall the interval exceed 3 years, unless specified otherwise by the respective ASTM standards.

250.3 Safety Grounding Equipment.

(A) Visual. Personal protective ground cable sets shall be inspected for cuts in the protective sheath and damage to the conductors. Clamps and connector strain relief devices shall be checked for tightness. These inspections shall be made at intervals thereafter as service conditions require, but in no case shall the interval exceed 1 year.

(B) Testing. Prior to being returned to service, temporary protective grounding equipment that has been repaired or modified shall be tested. [ROP-406]

Informational Note: Guidance for inspecting and testing safety grounds is provided in ASTM F 2249, Standard Specification for In-Service Test Methods for Temporary Grounding Jumper Assemblies Used on De-Energized Electric Power Lines and Equipment.

(C) Grounding and Testing Devices. Grounding and testing devices shall be stored in a clean and dry area. Grounding and testing devices shall be properly inspected and tested before each use. Informational Note: Guidance for testing of grounding and testing devices is provided in Section 9.5 of IEEE C37.20.6-1997, Standard for 4.76 kV to 38 kV-Rated Ground and Test Devices Used in Enclosures.
Chapter 3 Safety Requirements for Special Equipment

ARTICLE 300
Introduction

300.1 Scope. Chapter 3 covers special electrical equipment in the workplace and modifies the general requirements of Chapter 1.

300.2 Responsibility. The employer shall provide safety-related work practices and employee training. The employee shall follow those work practices.

300.3 Organization. Chapter 3 of this standard is divided into articles. Article 300 applies generally. Article 310 applies to electrolytic cells. Article 320 applies to batteries and battery rooms. Article 330 applies to lasers. Article 340 applies to power electronic equipment. Article 350 applies to research and development (R&D) laboratories. [ROP-408]

Informational Note: The NFPA 70E Technical Committee might develop additional chapters for other types of special equipment in the future.

ARTICLE 310
Safety-Related Work Practices for Electrolytic Cells

310.1 Scope. The requirements of this chapter shall apply to the electrical safety-related work practices used in the types of electrolytic cell areas.

Informational Note No. 1: See Annex L for a typical application of safeguards in the cell line working zone.

Informational Note No. 2: For further information about electrolytic cells, see NFPA 70, National Electrical Code, Article 668.

310.2 Definitions. For the purposes of this chapter, the following definitions shall apply.

Battery Effect. A voltage that exists on the cell line after the power supply is disconnected.

Informational Note: Electrolytic cells could exhibit characteristics similar to an electrical storage battery, and thus a hazardous voltage could exist after the power supply is disconnected from the cell line.

Safeguarding. Safeguards for personnel include the consistent administrative enforcement of safe work practices. Safeguards include training in safe work practices, cell line design, safety equipment, personal protective equipment, operating procedures, and work checklists.

310.3 Safety Training.

(A) General. The training requirements of this chapter shall apply to employees who are exposed to the risk of electrical hazard in the cell line working zone defined in 110.2 and shall supplement or modify the requirements of 120.1, 130.2, 130.3, and 130.6.

(B) Training Requirements. Employees shall be trained to understand the specific hazards associated with electrical energy on the cell line. Employees shall be trained in safety-related work practices and procedural requirements to provide protection from the electrical hazards associated with their respective job or task assignment.

310.4 Employee Training.

(A) Qualified Persons.

(1) Training. Qualified persons shall be trained and knowledgeable in the operation of cell line working zone equipment and specific work methods and shall be trained to avoid the electrical hazards that are present. Such persons shall be familiar with the proper use of precautionary techniques and personal protective equipment. Training for a qualified person shall include the following:

(1) The skills and techniques to avoid dangerous contact with hazardous voltages between energized surfaces and between energized surfaces and grounded equipment, other grounded objects, or the earth itself. Skills and techniques might include temporarily insulating or guarding parts to permit the employee to work on energized parts. [ROP-410]

(2) The method of determining the cell line working zone area boundaries.

(2) Qualified Persons. Qualified persons shall be permitted to work within the cell line working zone.

(B) Unqualified Persons.

(1) Training. Unqualified persons shall be trained to recognize electrical hazards to which they may be exposed and the proper methods of avoiding the hazards.

(2) In Cell Line Working Zone. When there is a need for an unqualified person to enter the cell line working zone to perform a specific task, that person shall be advised by the
310.5 Safeguarding of Employees in the Cell Line Working Zone.

(A) General. Operation and maintenance of electrolytic cell lines may require contact by employees with exposed energized surfaces such as buses, electrolytic cells, and their attachments. The approach distances referred to in Table 130.4(C)(1) shall not apply to work performed by qualified persons in the cell line working zone. Safeguards such as safety-related work practices and other safeguards shall be used to protect employees from injury while working in the cell line working zone. These safeguards shall be consistent with the nature and extent of the related electrical hazards. Safeguards might be different for energized cell lines and deenergized cell lines. Hazardous battery effect voltages shall be dissipated to consider a cell line deenergized.

Informational Note No. 1: Exposed energized surfaces might not establish a hazardous condition. A hazardous electrical condition is related to current flow through the body causing shock and arc flash burns and arc blasts. Shock is a function of many factors, including resistance through the body and through skin, of return paths, of paths in parallel with the body, and of system voltages. Arc flash burns and arc blasts are a function of the current available at the point involved and the time of arc exposure.

Informational Note No. 2: A cell line or group of cell lines operated as a unit for the production of a particular metal, gas, or chemical compound might differ from other cell lines producing the same product because of variations in the particular raw materials used, output capacity, use of proprietary methods or process practices, or other modifying factors. Detailed standard electrical safety-related work practice requirements could become overly restrictive without accomplishing the stated purpose of Chapter 1 of this standard.

(B) Signs. Permanent signs shall clearly designate electrolytic cell areas.

(C) Electrical Arc Flash Hazard Analysis. The requirements of 310.5, Arc Flash Hazard Analysis, shall not apply to electrolytic cell line work zones.

1) Arc Flash Hazard Analysis Procedure. Each task performed in the electrolytic cell line working zone shall be analyzed for the risk of arc flash hazard injury. If there is risk of personal injury, appropriate measures shall be taken to protect persons exposed to the arc flash hazards. These measures shall include one or more of the following:

a. Provide appropriate personal protective equipment [see 310.5(D)(2)] to prevent injury from the arc flash hazard.

b. Alter work procedures to eliminate the possibility of the arc flash hazard.

2) Schedule the task so that work can be performed when the cell line is deenergized.

2) Routine Tasks. Arc flash hazard risk analysis shall be done for all routine tasks performed in the cell line work zone. The results of the arc flash hazard analysis shall be used in training employees in job procedures that minimize the possibility of arc flash hazards. The training shall be included in the requirements of 310.3.

3) Nonroutine Tasks. Before a nonroutine task is performed in the cell line working zone, an arc flash hazard risk analysis shall be done. If an arc flash hazard is a possibility during nonroutine work, appropriate instructions shall be given to employees involved on how to minimize the possibility of a hazardous arc flash.

4) Arc Flash Hazards. If the possibility of an arc flash hazard exists for either routine or nonroutine tasks, employees shall use appropriate safeguards.

(D) Safeguards. Safeguards shall include one or a combination of the following means.

a. Insulation. Insulation shall be suitable for the specific conditions, and its components shall be permitted to include glass, porcelain, epoxy coating, rubber, fiberglass, plastic, and when dry, such materials as concrete, tile, brick, and wood. Insulation shall be permitted to be applied to energized or grounded surfaces.

310.5 (D) (2)

b. Personal Protective Equipment. Personal protective equipment shall provide protection from hazardous electrical conditions. Personal protective equipment shall include one or more of the following as determined by authorized management:

(1) Shoes, boots, or overshoes for wet service

(2) Gloves for wet service

(3) Sleeves for wet service

(4) Shoes for dry service

(5) Gloves for dry service

(6) Sleeves for dry service

(7) Electrically insulated head protection

(8) Protective clothing

(9) Eye protection with nonconductive frames

(10) Faceshield (polycarbonate or similar nonmelting type)

a. Standards for Personal Protective Equipment. Personal and other protective equipment shall be appropriate for conditions, as determined by authorized management, and shall not be required to meet the equipment standards in 130.8(C)(14) through 130.8(F) and in Table 130.8(C)(14) and Table 130.8(F).

b. Testing of Personal Protective Equipment. Personal protective equipment shall be verified with
employees to hazardous electrical conditions.

310.6 Portable Tools and Equipment.

(A) Portable Electrical Equipment. The grounding requirements of 110.4(B)(2) shall not be permitted within an energized cell line working zone. Portable electrical equipment shall meet the requirements of 668.20 of NFPA 70, National Electrical Code. Power supplies for portable electric equipment shall meet the requirements of 668.21 of NFPA 70, National Electrical Code.

(B) Auxiliary Nonelectric Connections. Auxiliary nonelectric connections such as air, water, and gas hoses shall meet the requirements of 668.31 of NFPA 70, National Electrical Code. Pneumatic-powered tools and equipment shall be supplied with nonconductive air hoses in the cell line working zone.

(C) Welding Machines. Welding machine frames shall be considered at cell potential when within the cell line working zone. Safety-related work practices shall require that the cell line not be grounded through the welding machine or its power supply. Welding machines located outside the cell line working zone shall be barricaded to prevent employees from touching the welding machine and ground.
simultaneously where the welding cables are in the cell line working zone.

**(D) Portable Test Equipment.** Test equipment in the cell line working zone shall be suitable for use in areas of large magnetic fields and orientation.

Informational Note: Test equipment that is not suitable for use in such magnetic fields could result in an incorrect response. When such test equipment is removed from the cell line working zone, its performance might return to normal, giving the false impression that the results were correct.

**ARTICLE 320**

*Safety Requirements Related to Batteries and Battery Rooms*

320.1 Scope. This article covers electrical safety requirements for the practical safeguarding of employees while working with exposed stationary storage batteries that exceed 50 volts, nominal. [ROP-418]

Informational Note: For additional information on safety best practices while working on stationary batteries, see the following documents:

1. NFPA 1, *Fire Code, 2009 Chapter 52, Stationary Storage Battery Systems*
2. NFPA 70, *National Electrical Code; Article 480, Storage Batteries, 2008*
4. IEEE Std. 937, *Recommended Practice for Installation and Maintenance of Lead-Acid Batteries for Photovoltaic Systems, 2007*
5. IEEE 1106; *IEEE Recommended Practice for Installation, Maintenance, Testing, and Replacement of Vented Nickel-Cadmium Batteries for Stationary Applications, 2002*
10. OSHA 29 CFR 1926.441, “Batteries and battery charging”

[ROP-419, ROP-420]

320.2 Definitions [ROP-432].

**Authorized Personnel.** The person in charge of the premises, or other persons appointed or selected by the person in charge of the premises, to perform certain duties associated with stationary storage batteries. [ROP-427]

**Battery.** A system consisting of two or more electrochemical cells connected in series or parallel and capable of storing electrical energy received and which can give it back by reconversion. [ROP-428]

**Battery Room.** A room specifically intended for the installation of batteries that have no other protective enclosure. [ROP-429]

**Cell.** The basic electrochemical unit, characterized by an anode and a cathode used to receive, store, and deliver electrical energy. [ROP-430]

**Electrolyte.** A solid, liquid, or aqueous immobilized liquid medium that provides the ion transport mechanism between the positive and negative electrodes of a cell. [ROP-433]

**Nominal Voltage.** The value assigned to a cell or battery of a given voltage class for the purpose of convenient designation; the operating voltage of the cell or system may vary above or below this value. [ROP-439]

**Pilot Cell.** One or more cells chosen to represent the operating parameters of the entire battery (sometimes called “temperature reference” cell). [ROP-440]

**Prospective Fault Current.** The highest level of fault current that can occur at a point on a circuit. This is the fault current that can flow in the event of a zero impedance short-circuit and if no protection devices operate.

**Valve-Regulated Lead Acid (VRLA) Cell.** A lead-acid cell that is sealed with the exception of a valve that opens when the internal pressure in the cell exceeds atmospheric pressure by a pre-selected amount, and which provides a means for recombination of internally generated oxygen and the suppression of hydrogen gas evolution to limit water consumption. [ROP-442]

**Vented Cell.** A type of cell in which the products of electrolysis and evaporation are allowed to escape freely into the atmosphere as they are generated. (Also called “flooded cell”). [ROP-444]

320.3 Safety Procedures.

**(A) General Safety Hazards.**

1. **Battery Room or Enclosure Requirements.** [ROP-459].

**(a) Personnel Access to Energized Batteries.** Each battery room or battery enclosure shall be accessible only to authorized personnel. [ROP-417] [ROP-460]
(b) Illumination. Work on battery systems shall only be performed if lighting is sufficient for the employee to read necessary documents and to safely perform the work. [ROP-472]

(2) Apparel. Personnel shall not wear electrically conductive objects such as jewelry while working on a battery system. [ROP-417]

(3) Abnormal Battery Conditions. Alarms for early warning of the following abnormal conditions of battery operation, if present shall be tested yearly for the following. [ROP-455]

(1) For vented cells
   a. Overvoltage
   b. Undervoltage
   c. Overcurrent
   d. Ground fault [ROP-455]

(2) For VRLA cells
   a. Overvoltage
   b. Undervoltage
   c. Overcurrent
   d. Ground fault
   e. Over-temperature, as measured at the pilot cell [ROP-455]

(4) Hazard Warning. [ROP-485].

   (a) Marking. Warning notices indicating the battery voltage and the prospective short-circuit current of the installation shall be displayed. [ROP-485]

   (b) Warning Signs. The following warnings shall be posted in appropriate locations.

   (1) Electrical hazard warning indicating the shock hazard due to battery voltage and the arc hazard due to the prospective short-circuit current.

   (2) Chemical hazard warning:
      a. indicating the potential presence of explosive gas (when applicable to the battery type);
      b. prohibiting open flame and smoking;
      c. warning of the danger of chemical burns from the electrolyte (when applicable to the battery type); and
      d. applicable to the worst case when multiple battery types are installed in the same space

(3) Notice for personnel to use and wear protective equipment and apparel appropriate to the approach boundary for the battery.

(4) Notice prohibiting access to unauthorized personnel [ROP-485]

   Informational Note: Because internal resistance and/or prospective short-circuit are not always provided on battery container labels or data sheets, and because many variables can be introduced into a battery layout, the battery manufacturer should be consulted for accurate data. Variables can include, but are not limited to:

   (1) series connections
   (2) parallel connections
   (3) charging methodology
   (4) temperature
   (5) charge status
   (6) dc distribution cable size and length [ROP-417]

(B) Electrolyte hazards [ROP-486].

(1) Batteries with Liquid Electrolyte. The following protective equipment shall be available to employees performing any type of service on a battery with liquid electrolyte:

   (a) Goggles and face shield appropriate for the electrical hazard and the chemical hazard.

   (b) Gloves and aprons appropriate for the chemical and electrical hazards.

   (c) Portable or stationary water facilities for quick drenching or flushing of the eyes and body within the work area. [ROP-486]

(2) Batteries with Solid or Immobilized Electrolyte [ROP-486]. The following protective equipment shall be available to employees performing any type of service on a nonspillable battery with solid or immobilized electrolyte:

   (a) Goggles or face shield appropriate for the electrical hazard

   (b) Gloves appropriate for the electrical and chemical hazards

   (c) Protective clothing appropriate for electrical hazard [ROP-486] [ROP-417]

(C) Testing Maintenance and Operation.

(1) Battery Short-Circuit Current. The battery manufacturer shall be consulted regarding the sizing of the battery short-circuit protection and for battery short circuit current values. [ROP-449]

(2) DC Ground-Fault Detection. Ground-fault detection shall be based on the type of dc grounding systems utilized. [ROP-453]

   Informational Note: A dc grounding system can be one of four types: [ROP-453]

   (1) Type 1 — Ungrounded. An ungrounded dc system is one in which neither pole of the battery is connected to ground. Work on such a system is normally carried out with the battery isolated from the battery charger. If an intentional ground is placed at one end of the battery, an increased shock hazard would exist between the opposite end of the battery and ground. Also, if another ground develops within the system (e.g., dirt and acid touching the battery rack), it can create a short circuit that could cause a fire. An ungrounded dc system is typically equipped with an alarm to indicate the presence of a ground fault. [ROP-453]
Type 2 — solid ground. A solidly grounded dc system is one in which either the positive or negative pole of the battery is connected directly to ground. [ROP-453]

Type 3 — resistance ground. A resistance grounded dc system is a variation of a Type 1 system in which the midpoint of the battery is connected to ground through a resistance. The resistance is typically used to enable operation of an alarm ground fault alarm system. [ROP-453]

Type 4 — tapped solid ground. A tapped solid ground is one in which ground is connected either at the center point or at another point to suit the load system. [ROP-453]

Tools and Equipment. [ROP-487].

(a) Tools and equipment for work on batteries shall be equipped with handles listed as insulated for the maximum working voltage [ROP-487].

(b) Battery terminals and all electrical conductors shall be kept clear of unintended contact with tools, test equipment, liquid containers, and other foreign objects.

Cell Flame Arresters and Cell Ventilation. [ROP-446]. Battery cell ventilation openings shall be unobstructed, and cell flame arresters shall be maintained. [ROP-446]

Fire Hazards. Battery cell flame arresters shall be inspected for proper installation and unobstructed ventilation. [ROP-417]

Handling Hazards. [ROP-417].

(1) When handling battery containers, personnel shall not be exposed to a NIOSH lifting index greater than 3.0 [ROP-417].

(2) Lifting devices of adequate capacity shall be used for loads greater than 45 lbs (21.5 kg) [ROP-417].

(3) Lifting harnesses or devices shall be used when designed by the battery manufacturer for specific battery types. [ROP-417]

Fail Safe. The design consideration in which failure of a component does not increase the hazard. In the failure mode, the system is rendered inoperative or nonhazardous.

Fail Safe Safety Interlock. An interlock that in the failure mode does not defeat the purpose of the interlock, for example, an interlock that is positively driven into the off position as soon as a hinged cover begins to open, or before a detachable cover is removed, and that is positively held in the off position until the hinged cover is closed or the detachable cover is locked in the closed position.

Laser. Any device that can be made to produce or amplify electromagnetic radiation in the wavelength range from 100 nm to 1 mm primarily by the process of controlled stimulated emission.

Laser Energy Source. Any device intended for use in conjunction with a laser to supply energy for the excitation of electrons, ions, or molecules. General energy sources, such as electrical supply services or batteries, shall not be considered to constitute laser energy sources.

Laser Product. Any product or assembly of components that constitutes, incorporates, or is intended to incorporate a laser or laser system.

Laser Radiation. All electromagnetic radiation emitted by a laser product between 100 nm and 1 mm that is produced as a result of a controlled stimulated emission.

Laser System. A laser in combination with an appropriate laser energy source with or without additional incorporated components.

330.3 Safety Training.

(A) Personnel to Be Trained. Employers shall provide training for all operator and maintenance personnel.

(B) Scope of Training. The training shall include, but is not limited to, the following:

(1) Familiarization with laser principles of operation, laser types, and laser emissions

(2) Laser safety, including the following:

   (1) System operating procedures

   (2) Hazard control procedures

   (3) The need for personnel protection

   (4) Accident reporting procedures

   (5) Biological effects of the laser upon the eye and the skin

   (6) Electrical and other hazards associated with the laser equipment, including the following:

      a. High voltages (> 1 kV) and stored energy in the capacitor banks

      b. Circuit components, such as electron tubes, with anode voltages greater than 5 kV emitting X-rays
c. Capacitor bank explosions
d. Production of ionizing radiation
e. Poisoning from the solvent or dye switching liquids or laser media
f. High sound intensity levels from pulsed lasers

(C) **Proof of Qualification.** Proof of qualification of the laser equipment operator shall be available and in possession of the operator at all times.

330.4 **Safeguarding of Employees in the Laser Operating Area.**

(A) **Eye Protection.** Employees shall be provided with eye protection as required by federal regulation.

(B) **Warning Signs.** Warning signs shall be posted at the entrances to areas or protective enclosures containing laser products.

(C) **Master Control.** High power laser equipment shall include a key-operated master control.

(D) High-power laser equipment shall include a failsafe laser radiation emission audible and visible warning when it is switched on or if the capacitor banks are charged.

(E) Beam shutters or caps shall be utilized, or the laser switched off, when laser transmission is not required. The laser shall be switched off when unattended for 30 minutes or more.

(F) Laser beams shall not be aimed at employees.

(G) Laser equipment shall bear a label indicating its maximum output.

(H) Personnel protective equipment shall be provided for users and operators of high-power laser equipment.

330.5 **Employee Responsibility.** Employees shall be responsible for the following:
(1) Obtaining authorization for laser use
(2) Obtaining authorization for being in a laser operating area
(3) Observing safety rules
(4) Reporting laser equipment failures and accidents to the employer

340.1 **Scope.** This article shall apply to safety-related work practices around power electronic equipment, including the following:

1. Electric arc welding equipment
2. High-power radio, radar, and television transmitting towers and antenna
3. Industrial dielectric and radio frequency (RF) induction heaters
4. Shortwave or RF diathermy devices
5. Process equipment that includes rectifiers and inverters such as the following:
   a. Motor drives
   b. Uninterruptible power supply systems
   c. Lighting controllers

340.2 **Definition.** For the purposes of this article, the following definition shall apply.

**Radiation Worker.** A person who is required to work in electromagnetic fields, the radiation levels of which exceed those specified for nonoccupational exposure.

340.3 **Application.** The purpose of this article is to provide guidance for safety personnel in preparing specific safety-related work practices within their industry.

340.4 **Reference Standards.** The following are reference standards for use in the preparation of specific guidance to employees:

   a. 60479-1 Part 1: General aspects
   b. 60479-1-1 Chapter 1: Electrical impedance of the human body
   c. 60479-1-2 Chapter 2: Effects of ac in the range of 15 Hz to 100 Hz
   d. 60479-2 Part 2: Special aspects
   e. 60479-2-4 Chapter 4: Effects of ac with frequencies above 100 Hz
   f. 60479-2-5 Chapter 5: Effects of special waveforms of current
   g. 60479-2-6 Chapter 6: Effects of unidirectional single impulse currents of short duration

2. International Commission on Radiological Protection (ICRP) Publication 15, *Protection Against Ionizing Radiation from External Sources*

340.5 **Hazardous Effects of Electricity on the Human Body.** Employer and employees shall be aware of the following hazards associated with power electronic equipment.

(1) Results of Power Frequency Current.
   a. At 0.5 mA, shock is perceptible. [ROP-488]
   b. At 10 mA, a person may not be able to voluntarily let go of the hazard.
c. At about 40 mA, the shock, if lasting for 1 second or longer, may be fatal due to ventricular fibrillation.
d. Further increasing current leads to burns and cardiac arrest.

(2) Results of Direct Current.
a. A dc current of 2 mA is perceptible.
b. A dc current of 10 mA is considered the threshold of the let-go current.

(3) Results of Voltage. A voltage of 30 V rms, or 60 V dc, is considered safe except when the skin is broken. The internal body resistance can be as low as 500 ohms, so fatalities can occur.

(4) Results of Short Contact.
a. For contact less than 0.1 second and with currents just greater than 0.5 mA, ventricular fibrillation may occur only if the shock is in a vulnerable part of the cardiac cycle.
b. For contact of less than 0.1 second and with currents of several amperes, ventricular fibrillation may occur if the shock is in a vulnerable part of the cardiac cycle.
c. For contact of greater than 0.8 second and with currents just greater than 0.5 A, cardiac arrest (reversible) may occur.
d. For contact greater than 0.8 second and with currents of several amperes, burns and death are probable.

(5) Results of ac at Frequencies Above 100 Hz. When the threshold of perception increases from 10 kHz to 100 kHz, the threshold of let-go current increases from 10 mA to 100 mA.

(6) Effects of Waveshape. Contact with voltages from phase controls usually causes effects between those of ac and dc sources.

(7) Effects of Capacitive Discharge.
a. A circuit of capacitance of 1 microfarad having a 10 kV capacitor charge may cause ventricular fibrillation.
b. A circuit of capacitance of 20 microfarad having a 10 kV capacitor charge may be dangerous and probably cause ventricular fibrillation.

340.6 Hazards Associated with Power Electronic Equipment. Employer and employees shall be aware of the hazards associated with the following:
(1) High voltages within the power supplies
(2) Radio frequency energy-induced high voltages
(3) Effects of radio frequency (RF) fields in the vicinity of antennas and antenna transmission lines, which can introduce electrical shock and burns
(4) Ionizing (X-radiation) hazards from magnetrons, klystrons, thyatrons, cathode-ray tubes, and similar devices
(5) Non-ionizing RF radiation hazards from the following:
   a. Radar equipment
   b. Radio communication equipment, including broadcast transmitters
   c. Satellite–earth-transmitters
   d. Industrial scientific and medical equipment
   e. RF induction heaters and dielectric heaters
   f. Industrial microwave heaters and diathermy radiators

340.7 Specific Measures for Personnel Safety.
(A) Employer Responsibility. The employer shall be responsible for the following:
(1) Proper training and supervision by properly qualified personnel including the following:
   a. The nature of the associated hazard
   b. Strategies to minimize the hazard
   c. Methods of avoiding or protecting against the hazard
   d. The necessity of reporting any hazardous incident
(2) Properly installed equipment
(3) Proper access to the equipment
(4) Availability of the correct tools for operation and maintenance
(5) Proper identification and guarding of dangerous equipment
(6) Provision of complete and accurate circuit diagrams and other published information to the employee prior to the employee starting work (The circuit diagrams should be marked to indicate the hazardous components.)
(7) Maintenance of clear and clean work areas around the equipment to be worked
(8) Provision of adequate and proper illumination of the work area

(B) Employee Responsibility. The employee is responsible for the following:
(1) Understanding the hazards associated with the work [ROP-490]
(2) Being continuously alert and aware of the possible hazards
(3) Using the proper tools and procedures for the work
(4) Informing the employer of malfunctioning protective measures, such as faulty or inoperable enclosures and locking schemes
(5) Examining all documents provided by the employer relevant to the work, especially those documents indicating the hazardous components location
(6) Maintaining good housekeeping around the equipment and work space  
(7) Reporting any hazardous incident  
(8) The use, and where appropriate maintenance, of the personal protective equipment needed to perform the work safely. [ROP-491]

**ARTICLE 350**  
Safety-Related Work Requirements: Research and Development Laboratories

### 350.1 Scope
The requirements of this article shall apply to the electrical installations in those areas, with custom or special electrical equipment, designated by the facility management for research and development (R&D) or as laboratories.

### 350.2 Definitions
For the purposes of this article, the following definitions shall apply.

- **Competent Person.** A person meeting all of the requirements of a qualified person, as defined in Article 100 in Chapter 1 of this document and, in addition, is responsible for all work activities or safety procedures related to custom or special equipment, and has detailed knowledge regarding the electrical hazard exposure, the appropriate controls for mitigating those hazards, and the implementation of those controls.

- **Field Evaluated.** A thorough evaluation of nonlisted or modified equipment in the field that is performed by persons or parties acceptable to the authority having jurisdiction. The evaluation approval ensures that the equipment meets appropriate codes and standards, or is similarly found suitable for a specified purpose.

- **Laboratory.** A building, space, room, or group of rooms intended to serve activities involving procedures for investigation, diagnostics, product testing, or use of custom or special electrical components, systems, or equipment.

- **Research and Development (R&D).** An activity in an installation specifically designated for research or development conducted with custom or special electrical equipment.

### 350.3 Applications of Other Articles
The electrical system for R&D and laboratory applications shall meet the requirements of the remainder of this document, except as amended by Article 350.

Informational Note: Examples of these applications include low voltage–high current power systems; high voltage–low current power systems; dc power supplies; capacitors; cable trays for signal cables and other systems, such as steam, water, air, gas, or drainage; and custom-made electronic equipment.

### 350.5 Specific Measures and Controls for Personnel Safety
Each laboratory or R&D system application shall be assigned a competent person as defined in this article to ensure the use of appropriate electrical safety-related work practices and controls.

### 350.6 Listing Requirements
The equipment or systems used in the R&D area or in the laboratory shall be listed or field evaluated prior to use.

Informational Note: Laboratory and R&D equipment or systems can pose unique electrical hazards that might require mitigation. Such hazards include ac and dc, low voltage and high amperage, high voltage and low current, large electromagnetic fields, induced voltages, pulsed power, multiple frequencies, and similar exposures.
Informative Annex A

A.1 General. The documents or portions thereof listed in this annex are referenced within this standard and shall be considered part of the requirements of this document.


A.3 Other Publications.

  ANSI Z89.1, Requirements for Protective Headwear for Industrial Workers, 2003.

A.3.2 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P.O Box C700, West Conshohocken, PA 19428-2959.
  ASTM F 478, Standard Specification for In-Service Care of Insulating Line Hose and Covers, 1999 (R 2007).

  ICRP 15, Protection Against Ionizing Radiation from External Sources.

A.3.4 IEC Publications. International Electrotechnical Commission, 3, rue de Varembé, P.O. Box 131, CH-1211 Geneva 20, Switzerland.
  60479-1 Part 1: General aspects
  60479-1-1 Chapter 1: Electrical impedance of the human body
  60479-1-2 Chapter 2: Effects of ac in the range of 15 Hz to 100 Hz
  60479-2 Part 2: Special aspects

Referenced Publications

60479-2-4: Chapter 4: Effects of ac with frequencies above 100 Hz
60479-2-5 Chapter 5: Effects of special waveforms of current
60479-2-6 Chapter 6: Effects of unidirectional single impulse currents of short duration

A.3.5 IEEE Publications. Institute of Electrical and Electronics Engineers, IEEE Operations Center, 445 Hoes Lane, P. O. Box 1331, Piscataway, NJ 08855-1331.


A.4 References for Extracts in Mandatory Sections. NFPA 70®, National Electrical Code®, 2011.
Informative Annex B

Informative References


B.1 Referenced Publications. The following documents or portions thereof are referenced within this standard for informational purposes only and are thus not part of the requirements of this document unless also listed in Annex A.

B.1.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.


B.1.3 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P.O. Box C 700, West Conshohocken, PA 19428-2959.

B.1.4 IEEE Publications. Institute of Electrical and Electronic Engineers, IEEE Operations Center, 445 Hoes Lane, P. O. Box 1331, Piscataway, NJ 08855-1331.
ANSI/IEEE C 37.20.6, Standard for 4.76 kV to 38 kV-Rated Ground and Test Devices Used in Enclosures, 2007.
B.1.6 UL Publications. Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.


ANSI/UL 1203, Explosion-Proof and Dust-Ignition-Proof Electrical Equipment for Use in Hazardous (Classified) Locations, 2006, revised 2009. [ROP-495]


OSHA 1910.137, Personal Protective Equipment.

OSHA 1910.305(j)(7), Storage Batteries.

OSHA 1926.441, Batteries and Battery Charging.
Informative Annex C Limits of Approach

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

C.1 Preparation for Approach. Observing a safe approach distance from exposed energized electrical conductors or circuit parts is an effective means of maintaining electrical safety. As the distance between a person and the exposed energized conductors or circuit parts decreases, the potential for electrical accident increases.

C.1.1 Unqualified Persons, Safe Approach Distance. Unqualified persons are safe when they maintain a distance from the exposed energized conductors or circuit parts, including the longest conductive object being handled, so that they cannot contact or enter a specified air insulation distance to the exposed energized electrical conductors or circuit parts. This safe approach distance is the Limited Approach Boundary. Further, persons must not cross the Arc Flash Protection Boundary unless they are wearing appropriate personal protective clothing and are under the close supervision of a qualified person. Only when continuously escorted by a qualified person should an unqualified person cross the Limited Approach Boundary. Under no circumstance should an unqualified person cross the Restricted Approach Boundary, where special shock protection techniques and equipment are required.

C.1.2 Qualified Persons, Safe Approach Distance.

C.1.2.1 Determine the Arc Flash Protection Boundary and, if the boundary is to be crossed, appropriate flash-flame protection equipment must be utilized.

C.1.2.2 For a person to cross the Limited Approach Boundary and enter the limited space, he or she must be qualified to perform the job/task.

C.1.2.3 To cross the Restricted Approach Boundary and enter the restricted space, qualified persons must do the following:

1. Have a plan that is documented and approved by authorized management
2. Use personal protective equipment that is appropriate for working near exposed energized conductors or circuit parts and is rated for the voltage and energy level involved
3. Be certain that no part of the body enters the prohibited space
4. Minimize the risk from inadvertent movement by keeping as much of the body out of the restricted space as possible, using only protected body parts in the space as necessary to accomplish the work

C.1.2.4 Crossing the Prohibited Approach Boundary and entering the prohibited space is considered the same as making contact with exposed energized conductors or circuit parts. Therefore, qualified persons must do the following:

1. Have specified training to work on energized conductors or circuit parts
2. Have a documented plan justifying the need to work that close
3. Perform a risk analysis
4. Have the plan and the risk analysis approved by authorized management
5. Use personal protective equipment that is appropriate for working on exposed energized conductors or circuit parts and is rated for the voltage and energy level involved.

C.2 Basis for Distance Values in Table 130.2(C).

C.2.1 General Statement. Columns 2 through 5 of Table 130.4(C)(1) show various distances from the exposed energized electrical conductors or circuit parts. They include dimensions that are added to a basic minimum air insulation distance. Those basic minimum air insulation distances for voltages 72.5 kV and under are based on IEEE 4, Standard Techniques for High Voltage Testing, Appendix 2B.
and voltages over 72.5 kV are based on IEEE 516, *Guide for Maintenance Methods on Energized Power Lines*. The minimum air insulation distances that are required to avoid flashover are as follows:

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Minimum Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 300 V</td>
<td>1 mm (0 ft 0.03 in.)</td>
</tr>
<tr>
<td>&gt;300 V ≤ 750 V</td>
<td>2 mm (0 ft 0.07 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
<tr>
<td>&gt;750 V ≤ 2 kV</td>
<td>5 mm (0 ft 0.19 in.)</td>
</tr>
<tr>
<td>&gt;2 kV ≤ 72.5 kV</td>
<td>39 mm (0 ft 1.5 in.)</td>
</tr>
<tr>
<td>&gt;72.5 kV ≤ 15 kV</td>
<td>61 mm (0 ft 2.4 in.)</td>
</tr>
<tr>
<td>&gt;15 kV ≤ 36 kV</td>
<td>161 mm (0 ft 6.3 in.)</td>
</tr>
<tr>
<td>&gt;36 kV ≤ 750 V</td>
<td>254 mm (0 ft 10.0 in.)</td>
</tr>
</tbody>
</table>
Informative Annex D  Incident Energy and Flash Arc Boundary Calculation Methods

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

D.1 Introduction. Annex D summarizes calculation methods available for calculating arc flash boundary and incident energy. It is important to investigate the limitations of any methods to be used. The limitations of methods summarized in Annex D are described in Table D.1.

Table D.1 Limitation of Calculation Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Source</th>
<th>Limitations/Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2, D.3, D.4</td>
<td>Ralph Lee paper</td>
<td>Calculates Arc Flash Protection Boundary for arc in open air; conservative over 600 V and becomes more conservative as voltage increases</td>
</tr>
<tr>
<td>D.5</td>
<td>Doughty/Neal paper</td>
<td>Calculates incident energy for 3-phase arc on systems rated 600 V and below; applies to short-circuit currents between 16 kA and 50 kA</td>
</tr>
<tr>
<td>D.6</td>
<td>Ralph Lee paper</td>
<td>Calculates incident energy for 3-phase arc in open air on systems rated above 600 V; becomes more conservative as voltage increases</td>
</tr>
<tr>
<td>D.7</td>
<td>IEEE Std. 1584</td>
<td>Calculates incident energy and Arc Flash Protection Boundary for: 208 V to 15 kV; 3-phase; 50 Hz to 60 Hz; 700 A to 106,000 A short-circuit current; and 12 mm to 152 mm conductor gaps</td>
</tr>
<tr>
<td>D.8</td>
<td>ANSI/IEEE C2 NESC-Section 410 Tables 410-1 and Table 410-2</td>
<td>Calculates incident energy for open air phase-to-ground arcs 1 kV to 500 kV for live-line work</td>
</tr>
</tbody>
</table>

D.2 Basic Equations for Calculating Arc Flash Protection Boundary Distances. The short-circuit symmetrical ampacity from a bolted 3-phase fault at the transformer terminals is calculated with the following formula:

[D.2(a)]

\[ I_s = \left[ \frac{\text{MVA Base} \times 10^6}{V} \right] \times 1.732 \times V \times \frac{100 + \%Z}{100} \]

where \( I_s \) is in amperes, \( V \) is in volts, and \( \%Z \) is based on the transformer \( \text{MVA} \).

A typical value for the maximum power (in MW) in a 3-phase arc can be calculated using the following formula:

[D.2(b)]

\[ P = \left[ \text{maximum bolted fault in MVA}_{bf} \right] \times 0.707^2 \]

[D.2(c)]

\[ P = 1.732 \times V \times I_s \times 10^{-6} \times 0.707^2 \]

The Flash Protection Boundary distance is calculated in accordance with the following formulae:

[D.2(d)]

\[ D_c = 2.65 \times \text{MVA}_{bf} \times t^{1/3} \]

[D.2(e)]

\[ D_c = 53 \times \text{MVA} \times t^{1/3} \]

where:

\( D_c \) = distance in feet of person from arc source for a just curable burn (i.e., skin temperature remains less than 80°C)

\( \text{MVA}_{bf} \) = bolted fault \( \text{MVA} \) at point involved

\( \text{MVA} \) = \( \text{MVA} \) rating of transformer. For transformers with \( \text{MVA} \) ratings below 0.75 \( \text{MVA} \), multiply the transformer \( \text{MVA} \) rating by 1.25.

\( t \) = time of arc exposure in seconds

The clearing time for a current limiting fuse is approximately ¼ cycle or 0.004 second if the arcing fault current is in the fuse’s current limiting range. The clearing time of a 5 kV and 15 kV circuit breaker is approximately 0.1 second or 6 cycles if the instantaneous function is installed and operating. This can be broken down as follows: actual breaker time (approximately 2 cycles), plus relay operating time of approximately 1.74 cycles, plus an additional safety margin of 2 cycles, giving a total time of approximately 6 cycles. Additional time must be added if a time delay function is installed and operating.


D.3 Single Line Diagram of a Typical Petrochemical Complex. The single line diagram (see Figure D.3) illustrates the complexity of a distribution system in a typical petrochemical plant.

D.4 Sample Calculation. Many of the electrical characteristics of the systems and equipment are provided in Table...
D.2. The sample calculation is made on the 4160-volt bus 4A or 4B. Table D.2 tabulates the results of calculating the Flash Protection Boundary for each part of the system. For this calculation, based on Table D.2, the following results are obtained:

1. Calculation is made on a 4160-volt bus.
2. Transformer MVA (and base MVA) = 10 MVA.
3. Transformer impedance on 10 MVA base = 5.5 percent.
4. Circuit breaker clearing time = 6 cycles.

Using Equation D.2(a), calculate the short-circuit current:

\[ I_s = \left( \frac{MVA \text{ Base} \times 10^6}{100 + \% Z} \right) \times \left( \frac{1.732 \times V}{100} \right) \]

\[ = \left( \frac{10 \times 10^6}{100 + 5.5} \right) \times \left( \frac{1.732 \times 4160}{100} \right) \]

\[ = 25,000 \text{ amperes} \]

Using Equation D.2(b), calculate the power in the arc:

\[ P = 1.732 \times 4160 \times 25,000 \times 10^{-6} \times 0.707^2 \]

\[ = 91 \text{ MW} \]

Using the Equation D.2(d), calculate the second-degree burn distance:

\[ D_{c} = \left( \frac{2.65 \times 1.732 \times 25,000 \times 4160 \times 10^{-6}}{0.1} \right)^{0.6} \]

\[ = 6.9 \text{ or } 7.0 \text{ ft} \]

Or, using Equation D.2(e), calculate the second-degree burn distance using an alternative method:

\[ D_{c} = [53 \times 10 \times 0.1]^{0.6} \]

\[ = 7.28 \text{ ft} \]

D.5 Calculation of Incident Energy Exposure for an Arc Flash Hazard Analysis. The following equations can be used to predict the incident energy produced by a three-phase arc on systems rated 600 volts and below. The results of these equations might not represent the worst case in all situations. It is essential that the equations be used only within the limitations indicated in the definitions of the variables shown under the equations. The equations must be used only under qualified engineering supervision. (Note: Experimental testing continues to be performed to validate existing incident energy calculations and to determine new formulas.)

The parameters required to make the calculations follow:

1. The maximum “bolted fault” three-phase short-circuit current available at the equipment and the minimum fault level at which the arc will self-sustain (Calculations should be made using the maximum value, and then at lowest fault level at which the arc is self-sustaining. For 480-volt systems, the industry accepted minimum level for a sustaining arcing fault is 38 per-
cent of the available “bolted fault” three-phase short-circuit current. The highest incident energy exposure could occur at these lower levels where the overcurrent device could take seconds or minutes to open.)

(2) The total protective device clearing time (upstream of the prospective arc location) at the maximum short-circuit current, and at the minimum fault level at which the arc will sustain itself

(3) The distance of the worker from the prospective arc for the task to be performed

Typical working distances used for incident energy calculations are as follows:

(1) Low voltage (600 V and below) MCC and panelboards — 455 mm (18 in.)

(2) Low voltage (600 V and below) switchgear — 610 mm (24 in.)

(3) Medium voltage (above 600 V) switchgear — 910 mm (36 in.)

D.5.1 Arc in Open Air. The estimated incident energy for an arc in open air is

\[
E_{MA} = 5271D_A^{-1.905}t_A \left[0.0016F^2 - 0.0076F + 0.8938\right]
\]

where:

- \(E_{MA}\) = maximum open arc incident energy, cal/cm²
- \(D_A\) = distance from arc electrodes, in. (for distances 18 in. and greater)
- \(t_A\) = arc duration, seconds
- \(F\) = short-circuit current, kA (for the range of 16 kA to 50 kA)
Sample Calculation: Using Equation D.5.1(a), calculate the maximum open arc incident energy, cal/cm², where $D_A = 18$ in., $t_A = 0.2$ second, and $F = 20$ kA. [ROP-501]

\[ E_{\text{OA}} = 5271D_A^{-1.9955}t_A[0.0016F^2 - 0.0076F + 0.8938] \]

\[ = 5271 \times 0.0035 \times 0.2[0.0016 \times 400 - 0.0076 \times 20 + 0.8938] \]

\[ = 3.69 \times [1.381] \]

\[ = 21.33 \text{ J/cm}^2(5.098 \text{ cal/cm}^2) \]

D.5.2 Arc in a Cubic Box. The estimated incident energy for an arc in a cubic box (20 in. on each side, open on one end) is given in the following equation. This equation is applicable to arc flashes emanating from within switchgear, motor control centers, or other electrical equipment enclosures.

\[ E_{\text{MB}} = 1038.7D_B^{-1.4798}t_A[0.0093F^2 - 0.3453F + 5.9675] \]

where:
- $E_{\text{MB}}$ = maximum 20 in. cubic box incident energy, cal/cm²
- $D_B$ = distance from arc electrodes, inches (for distances 18 in. and greater)
- $t_A$ = arc duration, seconds
- $F$ = short circuit current, kA (for the range of 16 kA to 50 kA)

Sample Calculation: Using Equation D.5.2(a), calculate the maximum 20 in. cubic box incident energy, cal/cm², using the following:

(1) $D_B = 18$ in.
(2) $t_A = 0.2$ sec
(3) $F = 20$ kA

\[ E_{\text{MB}} = 1038.7 \times 0.0141 \times 0.2[0.0093 \times 400 - 0.3453 \times 20 + 5.9675] \]

\[ = 2.928 \times [2.7815] \]

\[ = 34.1 \text{ J/cm}^2(8.144 \text{ cal/cm}^2) \]


D.6 Calculation of Incident Energy Exposure Greater Than 600 V for an Arc Flash Hazard Analysis. The following equation can be used to predict the incident energy produced by a three-phase arc in open air on systems rated above 600 V. The parameters required to make the calculations are as follows:

1. The maximum “bolted fault” three-phase short-circuit current available at the equipment
2. The total protective device clearing time (upstream of the prospective arc location) at the maximum short-circuit current. If the total protective device clearing time is longer than 2 seconds, consider how long a person is likely to remain in the location of the arc flash. It is likely that a person exposed to an arc flash will move away quickly if it is physically possible and two seconds is a reasonable maximum time for calculations. A person in a bucket truck or a person who has crawled into equipment will need more time to move away. Sound engineering judgment must be used in applying the 2 second maximum clearing time, since there may be circumstances where an employee’s egress is inhibited. [ROP-503]
3. The distance from the arc source
4. Rated phase-to-phase voltage of the system:

\[ E = \frac{793 \times F \times V \times t_A}{D^2} \]

where:
- $E$ = incident energy, cal/cm²
- $F$ = bolted fault short-circuit current, kA
- $V$ = system phase-to-phase voltage, kV
- $t_A$ = arc duration, seconds
- $D$ = distance from the arc source, inches

D.7 Basic Equations for Calculating Incident Energy and Arc Flash Boundary.[ROP-506] This section details information available for estimating incident energy and Flash Protection Boundaries based on statistical analysis and curve fitting of available test data. An IEEE working group produced the data from tests it performed to produce models of incident energy. Based on the selection of standard personal protective equipment (PPE) levels (1.2, 8, 25, and 40 cal/cm²), it is estimated that the PPE arc rating will be equal to or greater than actual measured test values of incident energy in 95% of the cases. [ROP-506]

Informational Note: When incident energy exceeds 40 cal/cm² at the working distance, greater emphasis than normal should be placed on de-energizing before working on or near the exposed electrical conductors or circuit parts.

The complete data, including a spreadsheet calculator to solve the equations, can be found in the IEEE 1584, Guide...
for Performing Arc Flash Hazard Calculations. It can be ordered from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

D.7.1 System Limits. An equation for calculating incident energy can be empirically derived using statistical analysis of raw data along with a curve-fitting algorithm. It can be used for systems with the following limits:

1. 0.208 kV to 15 kV, three-phase
2. 50 Hz to 60 Hz
3. 700 A to 106,000 A available short-circuit current
4. 13 mm to 152 mm conductor gaps

For three-phase systems in open-air substations, open-air transmission systems, and distribution systems, a theoretically derived model is available. This theoretically derived model is intended for use with applications where faults escalate to three-phase faults. Where such an escalation is not possible or likely or where single-phase systems are encountered, this equation will likely provide conservative results.

D.7.2 Arcing Current. To determine the operating time for protective devices, find the predicted three-phase arcing current.

For applications with a system voltage under 1 kV, solve Equation D.7.2(a):

\[
\lg I_a = K + 0.662 \lg I_{bf} + 0.0966 V + 0.000526 G + 0.5588 V (\lg I_a) - 0.000814 G (\lg I_a)
\]

where:
- \( I_a \) = arcing current in kA
- \( K \) = –0.153 for open air arcs; –0.097 for arcs-in-a-box
- \( I_{bf} \) = bolted three-phase available short-circuit current (symmetrical rms) (kA)
- \( V \) = system voltage in kV
- \( G \) = conductor gap (mm) (See Table D.7.2.)

For systems greater than or equal to 1 kV, use Equation D.7.2(b):

\[
\lg I_a = 0.00402 + 0.983 \lg I_{bf}
\]

This higher voltage formula is utilized for both open-air arcs and for arcs-in-a-box.

Convert from \( \lg \):

\[
I_a = 10^{\lg I_a}
\]

Use 0.85\( I_a \) to find a second arc duration. This second arc duration accounts for variations in the arcing current and the time for the overcurrent device to open. Calculate the incident energy using both arc durations (\( I_a \) and 0.85 \( I_a \)), and use the higher incident energy.

### Table D.7.2 Factors for Equipment and Voltage Classes

<table>
<thead>
<tr>
<th>System Voltage (kV)</th>
<th>Type of Equipment</th>
<th>Typical Conductor Gap (mm)</th>
<th>Distance Exponent Factor X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.208–1</td>
<td>Open-air</td>
<td>10–40</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Switchgear</td>
<td>32</td>
<td>1.473</td>
</tr>
<tr>
<td></td>
<td>MCCs and panels</td>
<td>25</td>
<td>1.641</td>
</tr>
<tr>
<td></td>
<td>Cables</td>
<td>13</td>
<td>2.000</td>
</tr>
<tr>
<td>&gt;1–5</td>
<td>Open-air</td>
<td>102</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Switchgear</td>
<td>13–102</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>Cables</td>
<td>13</td>
<td>2.000</td>
</tr>
<tr>
<td>&gt;5–15</td>
<td>Open-air</td>
<td>13–153</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Switchgear</td>
<td>153</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>Cables</td>
<td>13</td>
<td>2.000</td>
</tr>
</tbody>
</table>

D.7.3 Incident Energy at Working Distance — Empirically Derived Equation. To determine the incident energy using the empirically derived equation, determine the \( \log_{10} \) of the normalized incident energy. This equation is based on data normalized for an arc time of 0.2 second and a distance from the possible arc point to the person of 610 mm:

\[
\log E_n = k_1 + k_2 + 1.081 \log I_a + 0.0011 G
\]

where:
- \( E_n \) = incident energy (\( J/cm^2 \)) normalized for time and distance
- \( k_1 \) = –0.792 for open air arcs; –0.555 for arcs-in-a-box
- \( k_2 \) = 0 for ungrounded and high-resistance grounded systems
- \( G \) = the conductor gap (mm) (See Table D.7.2.)

Then,

\[
E_a = 10^{k_1} I_a
\]

Converting from normalized:

\[
E = 4.184G \left( \frac{t}{0.2} \right) \left( \frac{610^2}{D^2} \right)
\]

Table D.7.2 Factors for Equipment and Voltage Classes

2012 Edition NATIONAL ELECTRICAL CODE

INFORMATIVE ANNEX D 70E–67
where:

\[
\begin{align*}
E &= \text{incident energy in J/cm}^2 \\
C_f &= \text{calculation factor} \\
&= 1.0 \text{ for voltages above 1 kV} \\
&= 1.5 \text{ for voltages at or below 1 kV} \\
E_n &= \text{incident energy normalized} \\
t &= \text{arcing time (seconds)} \\
D &= \text{distance (mm) from the arc to the person} \\
&(\text{working distance}). \text{ See Table D.7.3 for typical working distances.} \\
X &= \text{the distance exponent from Table D.7.2}
\end{align*}
\]

Table D.7.3  Typical Working Distances

<table>
<thead>
<tr>
<th>Classes of Equipment</th>
<th>Typical Working Distance* (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15kV switchgear</td>
<td>910</td>
</tr>
<tr>
<td>5kV switchgear</td>
<td>910</td>
</tr>
<tr>
<td>Low-voltage switchgear</td>
<td>610</td>
</tr>
<tr>
<td>Low-voltage MCCs and panelboards</td>
<td>455</td>
</tr>
<tr>
<td>Cable</td>
<td>455</td>
</tr>
<tr>
<td>Other</td>
<td>To be determined in field</td>
</tr>
</tbody>
</table>

* Typical working distance is the sum of the distance between the worker and the front of the equipment and the distance from the front of the equipment to the potential arc source inside the equipment.

If the arcing time, \( t \), in equation D.7.3(c), is longer than two seconds, consider how long a person is likely to remain in the location of the arc flash. It is likely that a person exposed to an arc flash will move away quickly if it is physically possible and two seconds is a reasonable maximum time for calculations. Sound engineering judgment should be used in applying the 2 second maximum clearing time, because there may be circumstances where an employee's egress is inhibited. For example, a person in a bucket truck or a person who has crawled into equipment will need more time to move away. [ROP-508]

D.7.4 Incident Energy at Working Distance—Theoretical Equation. The theoretically derived equation can be applied in cases where the voltage is over 15 kV or the gap is outside the range:

[D.7.4]

\[
E = 2.142 \times 10^4 V I_{bf} \left( \frac{t}{D^2} \right)
\]

where:

\[
\begin{align*}
E &= \text{incident energy (J/cm}^2) \\
V &= \text{system voltage (kV)} \\
I_{bf} &= \text{available three-phase bolted-fault current (symmetrical rms) (kA)} \\
E_n &= \text{incident energy normalized} \\
I_{bf} &= \text{bolted 3-phase available short-circuit current} \\
V &= \text{system voltage in kV}
\end{align*}
\]

D.7.5 Arc Flash Protection Boundary. The Arc Flash Protection Boundary is the distance at which a person is likely to receive a second-degree burn. The onset of a second-degree burn is assumed to be when the skin receives 5.0 J/cm\(^2\) of incident energy.

For the empirically derived equation, [D.7.5(a)]

\[
D_b = 4.184 C_f E_n \left( \frac{t}{0.2} \right) \left( \frac{610}{E_n} \right)^{1/3}
\]

For the theoretically derived equation, [D.7.5(b)]

\[
D_b = 2.142 \times 10^4 V I_{bf} \left( \frac{t}{E_n} \right)
\]

where:

\[
\begin{align*}
D_b &= \text{the distance (mm) of the Arc Flash Protection Boundary from the arcing point} \\
C_f &= \text{a calculation factor} \\
&= 1.0 \text{ for voltages above 1 kV} \\
&= 1.5 \text{ for voltages at or below 1 kV} \\
E_n &= \text{incident energy normalized} \\
E_R &= \text{incident energy in J/cm}^2 \text{ at the distance of the Arc Flash Protection Boundary} \\
t &= \text{time (seconds)} \\
X &= \text{the distance exponent from Table D.7.2} \\
I_{bf} &= \text{bolted 3-phase available short-circuit current} \\
V &= \text{system voltage in kV}
\end{align*}
\]

Informational Note: These equations could be used to determine whether selected PPE is adequate to prevent thermal injury at a specified distance in event of an arc flash.

D.7.6 Current-Limiting Fuses. The formulas in this section were developed for calculating arc-flash energies for use with current-limiting Class L and Class RK1 fuses. The testing was done at 600 volts and at a distance of 455 mm, using commercially available fuses from one manufacturer. The following variables are noted:

\[
I_{bf} = \text{available three-phase bolted-fault current (symmetrical rms) (kA)}
\]

(A) Class L Fuses 1,601 A–2,000 A. Where \( I_{bf} < 22.6 \text{ kA} \), calculate the arcing current using Equation D.7.2(a), and
use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c).

Where $22.6 \, \text{kA} \leq I_{bf} \leq 65.9 \, \text{kA}$,

$$E = 4.184 \left(-0.1284 I_{bf} + 32.262\right)$$  \[[D.7.6(a)]\]

Where $65.9 \, \text{kA} < I_{bf} \leq 106 \, \text{kA}$,

$$E = 4.184 \left(-0.5177 I_{bf} + 57.917\right)$$  \[[D.7.6(b)]\]

Where $I_{bf} > 106 \, \text{kA}$, contact manufacturer.

\[(B) \text{ Class L Fuses 1,201 A–1,600 A. Where } I_{bf} < 15.7 \, \text{kA}, \text{ calculate the arcing current using Equation D.7.2(a), and use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c). Where } 15.7 \, \text{kA} \leq I_{bf} \leq 31.8 \, \text{kA},

$$E = 4.184 \left(-0.1863 I_{bf} + 27.926\right)$$  \[[D.7.6(c)]\]

Where $31.8 \, \text{kA} < I_{bf} < 44.1 \, \text{kA}$,

$$E = 4.184 \left(-1.5504 I_{bf} + 71.303\right)$$  \[[D.7.6(d)]\]

Where $44.1 \, \text{kA} \leq I_{bf} \leq 65.9 \, \text{kA}$,

$$E = 12.3 \, \text{J/cm}^2 \left(2.94 \, \text{cal/cm}^2\right)$$

Where $65.9 \, \text{kA} < I_{bf} \leq 106 \, \text{kA}$,

$$E = 4.184 \left(-0.0634 I_{bf} + 7.0878\right)$$  \[[D.7.6(f)]\]

Where $I_{bf} > 106 \, \text{kA}$, contact manufacturer.

\[(C) \text{ Class L Fuses 801 A–1,200 A. Where } I_{bf} < 15.7 \, \text{kA}, \text{ calculate the arcing current per Equation D.7.2(a), and use time-current curves to determine the incident energy per Equations D.7.3(a), D.7.3(b), and D.7.3(c). Where } 15.7 \, \text{kA} \leq I_{bf} \leq 22.6 \, \text{kA},

$$E = 4.184 \left(-0.1928 I_{bf} + 14.226\right)$$  \[[D.7.6(g)]\]

Where $22.6 \, \text{kA} < I_{bf} \leq 44.1 \, \text{kA}$,

$$E = 4.184 \left(0.0143 I_{bf}^2 - 1.3919 I_{bf} + 34.045\right)$$  \[[D.7.6(b)]\]

Where $44.1 \, \text{kA} < I_{bf} \leq 106 \, \text{kA}$,

$$E = 1.63$$  \[[D.7.6(i)]\]

Where $I_{bf} > 106 \, \text{kA}$, contact manufacturer.

\[(D) \text{ Class L Fuses 601 A–800 A. Where } I_{bf} < 15.7 \, \text{kA}, \text{ calculate the arcing current per Equation D.7.2(a), and use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c). Where } 15.7 \, \text{kA} \leq I_{bf} \leq 44.1 \, \text{kA},

$$E = 4.184 \left(-0.0601 I_{bf} + 2.8992\right)$$  \[[D.7.6(j)]\]

Where $44.1 \, \text{kA} < I_{bf} \leq 106 \, \text{kA}$,

$$E = 1.046$$  \[[D.7.6(k)]\]

Where $I_{bf} > 106 \, \text{kA}$, contact manufacturer.

\[(E) \text{ Class RK1 Fuses 401 A–600 A. Where } I_{bf} < 8.5 \, \text{kA}, \text{ calculate the arcing current using Equation D.7.2(a), and use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c). Where } 8.5 \, \text{kA} \leq I_{bf} \leq 14 \, \text{kA},

$$E = 4.184 \left(-3.0545 I_{bf} + 43.364\right)$$  \[[D.7.6(l)]\]

Where $14 \, \text{kA} < I_{bf} \leq 15.7 \, \text{kA}$,

$$E = 2.510$$  \[[D.7.6(m)]\]

Where $15.7 \, \text{kA} \leq I_{bf} \leq 22.6 \, \text{kA},

$$E = 4.184 \left(-0.5071 I_{bf} + 1.3964\right)$$  \[[D.7.6(n)]\]

Where $22.6 \, \text{kA} < I_{bf} \leq 106 \, \text{kA}$,

$$E = 1.046$$  \[[D.7.6(o)]\]

Where $I_{bf} > 106 \, \text{kA}$, contact manufacturer.

\[(F) \text{ Class RK1 Fuses 201 A–400 A. Where } I_{bf} < 3.16 \, \text{kA}, \text{ calculate the arcing current using Equation D.7.2(a), and use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c). Where } 3.16 \, \text{kA} \leq I_{bf} \leq 5.04 \, \text{kA},

$$E = 4.184 \left(-19.053 I_{bf} + 96.808\right)$$  \[[D.7.6(p)]\]

Where $5.04 \, \text{kA} < I_{bf} \leq 22.6 \, \text{kA},

$$E = 4.184 \left(-0.0302 I_{bf} + 0.9321\right)$$  \[[D.7.6(q)]\]

Where $22.6 \, \text{kA} < I_{bf} \leq 106 \, \text{kA}$,

$$E = 1.046$$  \[[D.7.6(r)]\]

Where $I_{bf} > 106 \, \text{kA}$, contact manufacturer.

\[(G) \text{ Class RK1 Fuses 101 A–200 A. Where } I_{bf} < 1.16 \, \text{kA}, \text{ calculate the arcing current using Equation D.7.2(a), and use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c). Where } 1.16 \, \text{kA} \leq I_{bf} \leq 1.55 \, \text{kA},

$$E = 4.184 \left(-0.5504 I_{bf} + 33.094\right)$$  \[[D.7.6(s)]\]

Where $1.55 \, \text{kA} \leq I_{bf} \leq 2.19 \, \text{kA},

$$E = 4.184 \left(-0.0601 I_{bf} + 2.8992\right)$$  \[[D.7.6(t)]\]

Where $2.19 \, \text{kA} < I_{bf} \leq 106 \, \text{kA}$,

$$E = 1.046$$  \[[D.7.6(u)]\]

Where $I_{bf} > 106 \, \text{kA}$, contact manufacturer.
use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c).

Where 1.16 kA ≤ \( I_{bf} \) ≤ 1.6 kA,

\[
[D.7.6(s)]
E = 4.184 \left( -18.409I_{bf} + 36.355 \right)
\]

Where 1.6 kA < \( I_{bf} \) ≤ 3.16 kA,

\[
[D.7.6(t)]
E = 4.184 \left( -4.2628I_{bf} + 13.721 \right)
\]

Where 3.16 kA < \( I_{bf} \) ≤ 106 kA,

\[
[D.7.6(u)]
E = 1.046
\]

Where \( I_{bf} > 106 \) kA, contact manufacturer.

\( (H) \) Class RK1 Fuses 1 A–100 A. Where \( I_{bf} < 0.65 \) kA, calculate the arcing current per Equation D.7.2(a), and use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c).

Where 0.65 kA ≤ \( I_{bf} \) ≤ 1.16 kA,

\[
[D.7.6(v)]
E = 4.184 \left( -11.176I_{bf} + 13.565 \right)
\]

Where 1.16 kA < \( I_{bf} \) ≤ 1.4 kA,

\[
[D.7.6(w)]
E = 4.184 \left( -1.4583I_{bf} + 2.2917 \right)
\]

Where 1.4 kA < \( I_{bf} \) ≤ 106 kA,

\[
[D.7.6(x)]
E = 1.046
\]

Where \( I_{bf} > 106 \) kA, contact manufacturer.

D.7.7 Low-Voltage Circuit Breakers. The equations in Table D.7.7 can be used for systems with low-voltage circuit breakers. The results of the equations will determine the incident energy and Arc Flash Protection Boundary when \( I_{bf} \) is within the range as described. Time-current curves for the circuit breaker are not necessary within the appropriate range.

When the bolted-fault current is below the range indicated, calculate the arcing current per Equation D.7.2(a), and use time-current curves to determine the incident energy using Equations D.7.3(a), D.7.3(b), and D.7.3(c).

The range of available three-phase bolted-fault currents is from 700 A to 106,000 A. Each equation is applicable for the range

\[
I_{bf} < I_{bf} < I_{2}
\]

where:

\( I_{2} \) = the interrupting rating of the CB at the voltage of interest.

Table D.7.7 Incident Energy and Arc Flash Protection Boundary by Circuit Breaker Type and Rating

<table>
<thead>
<tr>
<th>Rating (A)</th>
<th>Breaker Type</th>
<th>Trip-Unit Type</th>
<th>Incident Energy (J/cm²)a</th>
<th>Flash Boundary (mm)a</th>
<th>Incident Energy (J/cm²)a</th>
<th>Flash Boundary (mm)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–400</td>
<td>MCCB</td>
<td>TM or M</td>
<td>0.189 ( I_{bf} + 0.548 )</td>
<td>9.16 ( I_{bf} + 194 )</td>
<td>0.271 ( I_{bf} + 0.180 )</td>
<td>11.8 ( I_{bf} + 196 )</td>
</tr>
<tr>
<td>600–1,200</td>
<td>MCCB</td>
<td>TM or M</td>
<td>0.223 ( I_{bf} + 1.590 )</td>
<td>8.45 ( I_{bf} + 364 )</td>
<td>0.335 ( I_{bf} + 0.380 )</td>
<td>11.4 ( I_{bf} + 369 )</td>
</tr>
<tr>
<td>600–1,200</td>
<td>MCCB</td>
<td>E, LI</td>
<td>0.377 ( I_{bf} + 1.360 )</td>
<td>12.50 ( I_{bf} + 428 )</td>
<td>0.468 ( I_{bf} + 4.600 )</td>
<td>14.3 ( I_{bf} + 568 )</td>
</tr>
<tr>
<td>1,600–6,000</td>
<td>MCCB or ICCB</td>
<td>TM or E, LI</td>
<td>0.448 ( I_{bf} + 3.000 )</td>
<td>11.10 ( I_{bf} + 696 )</td>
<td>0.686 ( I_{bf} + 0.165 )</td>
<td>16.7 ( I_{bf} + 606 )</td>
</tr>
<tr>
<td>800–6,300</td>
<td>LVPCB</td>
<td>E, LI</td>
<td>0.636 ( I_{bf} + 3.670 )</td>
<td>14.50 ( I_{bf} + 786 )</td>
<td>0.958 ( I_{bf} + 0.292 )</td>
<td>19.1 ( I_{bf} + 864 )</td>
</tr>
<tr>
<td>800–6,300</td>
<td>LVPCB</td>
<td>E, LSb</td>
<td>4.560 ( I_{bf} + 27.230 )</td>
<td>47.20 ( I_{bf} + 2660 )</td>
<td>6.860 ( I_{bf} + 2.170 )</td>
<td>62.4 ( I_{bf} + 2930 )</td>
</tr>
</tbody>
</table>

MCCB: Molded-case circuit breaker.
ICCB: Insulated-case circuit breaker.
LVPCB: Low-voltage power circuit breaker.
TM: Thermal-magnetic trip units.
M: Magnetic (instantaneous only) trip units.
E: Electronic trip units have three characteristics that may be used separately or in combination: L: Long-time, S: Short-time, I: Instantaneous.
a \( I_{bf} \) is in kA; working distance is 455 mm (18 in.).
b Short-time delay is assumed to be set at maximum.
\( I_1 \) = the minimum available three-phase, bolted, short-circuit current at which this method can be applied. \( I_1 \) is the lowest available three-phase, bolted, short-circuit current level that causes enough arcing current for instantaneous tripping to occur or for circuit breakers with no instantaneous trip, that causes short-time tripping to occur.

To find \( I_1 \), the instantaneous trip (\( I_t \)) of the circuit breaker must be found. This can be determined from the time-current curve, or it can be assumed to be 10 times the rating of the circuit breaker for circuit breakers rated above 100 amperes. For circuit breakers rated 100 amperes and below, a value of \( I_t = 1,300 \) A can be used. When short-time delay is utilized, \( I_t \) is the short-time pick-up current.

The corresponding bolted-fault current, \( I_{bf} \), is found by solving the equation for arc current for box configurations by substituting \( I_t \) for arcing current. The 1.3 factor in Equation D.7.7(b) adjusts current to the top of the tripping band.

\[
\lg (1.3 I_t) = 0.084 + 0.096 V + 0.586 (\lg I_t) + 0.559 \sqrt{\lg I_t}
\]

At 600 V,
\[
\lg I_t = 0.0281 + 1.091 \lg (1.3 I_t)
\]

At 480 V and lower,
\[
\lg I_t = 0.0407 + 1.17 \lg (1.3 I_t)
\]

D.7.8 References. The complete data, including a spreadsheet calculator to solve the equations, may be found in IEEE 1584, Guide for Performing Arc Flash Hazard Calculations. IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA (http://standards.ieee.org/); [ROP-511] [ROP-515]

D.8 DC Incident Energy Calculations. [ROP-517a]

D.8.1 DC Arc Flash Calculations.

D.8.1.1 Maximum power method. The following method of estimating DC arc flash incident energy was presented at the 2007 IEEE Electrical Safety Workshop (see reference 2 below). This method is based on the concept that the maximum power possible in a DC arc will occur when the arcing voltage is one half of the system voltage. Testing completed for Bruce Power (reference 3 below) has shown that this calculation is conservatively high in estimating the arc flash value. This method applies to DC systems rated up to 1000 VDC.

\[
I_{ac} = 0.5 I_t
\]

\[
IE_m = 0.01 V_{sys} I_{ac} T_{arc} / D^2
\]

where:
\( V_{sys} \) = the system voltage, in volts
\( I_{bf} \) = the system bolted fault current, in amperes
\( I_{arc} \) = the arcing current, in amperes
\( T_{arc} \) = the arcing time in seconds
\( D \) = the working distance, in centimeters
\( IE_m \) = the estimated DC arc flash incident energy at the maximum power point, in cal/cm²

For exposures where the arc is in a box or enclosure, it would be prudent to use a 3x multiplying factor for the resulting incident energy value.

D.8.1.2 Detailed Arcing Current and Energy Calculations Method. A thorough theoretical review of DC arcing current and energy was presented at the 2009 IEEE PCIC Conference. Readers are recommended to refer to that paper (reference 1 below) for those detailed calculations.

References:
3. DC Arc Hazard Assessment Phase II Copyright Material Kinectrics Inc. Report No. K-01263-RA-0002-R00
Informative Annex E  Electrical Safety Program

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

See 110.3, Electrical Safety Program.

E.1 Typical Electrical Safety Program Principles. Electrical safety program principles include, but are not limited to, the following:

(1) Inspect/evaluate the electrical equipment
(2) Maintain the electrical equipment’s insulation and enclosure integrity
(3) Plan every job and document first-time procedures
(4) Deenergize, if possible (see 120.1)
(5) Anticipate unexpected events
(6) Identify and minimize the hazard
(7) Protect the employee from shock, burn, blast, and other hazards due to the working environment
(8) Use the right tools for the job
(9) Assess people’s abilities
(10) Audit these principles

E.2 Typical Electrical Safety Program Controls. Electrical safety program controls can include, but are not limited to, the following:

(1) Every electrical conductor or circuit part is considered energized until proven otherwise.
(2) No bare-hand contact is to be made with exposed energized electrical conductors or circuit parts operating at 50 volts or more, unless the “bare-hand method” is properly used. [ROP-193, ROP-518]
(3) Deenergizing an electrical conductor or circuit part and making it safe to work on is in itself a potentially hazardous task.
(4) Employer develops programs, including training, and employees apply them.
(5) Use procedures as “tools” to identify the hazards and develop plans to eliminate/control the hazards.
(6) Train employees to qualify them for working in an environment influenced by the presence of electrical energy.
(7) Identify/categorize tasks to be performed on or near exposed energized electrical conductors and circuit parts.
(8) Use a logical approach to determine potential hazard of task.
(9) Identify and use precautions appropriate to the working environment.

E.3 Typical Electrical Safety Program Procedures. Electrical safety program procedures can include, but are not limited to, the following:

(1) Purpose of task
(2) Qualifications and number of employees to be involved
(3) Hazardous nature and extent of task
(4) Limits of approach
(5) Safe work practices to be utilized
(6) Personal protective equipment involved
(7) Insulating materials and tools involved
(8) Special precautionary techniques
(9) Electrical diagrams
(10) Equipment details
(11) Sketches/pictures of unique features
(12) Reference data
Informative Annex F  Hazard Analysis, Risk Estimation, and Risk Evaluation Procedure

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

F.1 Risk assessment (General). This informative Annex provides guidance regarding a qualitative approach for risk assessment, including risk estimation and risk evaluation, which may be helpful in determining the protective measures that are required to reduce the probability of harm occurring in the circumstances under consideration. In order to receive the full benefit of completing the risk assessment process the relationships between the source or cause of risk and the effects of the hierarchy of controls on those causes must be understood. This annex is included in order to provide guidance.

Hazard identification and Risk assessment are an analytical processes consisting of a number of discrete steps intended to ensure that hazards are properly identified and analysed with regard to their severity and the probability of their occurrence. Once hazards have been identified and analysed, the risk associated with those hazards can be estimated using the parameters outlined in Figure F.2. Appropriate protective measures then be implemented and evaluated in order to determine if adequate risk reduction has been achieved.

This procedure includes a comprehensive review of the hazards, associated foreseeable tasks and the protective measures that are required in order to maintain a tolerable level of risk.

This procedure includes:

(1) Identifying and analyzing electrical hazards
(2) Identifying tasks to be performed
(3) Documenting hazards associated with each task.
(4) Estimating the risk for each hazard/task pair.
(5) Determine appropriate protective measures to adequately reduce the level of risk.

Figure F.1 is intended to illustrate the steps to be taken and the decisions to be considered when performing an electrical work risk assessment. See Article 110.3, for a Hazard and Risk Evaluation Procedure. Figure F.4 illustrates in more detail the steps of risk analysis, assessment, and evaluation process.

F.1.1 Responsibility. Electrical system designers, constructors, and users have responsibilities for defining and achieving tolerable risk. The supplier and the user either separately or jointly shall identify hazards, estimate risks and reduce risks to a tolerable level within the scope of their respective work activities. Although the responsibilities of the supplier and the user differ over the life cycle of the electrical equipment, each entity should use the risk assessment process.

In general, the electrical system supplier is responsible for the design, construction and information for operation and maintenance of the electrical system, while the user is responsible for the operation and maintenance of the electrical system.

Suppliers and users should involve qualified personnel in meeting their respective responsibilities. The supplier and user should ensure compliance with the related regulations and standards applicable to their work activity. This may include regulations and standards for a specific location and/or for a specific application.

Figure F.1 Risk Assessment Process.
F.2 Risk Assessment.

F.2.1 Initial Risk Estimation. An initial estimation of risk should be carried out for each hazard. Risk related to the identified hazard should be derived by using the risk parameters that are shown in Figure F.2 including the following:

1. severity of harm, \( Se \); and
2. probability of occurrence of that harm, which is a function of:
   a. frequency and duration of the exposure of persons to the hazard, \( Fr \);
   b. probability of occurrence of a hazardous event, \( Pr \);
   c. possibilities to avoid or limit the harm, \( Av \).

F.2.2 Parameters Used in Risk Estimation. In preparation for the risk assessment parameter estimates can be entered into Table F.5. These parameters should be based on worst-case considerations for the electrical system. It may be the case that different risk reduction strategies are implemented for each hazard. The risk estimation stage is the only one at which hazards can be eliminated, thus avoiding the need for additional protective measures such as safeguarding or complementary protective measures.

F.2.3 Severity (Se). Severity of injuries or damage to health can be estimated by taking into account reversible injuries, irreversible injuries and death. Typically the types of hazards to be considered include but are not limited to shock and electrocution, burns, and impact. Choose the appropriate value of severity from Table F.1 based on the consequences of an injury, where:

1. 4 means a fatal or a significant irreversible injury such that it will be very difficult to continue the same work after healing, if at all;
2. 3 means a major or irreversible injury in such a way that it can be possible to continue the same work after healing. It can also include a severe major but reversible injury such as broken limbs;
3. 2 means a reversible injury, including severe lacerations, stabbing, and severe bruises that requires attention from a medical practitioner;
4. 1 means a minor injury including scratches and minor bruises that require attention by first aid.

Select the appropriate row for consequences (Se) of Table F.1. Insert the appropriate number under the Se column in Table F.5.

<table>
<thead>
<tr>
<th>Table F.1 Severity (Se) Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity (Se)</td>
</tr>
<tr>
<td>Irreversible - trauma, death</td>
</tr>
<tr>
<td>Permanent - skeletal damage, blindness, hearing loss, third degree burns</td>
</tr>
<tr>
<td>Reversible - minor impact, hearing damage, second degree burns</td>
</tr>
<tr>
<td>Reversible – minor laceration, bruises, first degree burns</td>
</tr>
</tbody>
</table>

F.2.4 Probability of Occurrence of Harm. Each of the three parameters of probability of occurrence of harm (i.e. \( Fr \), \( Pr \), and \( Av \)) should be estimated independently of each other. A worst-case assumption needs to be used for each parameter to ensure that the protective measures, determined during risk evaluation, will provide adequate risk reduction. Generally, the use of a form of hazard/task-based evaluation is strongly recommended to ensure that proper consideration is given to the estimation of the probability of occurrence of harm.

F.2.4.1 Frequency and Duration of Exposure. Consider the following aspects to determine the level of exposure:

1. need for access to the hazard zone based on all modes of use, for example normal operation, maintenance; and
2. nature of access, for example examination, repair, trouble shooting.

It should then be possible to estimate the average interval between exposures and therefore the average frequency of access.

This factor does not include consideration of the failure of the short circuit interruption device(s) or the failure to use the appropriate personal protective equipment.

Select the appropriate row for frequency and duration of exposure (Fr) of Table F.2. Insert the appropriate number under the Fr column in Table F.5.

F.2.4.2 Probability of Occurrence of a Hazardous Event. The occurrence of a hazardous event influences the probability of the occurrence of harm. The probability of the hazardous event occurring should describe the likelihood of the event materializing during the use and/or foreseeable misuse of the electrical system, or process. Subjectivity may have a substantial impact on the result of the risk
assessment. The use of subjective information should be minimized as far as reasonably practicable.

The probability of occurrence of the hazardous event should be estimated independently of other related parameters (Fr and Av) and will typically be based on the results of the completed study of the arc-flash potential. The worst-case scenario should be used for this parameter to ensure that short circuit interruption device(s) have, where practicable, been properly selected and installed, and will provide adequate protection.

Elements of the electrical system, which are intended to ensure an intrinsically safe design, shall be taken into consideration in the determination of the probability of the hazardous event(s). These may include but are not limited to the mechanical structure, electrical devices, and electronic controls, integral to the system, and/or process at the time of the analysis. Types of components which could contribute to an inherently safe design could include, but are not limited to, current limiting devices, ground fault circuit interrupters, etc.

This parameter can be estimated by taking into account:

- (a) Predictability of the performance of component parts of the electrical system relevant to the hazard in different modes of use (e.g. normal operation, maintenance, fault finding).

- At this point in the risk assessment process the protective effect of any personal protective equipment and other protective measure should not be taken into account. This is necessary in order to estimate the amount of risk that will be present if the personal protective equipment and other protective measures are not in place at the time of the exposure. In general terms, it must be considered whether the electrical system being assessed has the propensity to act in an unexpected manner. The electrical system performance will vary from very predictable to not predictable. Unexpected events cannot be discounted until it can be clearly demonstrated that the electrical system will perform as expected.


<table>
<thead>
<tr>
<th>Table F.2 Frequency and Duration of Exposure (Fr) Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency and duration of exposure (Fr)</td>
</tr>
<tr>
<td>Frequency of exposure</td>
</tr>
<tr>
<td>≤ 1 per hr</td>
</tr>
<tr>
<td>&gt; 1 per hr ≤ 1 per day</td>
</tr>
<tr>
<td>&gt; 1 per day ≤ 1 per 2 weeks</td>
</tr>
<tr>
<td>&gt; 1 per 2 weeks ≤ 1 year</td>
</tr>
<tr>
<td>&gt; 1 per year</td>
</tr>
</tbody>
</table>

NOTE 1 Predictability is often linked to the complexity of the electrical system and the characteristics of the energy supply.

(b) The specified or foreseeable characteristics of human behavior with regard to interaction with the component parts of the machine relevant to the hazard. This can be characterized by:

1. stress (e.g. due to time constraints, work task, perceived damage limitation); and/or
2. lack of awareness of information relevant to the hazard.

This will be influenced by factors such as skills, training, experience, and complexity of machine/process.

These attributes are not usually directly under the influence of the electrical system designer, but a task analysis will reveal activities where total awareness of all issues, including unexpected outcomes, cannot be reasonably assumed. “Very high” probability of occurrence of a hazardous event should be selected to reflect normal workplace constraints and worst case considerations. Positive reasons (e.g., well defined application and knowledge of high level of user competences) are required for any lower values to be used.

NOTE 2 Any required or assumed skills, knowledge, etc. should be stated in the information for use.

Select the appropriate row for probability of occurrence of hazardous event (Pr) of Table F.3.

Indicate the appropriate number under the Pr column in Table F.5:

<table>
<thead>
<tr>
<th>Table F.3 Probability (Pr) Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of the occurrence of the hazardous event</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Very high</td>
</tr>
<tr>
<td>Likely</td>
</tr>
<tr>
<td>Possible</td>
</tr>
<tr>
<td>Rarely</td>
</tr>
<tr>
<td>Negligible</td>
</tr>
</tbody>
</table>

F.2.4.3 Probability of Avoiding or Limiting Harm (Av). This parameter can be estimated by taking into account aspects of the electrical system design and its intended application that can help to avoid or limit the harm from a hazard.

These aspects include, for example:

1. sudden, fast or slow speed of appearance of the hazardous event, for example an explosion caused by high fault values under short circuit conditions;
2. spatial possibility to withdraw from the hazard;
the nature of the component or system, for example the use of touch safe components can reduce the probability of contact with energized parts; working in close proximity to high voltage can increase the probability of personnel being exposed to hazards due to approach to live parts; and

(4) possibility of recognition of a hazard, for example electrical hazard: a copper bar does not change its appearance whether it is under voltage or not. To recognize the presence of the hazard one needs an instrument to establish whether electrical equipment is energized or not thus both inadvertent and advertent contact need to be considered.

Select the appropriate row for probability of avoidance or limiting harm (Av) of Table F.4. Insert the appropriate number under the Av column in Table F.5.

Table F.4 Parameters Used to Determine Class of Probability of Avoiding or Limiting Harm (Av)

<table>
<thead>
<tr>
<th>Probability of avoiding or limiting harm (Av)</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impossible</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Rarely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F.2.5 Risk Level and Probability of Harm. Once the parameters for each hazard under consideration have been entered in Table F.5 the information can be used in the first step of the risk assessment process as outlined in Figure F.1.

Table F.5 Parameters Used to Determine Risk Levels and Probability of Harm (See Figure F.2)

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Hazard</th>
<th>Se</th>
<th>Fr</th>
<th>Pr</th>
<th>Av</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F.3 Risk Reduction.

F.3.1 Protective Measures. Once the risk prior to the application of protective measures has been estimated, all practicable efforts must be made to reduce the risk of harm. Careful consideration of failure modes is an important part of risk reduction. Care should be taken to ensure that both technical and behavioural failures, which could result in ineffective risk reduction, are taken into account during the risk reduction stage of the risk assessment.

Situations where hazard elimination could not be attained typically require a balanced approach in order to reduce the probability of harm. For example in order to effectively control access to an electrical system, requires the use of barriers, awareness placards, safe operating instructions, qualification and training, and personnel protective equipment as required by this standard, and initial as well as refresher or periodic training for all affected personnel in the area. Engineering controls alone are not sufficient in reducing the remaining risk to a tolerable level. Typically all five areas must be implemented in order to achieve the desired result.

Consideration of all five of the items listed below is required to establish an adequate risk reduction strategy.

F.3.1.1 Engineering Controls. Engineering controls have the potential to have a substantial impact on risk. They should where practicable be considered and analyzed. Typically engineering controls take the form of barriers and other safeguarding devices as described in the National Electrical Code, IEC 60204-1 and/or ANSI/NFPA 79.

F.3.1.2 Awareness Devices. Awareness means can be used to complement the effects of engineering controls with regard to risk reduction. They should be chosen based on the design configuration for each specific application and their potential effectiveness during foreseen interaction. Each design and configuration may require unique awareness devices in order to have the desired impact on risk. Typically awareness means take the form of signs, visual alarms, audible alarms etc.

F.3.1.3 Procedures. Identify procedures and instructions that are required for the individual(s) to safely interact with the electrical system. The procedures and instructions should include descriptions of the hazards, the possible hazardous events, hazardous situations, and the protective measures that need to be implemented. The procedures and instructions should also be used to communicate any foreseeable misuse of the system that could contribute to an increased level of risk. Typically formal procedures should be provided in written form however in some cases verbal instruction may be provided. Care should be taken in the later case to ensure that the verbal instructions will have the desired impact on risk.

F.3.1.4 Training. Training, with regard to the proper interaction and for foreseeable inappropriate interaction with the electrical system, must be completed. The intent of the training is to ensure that all affected personnel are able to understand when and how hazardous situations could arise and how to best reduce the risk associated with those situ-
Typically training for those interacting with electrical systems will include technical information regarding hazards and/or hazardous situations as well as information related to potential failure modes that could impact risk. This type of training generally will be provided by a trainer who has an in depth understanding of electrical system design as well as experience in the field of adult education. Less technical training content could be appropriate in situations where only awareness of electrical hazards is needed in order to ensure that unqualified personnel do not interact with the electrical system.

**F.3.1.5 PPE.** The electrical system must be analyzed in order to determine appropriate category of personal protective equipment (PPE). Once the appropriate PPE has been determined, personnel are required to maintain and use it as required in order to ensure that residual risk remains at the desired level.

**F.4 Risk Evaluation.**

**F.4.1 Risk Evaluation.** Once the appropriate protective measures described in clause F.3.1 have been applied the impact of those measures on the elements of risk (Figure F.2) should be taken into account. Each type of protective measure could impact one or more of the elements that contribute to risk. The effects on risk, or the impacts on the individual elements of risk, should be considered in the final risk estimation. The cumulative affect of the final combination of protective measures can then be used to estimate the residual risk. Listed below is a general non-exhaustive outline that can be used as a guide to the final estimation of risk.

**F.4.1.1 Design — Eliminate or Substitution by Design.**

(a) Elimination of the hazard - Impacts both severity of harm and likelihood of harm

Failure mode(s) examples

1. Component(s) failure
2. Application of an incorrect construction or manufacturing specification
3. Incorrect calculation (i.e. potential energy, toxicity, strength, durability)
4. Inadequate procurement control
5. Incorrect and/or insufficient maintenance

(b) Substitution – May affect severity of harm, frequency of exposure to the hazard under consideration, and/or the possibility of avoiding or limiting harm depending on which method of substitution is applied.

Failure mode(s) examples

1. Unexpected or unanticipated interaction
2. Excessive production pressure
3. Inadequate procurement control

**F.4.1.2 Design — Use of Engineering Controls.**

(a) Greatest impact on the probability of a hazardous event(s) under certain circumstances
(b) No impact on severity of harm

Failure mode(s) examples

1. Incorrect application of construction or manufacturing specification
2. Unanticipated tasks
3. Incentive to circumvent or reduce effectiveness
4. Excessive production pressure
5. Protective system failure

**F.4.1.3 Use of Systems that Increase Awareness of Potential Hazards.**

(a) Potential impact on avoiding or limiting harm
(b) Potential impact on inadvertent exposure
(c) Minimal or no impact on severity of harm

Failure mode(s) examples

1. Too many warning signs
2. Depreciation of effect over time
3. Lack of understanding

**F.4.1.4 Organization and the Application of a Safe System of Work.**

**F.4.1.4.1 Personnel training**

(a) Greatest impact on avoiding or limiting harm
(b) Minimal if any impact on severity of harm
(c) Possible impact on the probability of a hazardous event(s) under certain circumstances

Failure mode(s) examples

1. Training not understood
2. Identified hazards not clearly communicated
3. Depreciating in effect over time
4. Training material not current
5. Training is not consistent with instructions
6. Training material does not include detail regarding how to perform the work

**F.4.1.4.2 Access restrictions**

(a) Greatest impact on exposure
(b) No impact on severity of harm

Failure mode(s) examples

1. Work permit system does not exist
2. Competency complacency
3. Insufficient monitoring, control and/or corrective actions
**F.4.1.4.3 Safe work procedures**

(a) Greatest impact on avoiding or limiting harm  
(b) Minimal if any impact on severity of harm  
(c) Possible impact on the probability of a hazardous event(s) under certain circumstances  

Failure mode(s) examples  
(1) Inconsistent with the current culture  
(2) Procedures not current, or accessible  
(3) Does not consider all task, hazards and/or hazardous situations  
(4) Insufficient monitoring, control and/or corrective actions  
(5) Instructions are not consistent with training content  
(6) Content is too general (i.e. Don’t touch the live parts, be careful)  

**F.4.1.4.4 Policies and instructions**

(a) Greatest impact on exposure  
(b) Possible impact on the probability of a hazardous event(s) under certain circumstances  
(c) Minimal or no impact on severity of harm  

Failure mode(s) examples  
(1) Policies and instructions are inconsistent  
(2) Instructions not clearly communicated or accessible  
(3) Insufficient monitoring, control and/or corrective actions  
(4) Allows personnel to make the decision to work live without adequate justification  

**F.4.1.5 Personal protective equipment (PPE)**

(a) Greatest impact on avoiding or limiting harm  
(b) Potential impact on inadvertent exposure  

(c) Minimal impact on severity of harm  
(d) No impact on the probability of a hazardous event(s)  

Failure mode(s) examples  
(1) Reason for use not understood  
(2) Creates barriers to effective completion of the work  
(3) PPE specification inappropriate for the considered hazards  
(4) Production pressure does not afford time to use or maintain  
(5) Worker forgets to use when needed  
(6) Excessive discomfort  
(7) Perceived invulnerability  
(8) Insufficient monitoring, control and/or corrective actions  

**F.5 Risk Reduction Verification.**

**F.5.1 Verification.** Once the assessment has been completed and protective measures have been determined, it is imperative to ensure that the protective measures are implemented prior to initiating the electrical work. While this procedure may not result in a reduction of PPE required, it may improve the understanding of the properties of the hazards associated with a task to a greater extent and thus allow for improvement in the implementation of the protective measures that have been selected.  

**F.5.2 Auditing.** For each activity that has been assessed in could be necessary to audit the risk reduction strategy that is applicable. If an audit is required, the auditing process should take place prior to commencing work on electrical systems. An example non-exhaustive audit is shown in Figure F.3. Each audit process may need to be specific to the properties of the electrical system and/or the task to be performed.
<table>
<thead>
<tr>
<th>Hazard (situation)</th>
<th>Risk Reduction Strategy</th>
<th>Confirmation (in place)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human factors (mistakes)</td>
<td>Training and instructions include details regarding hazardous situations that could arise</td>
<td>Yes / No</td>
</tr>
<tr>
<td>Human factors (willful disregard)</td>
<td>Policies and supervision are in place in order to ensure that instructions are followed.</td>
<td></td>
</tr>
<tr>
<td>Unqualified person performing electrical work</td>
<td>Work permit system is in place to control personnel activities.</td>
<td></td>
</tr>
<tr>
<td>Inappropriate overcurrent protection</td>
<td>Instructions include details regarding the selection or replacement of fuses and/or circuit breakers.</td>
<td></td>
</tr>
<tr>
<td>Short circuits between test leads</td>
<td>Training and instructions include details regarding care and inspection of testing equipment.</td>
<td></td>
</tr>
<tr>
<td>Meter malfunctions</td>
<td>Training and instructions include details regarding care and inspection of testing equipment.</td>
<td></td>
</tr>
<tr>
<td>Meter misapplication</td>
<td>Training and instructions include details regarding use of testing equipment.</td>
<td></td>
</tr>
<tr>
<td>Qualified person performing electrical work that exceeds their qualification</td>
<td>Work permit system is in place to control personnel activities.</td>
<td></td>
</tr>
</tbody>
</table>

Figure F.3 Auditing.
Risk Assessment Process

Note: Italicized text represents information used during the risk assessment process.

**Related Documents:** Technical File, Single Line Diagram, Coordination Study, Training Documents, Work Instructions, Policies and Procedures, Team Members, Assessment Date, Assumptions, etc.

**General Information for Each Hazard Zone**
- Description of hazard zone
- Foreseen activities
- Hazardous event(s)
- Hazardous situation(s)

**Hazard Analysis**
- Probability of Hazard Occurrence
- Severity of Potential Injury
- Frequency of Exposure
- Possibility of Avoidance

**Risk Level — Likelihood of Harm**

**Risk Reduction Measures**

**Additional Safety Element**

**Risk Level — Likelihood of Harm**

**Risk Reduction Achieved**

**Risk Reduction Not Achieved**

**Evaluation**

Figure F.4 Risk Assessment Process.
F.5 Risk assessment example

**Detailed Assessment Report**

Risk Assessment & Risk Reduction Methods for Identified Hazards

Assessment: RA 0001

Version: 3

Date: 11/10/2009 9:09:51 AM

Assessment Name: RA 0001

Version: 3

Assessment Created: 11/10/2009

Provided By: Electrical Safety Integration

Performed By: Risk Manager, Bill Smith, John Doe

Approved By: Plant Manager

Assessment Notes: Sample Electrical Assessment 1

Resource Administrator: ABC Company

System ID: Robot 1

Version Remarks: Sample Assessment This assessment is not to be used as an official evaluation for an electrical control enclosure. It has been created as a sample and is not to be used as an estimation of risk for an actual industrial installation.

Protective measures outlined in the detailed report represent the recommendations which should be implemented by ABC Company.

WARNING: NOT ALL HAZARDS AND/OR HAZARDOUS SITUATIONS HAVE BEEN EVALUATED!

The following interaction points are to be included:

b) Electrical
   i) Shock and burn hazards

Further evaluation is required by the supplier and user in order to ensure that the risk associated with the use and maintenance of this machine is sufficiently low.

Resource Administration

Name: ABC Company

Street: 123 ABC St

City: King City

State/Prov: Any state

Country: USA

ZIP/Postal Code: 12345

Contact: John Smith

Phone: 111-222-3333

Fax: 111-222-4444

E-mail: johnsmith@anywhere.com

System Resource

System ID: Robot 1

Date Purchased: 3/18/2005

Manufacturer / Developer: Robot Manufacturer

Function of System: Part handling

Figure F.5 Risk Assessment Example.
Hazard Zone: 1.3 Robot 1 electrical cabinet

Hazard Zone Details

Activity: Trouble shooting control system.

Hazardous Event: Accidental contact with energized conductors and/or circuit parts (electrocution).

Hazardous Situation(s): While working in close proximity to energized electrical conductors and circuit parts, including voltage testing, personnel could come in contact with unguarded live electrical parts.

Notes: All components used in this enclosure have been selected such that accidental contact with the energized circuit parts has reduced through the use of barriers.

Risk Estimation

Severity of potential injury caused by hazard:
Fatal - Immediate or subsequent death

Frequency of exposure to the hazard:
Infrequent - Weekly or less

Possibility of hazard avoidance:
Possible - Potentially able to avoid

Probability of the occurrence to the hazard event:
Unlikely to occur

Supporting Documents:
Incident history

Assessed risk if protective measures are not employed:
High risk / Possible - injury is likely

Engineering Control Risk Reduction Method

Primary safety device used to reduce risk of injury (Mechanical Guarding):
None

Awareness Means:
None

Administrative Risk Controls

Nature of person exposed to hazardous area:
Local maintenance / set-up

Qualification / Education level of the person exposed to hazardous area:
Previous formal training provided by professional trainer

Personal Protective Equipment (Based on task hazard assessment(s)):

Task Hazard Document Activity
See Elec01 <601 VAC Trouble-shooting in panelboards or switchboards
rated >240 V and up to 600 V

Work place safety policies, procedures, and instructions:
Corporate / Company Guidelines for all activities / written instruction

Residual Risk Assumed by Facility

Low risk / Minimal - injury is highly unlikely
Additional protective measures may be disproportionate to the benefit gained.

Figure F.5 Continued
Hazard Zone: 1.4 Robot 1 electrical cabinet

Hazard Zone Details
Activity: Trouble shooting control system.
Hazardous Event: Arc flash event with incident energy less than 8cal/cm2.
Hazardous Situation(s): While working in close proximity to energized electrical conductors and circuit parts, including voltage testing, personnel could be exposed to extremely high temperatures.

Notes: All components used in this enclosure have been selected such that incident energy will be limited to < 8cal/cm2 when installed such that the available fault current is limited to 5000 amps at the supply termination. The user of this equipment shall ensure that appropriate short circuit protective systems are installed and maintained.

Risk Estimation
Severity of potential injury caused by hazard:
Major - Normally irreversible injury

Frequency of exposure to the hazard:
Infrequent - Weekly or less

Possibility of hazard avoidance:
Impossible - injury is unavoidable

Probability of the occurrence to the hazard event:
Remote possibility

Supporting Documents:
Engineered calculation(s)
Incident history

Assessed risk if protective measures are not employed:
High risk / Possible - injury is likely

Engineering Control Risk Reduction Method
Primary safety device used to reduce risk of injury (Mechanical Guarding):
None

Awareness Means:
None

Administrative Risk Controls
Nature of person exposed to hazardous area:
Local maintenance / set-up

Qualification / Education level of the person exposed to hazardous area:
Previous formal training provided by professional trainer

Personal Protective Equipment (Based on task hazard assessment(s)):
Task Hazard Document Activity
See Elec01<601 VAC Trouble-shooting in panelboards or switchboards rated >240 V and up to 600 V

Work place safety policies, procedures, and instructions:
Corporate / Company Guidelines for all activities / written instruction

Residual Risk Assumed by Facility
Low risk / Minimal - injury is highly unlikely
Additional protective measures may be disproportionate to the benefit gained.
Hazard Zone: 1.5 Robot 1 Outside of limited approach boundary electrical cabinet

Hazard Zone Details
Activity: Observation during trouble shooting of control system.
Hazardous Event: Arc flash event with incident energy less than 8cal/cm2.
Hazardous Situation(s): While observing working in close proximity to energized electrical conductors and circuit parts, including voltage testing, personnel could be exposed to extremely high temperatures if they enter the limited approach area.
Notes: Policies shall be established and implemented in order to ensure that unqualified personnel remain outside of the limited approach boundary. Electrical hazard awareness training is required.

Risk Estimation
Severity of potential injury caused by hazard:
Minor - Reversible

Frequency of exposure to the hazard:
Infrequent - Weekly or less

Possibility of hazard avoidance:
Unlikely - Unable to avoid

Probability of the occurrence to the hazard event:
Negligible possibility

Supporting Documents:
Engineered calculation(s)
Incident history

Assessed risk if safety elements are not employed:
Low risk / Minimal - injury is highly unlikely

Engineering Control Risk Reduction Method
Primary safety device used to reduce risk of injury (Mechanical Guarding):
None

Awareness Means:
Caution signs and chains

Administrative Risk Controls
Nature of person exposed to hazardous area:
Local maintenance / set-up

Qualification / Education level of the person exposed to hazardous area:
Previous exposure in similar environment (formal employee training)

Personal Protective Equipment (Based on task hazard assessment(s)):  
Task Hazard Document Activity
See Plant 001 Sample Entry into all production areas Sample

Work place safety policies, procedures, and instructions:
Corporate / Company Guidelines for all activities / written instruction

Residual Risk Assumed by Facility
Very Low risk / Minimal - Injury is a remote possibility
Additional protective measures may be disproportionate to the benefit gained.

Figure F.5 Continued
**Task / Hazard**

**Personal Protective Equipment**

**Task / Hazard ID:** Elec01.<601 VAC

**Task Hazard Notes:**
- **Entered By:** Maintenance Manager
- **Date Created:** 11/10/2009
- **Activity:** Trouble-shooting in panelboards or switchboards rated >240 V and up to 600 V

**General Areas of Potential Injury:**

**Head**
- **Specific areas of the potential injury**
  - Ears, Face, Eyes
  - Eyes
- **Protection devices used**
  - Arc flash hood 8 cal/cm²
  - Safety Glasses

**Nature of Injuries for the Above Area of Potential Injury**
- **Skin damage**
- **Cause of the potential injury**
- **Sparks / flames**

**General Areas of Potential Injury:**

**Whole body**
- **Specific areas of the potential injury**
  - Skin
- **Protection devices used**
  - Arc flash FR clothing 8 cal/cm²

**Nature of Injuries for the Above Area of Potential Injury**
- **Skin damage**
- **Cause of the potential injury**
- **Contact with live parts under fault conditions**

**General Areas of Potential Injury:**

**Arms**
- **Specific areas of the potential injury**
  - Fingers, hands, forearms
  - Fingers
  - Hand
- **Protection devices used**
  - Electrical isolation gloves
  - Leather gloves
  - Voltage rated tools

**Nature of Injuries for the Above Area of Potential Injury**
- **Skin damage**
- **Cause of the potential injury**
  - Contact with live parts under fault conditions
  - Contact with unguarded live parts
  - Sparks / flames

---

**Figure F.5 Continued**
**Task / Hazard**  
**Personal Protective Equipment**

**Task Hazard ID:** Plant 001 Sample  
**Task Hazard Notes:** The listed PPE is required in all production areas. Additional PPE may be required in specific areas.  
**Entered By:** Maintenance Manager  
**Date Created:** 11/10/2009  
**Activity:** Entry into all production areas Sample

### General Areas of Potential Injury:

#### Head
- **Specific areas of the potential injury**  
- **Protection devices used**

#### Eyes
- **Safety Glasses**

#### Nature of Injuries for the Above Area of Potential Injury
- Sensory damage
- Cause of the potential injury
- Propelled objects

### General Areas of Potential Injury:

#### Legs
- **Specific areas of the potential injury**
- **Protection devices used**

#### Foot
- **Safety shoes**

#### Nature of Injuries for the Above Area of Potential Injury
- Skeletal damage
- Cause of the potential injury
- Falling material/objects

---

**Figure F.5 Continued**
Informative Annex G  Sample Lockout/Tagout Procedure

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

Lockout is the preferred method of controlling personnel exposure to electrical energy hazards. Tagout is an alternative method that is available to employers. To assist employers in developing a procedure that meets the requirement of 120.2 of NFPA 70E, the following sample procedure is provided for use in lockout or tagout programs. This procedure can be used for an individual employee control, a simple lockout/tagout, or as part of a complex lockout/tagout. Where a job or task is under the control of one person, the individual employee control procedure can be used in lieu of a lockout/tagout procedure. A more comprehensive plan will need to be developed, documented, and utilized for the complex lockout/tagout.

LOCKOUT (TAGOUT) PROCEDURE
FOR ABC COMPANY
OR
TAGOUT PROCEDURE FOR _____ COMPANY

1.0 Purpose. This procedure establishes the minimum requirements for lockout (tagout) of electrical energy sources. It is to be used to ensure that conductors and circuit parts are disconnected from sources of electrical energy, locked (tagged), and tested before work begins where employees could be exposed to dangerous conditions. Sources of stored energy, such as capacitors or springs, shall be relieved of their energy, and a mechanism shall be engaged to prevent the re-accumulation of energy.

2.0 Responsibility. All employees shall be instructed in the safety significance of the lockout (tagout) procedure. All new or transferred employees and all other persons whose work operations are or might be in the area shall be instructed in the purpose and use of this procedure. [Include the name(s) of person(s) or job title(s) of employees with responsibility] shall ensure that appropriate personnel receive instructions on their roles and responsibilities. All persons installing a lockout (tagout) device shall sign their names and the date on the tag (or state how the name of the individual or person in charge will be available).

3.0 Preparation for Lockout (Tagout).

3.1 Review current diagrammatic drawings (or other equally effective means), tags, labels, and signs to identify and locate all disconnecting means to determine that power is interrupted by a physical break and not deenergized by a circuit interlock. Make a list of disconnecting means to be locked (tagged).

3.2 Review disconnecting means to determine adequacy of their interrupting ability. Determine if it will be possible to verify a visible open point, or if other precautions will be necessary.

3.3 Review other work activity to identify where and how other personnel might be exposed to sources of electrical energy hazards. Review other energy sources in the physical area to determine employee exposure to sources of other types of energy. Establish energy control methods for control of other hazardous energy sources in the area.

3.4 Provide an adequately rated voltage detector to test each phase conductor or circuit part to verify that they are deenergized. (See 11.3.) Provide a method to determine that the voltage detector is operating satisfactorily.

3.5 Where the possibility of induced voltages or stored electrical energy exists, call for grounding the phase conductors or circuit parts before touching them. Where it could be reasonably anticipated that contact with other exposed energized conductors or circuit parts is possible, call for applying ground connecting devices. [ROP-521a]

4.0 Simple Lockout/Tagout. The simple lockout/tagout procedure will involve paragraphs 1.0 through 3.0, 5.0 through 9.0, and 11.0 through 13.0. [ROP-521a]

5.0 Sequence of Lockout (Tagout) System Procedures. [ROP-521a]

5.1 The employees shall be notified that a lockout (tagout) system is going to be implemented and the reason therefor. The qualified employee implementing the lockout (tagout) shall know the disconnecting means location for all sources of electrical energy and the location of all sources of stored energy. The qualified person shall be knowledgeable of hazards associated with electrical energy. [ROP-521a]

5.2 If the electrical supply is energized, the qualified person shall deenergize and disconnect the electric supply and relieve all stored energy. [ROP-521a]

5.3 Lockout (tagout) all disconnecting means with lockout (tagout) devices. [ROP-521a]
Informational Note: For tagout, one additional safety measure must be employed, such as opening, blocking, or removing an additional circuit element.

5.4 Attempt to operate the disconnecting means to determine that operation is prohibited. [ROP-521a]

5.5 A voltage-detecting instrument shall be used. (See 11.3.) Inspect the instrument for visible damage. Do not proceed if there is an indication of damage to the instrument until an undamaged device is available. [ROP-521a]

5.6 Verify proper instrument operation and then test for absence of voltage. [ROP-521a]

5.7 Verify proper instrument operation after testing for absence of voltage. [ROP-521a]

5.8 Where required, install grounding equipment/conductor device on the phase conductors or circuit parts, to eliminate induced voltage or stored energy, before touching them. Where it has been determined that contact with other exposed energized conductors or circuit parts is possible, apply ground connecting devices rated for the available fault duty. [ROP-521a]

5.9 The equipment and/or electrical source is now locked out (tagged out). [ROP-521a]

6.0 Restoring the Equipment and/or Electrical Supply to Normal Condition. [ROP-521a]

6.1 After the job or task is complete, visually verify that the job or task is complete. [ROP-521a]

6.2 Remove all tools, equipment, and unused materials and perform appropriate housekeeping. [ROP-521a]

6.3 Remove all grounding equipment/conductor/devices. [ROP-521a]

6.4 Notify all personnel involved with the job or task that the lockout (tagout) is complete, that the electrical supply is being restored, and to remain clear of the equipment and electrical supply. [ROP-521a]

6.5 Perform any quality control tests or checks on the repaired or replaced equipment and/or electrical supply. [ROP-521a]

6.6 Remove lockout (tagout) devices by the person who installed them. [ROP-521a]

6.7 Notify the equipment and/or electrical supply owner that the equipment and/or electrical supply is ready to be returned to normal operation. [ROP-521a]

6.8 Return the disconnecting means to their normal condition. [ROP-521a]

7.0 Procedure Involving More Than One Person. For a simple lockout/tagout and where more than one person is involved in the job or task, each person shall install his or her own personal lockout (tagout) device. [ROP-521a]

8.0 Procedure Involving More Than One Shift. When the lockout (tagout) extends for more than one day, the lockout (tagout) shall be verified to be still in place at the beginning of the next day. Where the lockout (tagout) is continued on successive shifts, the lockout (tagout) is considered to be a complex lockout (tagout). [ROP-521a]

For complex lockout (tagout), the person in charge shall identify the method for transfer of the lockout (tagout) and of communication with all employees.

9.0 Complex Lockout (Tagout). [ROP-521a] A complex lockout/tagout plan is required where one or more of the following exist:

(1) Multiple energy sources (more than one)
(2) Multiple crews
(3) Multiple crafts
(4) Multiple locations
(5) Multiple employers
(6) Unique disconnecting means
(7) Complex or particular switching sequences
(8) Continues for more than one shift, that is, new workers

9.1 All complex lockout/tagout procedures shall require a written plan of execution. The plan will include the requirements in 1.0 through 3.0, 6.0, 7.0, and 9.0 through 13.0. [ROP-521a]

9.2 A person in charge shall be involved with a complex lockout/tagout procedure. The person in charge shall be at this location. [ROP-521a]

9.3 The person in charge shall develop a written plan of execution and communicate that plan to all persons en-
gaged in the job or task. The person in charge shall be held accountable for safe execution of the complex lockout/tagout plan. The complex lockout/tagout plan must address all the concerns of employees who might be exposed, and they must understand how electrical energy is controlled. The person in charge shall ensure that each person understands the hazards to which they are exposed and the safety-related work practices they are to use. [ROP-521a]

9.4 All complex lockout/tagout plans identify the method to account for all persons who might be exposed to electrical hazards in the course of the lockout/tagout. [ROP-521a]

Select which of the following methods is to be used:

1. Each individual will install his or her own personal lockout or tagout device.
2. The person in charge shall lock his/her key in a “lock box.”
3. The person in charge shall maintain a sign in/out log for all personnel entering the area.
4. Another equally effective methodology.

9.5 The person in charge can install locks/tags, or direct their installation on behalf of other employees. [ROP-521a]

9.6 The person in charge can remove locks/tags or direct their removal on behalf of other employees, only after all personnel are accounted for and ensured to be clear of potential electrical hazards. [ROP-521a]

9.7 Where the complex lockout (tagout) is continued on successive shifts, the person in charge shall identify the method for transfer of the lockout and of communication with all employees. [ROP-521a]

10.0 Discipline. [ROP-521a]

10.1 Knowingly violating this procedure will result in (state disciplinary actions that will be taken). [ROP-521a]

10.2 Knowingly operating a disconnecting means with an installed lockout device (tagout device) will result in (state disciplinary actions to be taken). [ROP-521a]

11.0 Equipment. [ROP-521a]

11.1 Locks shall be (state type and model of selected locks). [ROP-521a]

11.2 Tags shall be (state type and model to be used). [ROP-521a]

11.3 Voltage detecting device(s) to be used shall be (state type and model). [ROP-521a]

12.0 Review. This procedure was last reviewed on (state date) and is scheduled to be reviewed again on (not more than one year from the last review). [ROP-521a]

13.0 Lockout/Tagout Training. [ROP-521a] Recommended training can include, but is not limited to, the following:

1. Recognizing lockout/tagout devices
2. Installing lockout/tagout devices
3. Duty of employer in writing procedures
4. Duty of employee in executing procedures
5. Duty of person in charge
6. Authorized and unauthorized removal of locks/tags
7. Enforcing execution of lockout/tagout procedures
8. Individual employee control of energy
9. Simple lockout/tagout
10. Complex lockout/tagout
11. Using single line and diagrammatic drawings to identify sources of energy
12. Use of tags and warning signs
13. Release of stored energy
14. Personnel accounting methods
15. Grounding needs and requirements
16. Safe use of voltage detecting instruments
Informative Annex H  Guidance on Selection of Protective Clothing and Other Personal Protective Equipment [ROP-522a]

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

H.1 Arc-Rated Clothing and Other Personal Protective Equipment (PPE) for Use with Hazard/Risk Categories. Table 130.8(C)(15)(1) and Table 130.8(C)(16) provide guidance for the selection and use of personal protective equipment when using Hazard/Risk Categories. [ROP-522a]

H.2 Simplified Two-Category Clothing Approach for Use with Table 130.8(C)(15)(1) and Table 130.8(C)(16). The use of Table H.2 is a simplified approach to provide minimum personal protective equipment for electrical workers within facilities with large and diverse electrical systems. The clothing listed in Table H.2 fulfills the minimum arc-rated clothing requirements of Table 130.8(C)(15)(1) and Table 130.8(C)(16). The clothing systems listed in this table should be used with the other PPE appropriate for the Hazard/Risk Category. [See Table 130.8(C)(16).] The notes at the bottom of Table 130.8(C)(15)(1) must apply as shown in that table. [ROP-522a, ROP-523]

H.3 Arc-Rated Clothing and Other Personal Protective Equipment (PPE) for Use with a Hazard Analysis. Table H.3 provides guidance on the selection of arc rated clothing and other personal protective equipment for users who conduct a hazard analysis to determine the incident energy exposure (in calories/cm²) to the worker. [ROP-522a]

<table>
<thead>
<tr>
<th>Table H.2 Simplified, Two-Category, Arc-rated Clothing System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clothing&quot;</td>
</tr>
<tr>
<td>Everyday Work Clothing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arc-rated coveralls (minimum arc rating of 8)</td>
</tr>
<tr>
<td>Arc Flash Suit</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

"Note that other PPE required for the specific tasks listed in Table 130.8(C)(15)(1) and Table 130.8(C)(16), which includes arc-rated face shields or arc flash suit hoods, arc-rated hardhat liners, safety glasses or safety goggles, hard hat, hearing protection, leather gloves, voltage-rated gloves, and voltage-rated tools may be required. Arc rating for a garment is expressed in cal/cm². [ROP-525]

The assumed short-circuit current capacities and fault clearing times for various tasks are listed in the text and notes to Table 130.8(C)(15)(1). For tasks not listed, or for power systems with greater than the assumed short-circuit capacity or with longer than the assumed fault clearing times, an arc flash hazard analysis is required in accordance with 130.5.

Table H.3 Guidance on Selection of Arc-Rated Clothing and Other Personal Protective Equipment (PPE) for Use when Incident Exposure is Determined by a Hazard Analysis [ROP-522a]

<table>
<thead>
<tr>
<th>Incident Energy Exposure</th>
<th>Protective Clothing and PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or Equal to 1.2 cal/cm²</td>
<td>Shirt (long sleeve) and pants (long) or coverall</td>
</tr>
<tr>
<td>Other Personal Protective Equipment</td>
<td></td>
</tr>
<tr>
<td>Greater than 1.2 to 12 cal/cm²</td>
<td>Face shield for projectile protection (AN)</td>
</tr>
<tr>
<td></td>
<td>Safety glasses or safety goggles (SR)</td>
</tr>
<tr>
<td></td>
<td>Hearing protection</td>
</tr>
<tr>
<td></td>
<td>Leather gloves or rubber insulating gloves with leather protectors (AN)</td>
</tr>
</tbody>
</table>
Table H.3  Continued

<table>
<thead>
<tr>
<th>Incident Energy Exposure</th>
<th>Protective Clothing and PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc Rated Clothing and equipment with an Arc Rating equal to or greater than the incident energy determined in a hazard analysis. (Note 3)</td>
<td>Arc-rated long-sleeve shirt and arc-rated pants or arc-rated coverall or arc flash suit (SR) (Note 3)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated face shield and arc-rated balaclava or arc flash suit hood (SR) (Note 1)</td>
</tr>
<tr>
<td></td>
<td>Arc rated jacket, parka, or rainwear (AN)</td>
</tr>
<tr>
<td>Other Personal Protective Equipment</td>
<td>Hard hat</td>
</tr>
<tr>
<td></td>
<td>Arc-rated hard hat liner (AN)</td>
</tr>
<tr>
<td></td>
<td>Safety glasses or safety goggles (SR)</td>
</tr>
<tr>
<td></td>
<td>Hearing protection</td>
</tr>
<tr>
<td></td>
<td>Leather gloves or rubber insulating gloves with leather protectors (SR) (Note 4)</td>
</tr>
<tr>
<td></td>
<td>Leather work shoes</td>
</tr>
<tr>
<td>Greater than 12 cal/cm²</td>
<td>Arc-rated long-sleeve shirt and arc-rated pants or Arc-rated coverall and/or arc flash suit (SR)</td>
</tr>
<tr>
<td></td>
<td>Arc-rated arc flash suit hood</td>
</tr>
<tr>
<td></td>
<td>Arc-rated gloves</td>
</tr>
<tr>
<td></td>
<td>Arc-rated jacket, parka, or rainwear (AN)</td>
</tr>
<tr>
<td>Other Personal Protective Equipment</td>
<td>Hard hat</td>
</tr>
<tr>
<td></td>
<td>Arc-rated hard hat liner (AN)</td>
</tr>
<tr>
<td></td>
<td>Safety glasses or safety goggles (SR)</td>
</tr>
<tr>
<td></td>
<td>Hearing protection</td>
</tr>
<tr>
<td></td>
<td>Arc-rated gloves or rubber insulating gloves with leather protectors (SR) (Note 4)</td>
</tr>
<tr>
<td></td>
<td>Leather work shoes</td>
</tr>
</tbody>
</table>

AN = As needed (in addition to the protective clothing and PPE required by 130.5(B)(1).  
SR = Selection of one in group is required by 130.5(B)(1)

Notes:
(1) Faceshields with a wrap-around guarding to protect the face, chin, forehead, ears, neck area are required by 130.8(C)(10)(c). For full head and neck protection, use a balaclava or an arc flash hood.
(2) All items not designated “AN” are required by 130.8(C).
(3) Arc ratings can be for a single layer such as a shirt and pants or a coverall, or for an arc flash suit or for a multi layer system consisting of a combination of shirt and pants, coverall and arc flash suit. The innermost layer of clothing can be, nonmelting (according to ASTM F1506-08) or non-arc-rated natural fiber. Inclusion of the innermost layer of nonmelting or non-arc-rated clothing as part of the multi layer system arc rating requires that the complete system including the innermost layer be arc tested to determine the system arc rating.
(4) Rubber insulating gloves with leather protectors provide arc flash protection in addition to shock protection. Higher class rubber insulating gloves with leather protectors due to the increased material thickness provide increased arc flash protection.

H.4 Two-Level Clothing Approach for Use with known Short-Circuit Currents and Device Clearing Times. The following tables can be used to determine the suitability of 8 cal/cm² and 40 cal/cm² personal protective equipment on
systems rated up to 15 kV, line-to-line. See Table H.4.1 and Table H.4.2 for the recommended limitations based on bolted 3-phase short-circuit currents at the listed fault-clearing times. The limitations listed below are based on IEEE 1584 calculation methods.

Table H.4.1 Low-Voltage Systems – Maximum Three-Phase Bolted-Fault Current Limits at Various System Voltages and Fault-Clearing Times of Circuit Breakers, for the Recommended Use of 8 cal/cm² and 40 cal/cm² Personal Protective Equipment in an “Arc in a Box” Situation [ROP-516, ROP-522a]

<table>
<thead>
<tr>
<th>System Voltage (volts, phase-to-phase)</th>
<th>Upstream Protection Fault-Clearing Time (sec)</th>
<th>Maximum 3-Phase Bolted-Fault Current for Use of 8 cal/cm² PPE</th>
<th>Maximum 3-Phase Bolted-Fault Current for Use of 40 cal/cm² PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>690</td>
<td>0.05</td>
<td>39 kA</td>
<td>180 kA</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>20 kA</td>
<td>93 kA</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>10 kA</td>
<td>48 kA</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>Not Recommended</td>
<td>29 kA</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>Not Recommended</td>
<td>20 kA</td>
</tr>
<tr>
<td>600</td>
<td>0.05</td>
<td>48 kA</td>
<td>200 kA*</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>24 kA</td>
<td>122 kA</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>12 kA</td>
<td>60 kA</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>Not Recommended</td>
<td>36 kA</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>Not Recommended</td>
<td>24 kA</td>
</tr>
<tr>
<td>480</td>
<td>0.05</td>
<td>68 kA</td>
<td>200 kA*</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>32 kA</td>
<td>183 kA</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>15 kA</td>
<td>86 kA</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>8 kA</td>
<td>50 kA</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>Not Recommended</td>
<td>32 kA</td>
</tr>
<tr>
<td>400</td>
<td>0.05</td>
<td>87 kA</td>
<td>200 kA*</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>39 kA</td>
<td>200 kA*</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>18 kA</td>
<td>113 kA</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>10 kA</td>
<td>64 kA</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>Not Recommended</td>
<td>39 kA</td>
</tr>
<tr>
<td>208</td>
<td>0.05</td>
<td>200 kA*</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>104 kA</td>
<td>200 kA*</td>
</tr>
</tbody>
</table>

Notes:

(1) Three-phase “bolted fault” value is at the terminals of the equipment on which work is to be done.
(2) “Upstream Protection Fault-Clearing Time” is normally the “short-time delay” setting on the trip unit of the low-voltage power circuit breaker upstream of the equipment on which work is to be done.
(3) For application of this table, the recommended maximum setting (pick-up) of either the instantaneous or short-delay protection of the circuit breaker’s trip unit is 30% of the actual available 3-phase bolted fault current at the specific work location.
(4) Working distance for the arc-flash exposures is assumed to be 455 mm (18 in.).
(5) Flash Protection Boundary (threshold distance for a second-degree skin burn) is 1.7 m (6 ft) for 8 cal/cm² and 4.9 m (16 ft) for 40 cal/cm². PPE is required for all personnel working within the Flash Protection Boundary.
(6) Instantaneous circuit breaker trip unit(s) have no intentional time delay, and a properly installed, operated, and maintained circuit breaker should clear the fault within 0.050 sec of initiation. Application of circuit breakers with faster clearing times or the use of current-limiting circuit breakers or fuses should permit the use of 8 cal/cm² and 40 cal/cm² PPE at greater fault currents than listed.
(7) Systems are assumed to be resistance grounded, except for 208 V (solidly grounded system). This assumption results in conservative application if the table is used on a solidly grounded system, since the incident energy on a solidly grounded system is lower for the same bolted fault current availability.

*Maximum equipment short-circuit current rating available.
### Table H.4.2 High-Voltage Systems – Maximum Three-Phase Bolted-Fault Current Limits at Various System Voltages and Fault-Clearing Times of Circuit Breakers, for the Recommended Use of 8 cal/cm² and 40 cal/cm² Personal Protective Equipment in an “Arc in a Box” Situation [ROP-517, ROP-522a]

<table>
<thead>
<tr>
<th>System Voltage (volts, phase-to-phase)</th>
<th>Upstream Protection Fault-Clearing Time (sec)</th>
<th>Maximum 3-Phase Bolted-Fault Current for Use of 8 cal/cm² PPE</th>
<th>Maximum 3-Phase Bolted-Fault Current for Use of 40 cal/cm² PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 kV Class and 12 kV Class</td>
<td>0.10</td>
<td>45 kA</td>
<td>63 kA*(11.4 cal/cm²)</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>13 kA</td>
<td>63 kA</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>7 kA</td>
<td>32 kA</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>5 kA</td>
<td>23 kA</td>
</tr>
<tr>
<td>5 kV Class</td>
<td>0.10</td>
<td>50 kA</td>
<td>63 kA*(10 cal/cm²)</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>15 kA</td>
<td>63 kA*(35 cal/cm²)</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>8 kA</td>
<td>37 kA</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>5 kA</td>
<td>26 kA</td>
</tr>
</tbody>
</table>

Notes:
1. “Upstream Protection Fault-Clearing Time” is the protective relaying operating time at 90% of the actual available 3-phase bolted fault current at the specific work location (the time for the output contact operating the trip coil of the circuit breaker to be closed), plus the circuit breaker operating time (upstream of the equipment on which work is to be done).
2. Working distance for the above arc-flash exposures is assumed to be 0.92 m (3 ft).
3. Systems are assumed to be resistance grounded. This assumption results in conservative application if the table is used on a solidly grounded system, since the incident energy on a solidly grounded system is lower.
4. The cal/cm² in parentheses in the last column are calculated at the maximum equipment short-circuit current ratings available.

* Maximum equipment short-circuit current rating available.
Informative Annex I  Job Briefing and Planning Checklist

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

I.1 Figure I.1 illustrates considerations for a Job Briefing and Planning Checklist.

<table>
<thead>
<tr>
<th>Identify</th>
<th>Safety procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ The hazards</td>
<td>❑ Install and remove temporary protective grounding</td>
</tr>
<tr>
<td>❑ The voltage levels involved</td>
<td>equipment</td>
</tr>
<tr>
<td>❑ Skills required</td>
<td>❑ Install barriers and barricades</td>
</tr>
<tr>
<td>❑ Any “foreign” (secondary source) voltage</td>
<td>❑ What else . . . ?</td>
</tr>
<tr>
<td>source</td>
<td></td>
</tr>
<tr>
<td>❑ Any unusual work conditions</td>
<td></td>
</tr>
<tr>
<td>❑ Number of people needed to do the job</td>
<td></td>
</tr>
<tr>
<td>❑ The shock protection boundaries</td>
<td></td>
</tr>
<tr>
<td>❑ The available incident energy</td>
<td></td>
</tr>
<tr>
<td>❑ Potential for arc flash</td>
<td></td>
</tr>
<tr>
<td>(Conduct an arc flash-hazard analysis.)</td>
<td></td>
</tr>
<tr>
<td>❑ Arc flash protection boundary</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ask</th>
<th>Question: Who is in charge?</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Can the equipment be de-energized?</td>
<td>❑ Is a “standby person” required?</td>
</tr>
<tr>
<td>❑ Are backfeeds of the circuits to be worked</td>
<td></td>
</tr>
<tr>
<td>on possible?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Check</th>
<th>Question: What else . . . ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Job plans</td>
<td>❑ Install and remove temporary protective grounding</td>
</tr>
<tr>
<td>❑ Single-line diagrams and vendor prints</td>
<td>equipment</td>
</tr>
<tr>
<td>❑ Status board</td>
<td>❑ Install barriers and barricades</td>
</tr>
<tr>
<td>❑ Information on plant and vendor resources</td>
<td>❑ What else . . . ?</td>
</tr>
<tr>
<td>is up to date</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Know</th>
<th>Question: What else . . . ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ What the job is</td>
<td>❑ Install and remove temporary protective grounding</td>
</tr>
<tr>
<td>❑ Who else needs to know—Communicate!</td>
<td>equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Think</th>
<th>Question: What else . . . ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ About the unexpected event . . . What if?</td>
<td>❑ Install and remove temporary protective grounding</td>
</tr>
<tr>
<td>❑ Lock — Tag — Test — Try</td>
<td>equipment</td>
</tr>
<tr>
<td>❑ Test for voltage — FIRST</td>
<td>❑ Install barriers and barricades</td>
</tr>
<tr>
<td>❑ Use the right tools and equipment, including</td>
<td>❑ What else . . . ?</td>
</tr>
<tr>
<td>PPE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prepare for an emergency</th>
<th>Question: What else . . . ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>❑ Is the standby person CPR trained?</td>
<td>❑ Install and remove temporary protective grounding</td>
</tr>
<tr>
<td>❑ Is the required emergency equipment available?</td>
<td>equipment</td>
</tr>
<tr>
<td>❑ Where is it?</td>
<td>❑ Install barriers and barricades</td>
</tr>
<tr>
<td>❑ Where is the nearest telephone?</td>
<td>❑ What else . . . ?</td>
</tr>
<tr>
<td>❑ Where is the fire alarm?</td>
<td></td>
</tr>
<tr>
<td>❑ Is confined space rescue available?</td>
<td></td>
</tr>
<tr>
<td>❑ What is the exact work location?</td>
<td></td>
</tr>
<tr>
<td>❑ How is the equipment shut off in an</td>
<td></td>
</tr>
<tr>
<td>emergency?</td>
<td></td>
</tr>
<tr>
<td>❑ Are the emergency telephone numbers known?</td>
<td></td>
</tr>
<tr>
<td>❑ Where is the fire extinguisher?</td>
<td></td>
</tr>
<tr>
<td>❑ Are radio communications available?</td>
<td></td>
</tr>
</tbody>
</table>

Figure I.1 Sample Job Briefing and Planning Checklist. [ROP-527]
Informative Annex J  Energized Electrical Work Permit

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

J.1 Figure J.1 illustrates considerations for an Energized Electrical Work Permit.

J.2 Figure J.2 illustrates items to consider when determining the need for an Energized Electrical Work Permit.
ENERGIZED ELECTRICAL WORK PERMIT

PART I: TO BE COMPLETED BY THE REQUESTER:

(1) Description of circuit/equipment/job location: _____________________________

(2) Description of work to be done: _____________________________

(3) Justification of why the circuit/equipment cannot be de-energized or the work deferred until the next scheduled outage:

Requester/Title _____________________________ Date _____________________________

PART II: TO BE COMPLETED BY THE ELECTRICALLY QUALIFIED PERSONS DOING THE WORK:

(1) Detailed job description procedure to be used in performing the above detailed work: _____________________________

(2) Description of the Safe Work Practices to be employed: _____________________________

(3) Results of the Shock Hazard Analysis: _____________________________

(4) Determination of Shock Protection Boundaries: _____________________________

(5) Results of the Arc Flash Hazard Analysis: _____________________________

(6) Determination of the Arc Flash Protection Boundary: _____________________________

(7) Necessary personal protective equipment to safely perform the assigned task: _____________________________

(8) Means employed to restrict the access of unqualified persons from the work area: _____________________________

(9) Evidence of completion of a Job Briefing including discussion of any job-related hazards: _____________________________

(10) Do you agree the above described work can be done safely?   ☐ Yes ☐ No (If no, return to requester)

Electrically Qualified Person(s) _____________________________ Date _____________________________

PART III: APPROVAL(S) TO PERFORM THE WORK WHILE ELECTRICALLY ENERGIZED:

Manufacturing Manager _____________________________ Maintenance/Engineering Manager _____________________________

Safety Manager _____________________________ Electrically Knowledgeable Person _____________________________

General Manager _____________________________ Date _____________________________

Note: Once the work is complete, forward this form to the site Safety Department for review and retention.

© 2008 National Fire Protection Association

Figure J.1 Sample Permit for Energized Electrical Work.
What is the voltage level?

- 
- ≥ 50 volts
  - Are there exposed live parts?
    - Yes
      - What type of work is to be performed?
        - Will any physical alterations be done such as making or tightening connections or removing or replacing components?
          - Yes
            - Will the equipment be put in an electrically safe work condition?
              - Yes
                - Disconnected
                - Locked out
                - Tested
                - Grounded
              - No
                - Proceed to Work SAFELY
              - No
                - Follow Lockout/Tagout (Section 120.2). Permit to Work required (as applicable at location)
            - No
              - Follow Section 130.7 for PPE requirements. Permit to Work required (as applicable at location)
              - No Energized Electrical Work Permit required
              - Energized Electrical Work Permit required
    - No
      - Follow Section 130.7 for PPE requirements. Permit to Work required (as applicable at location)
      - No Energized Electrical Work Permit required
      - Energized Electrical Work Permit required
  - No
    - Apply good maintenance practices and protect the electrical systems and parts from mechanical damage.
    - Follow Section 130.7 for PPE requirements. Permit to Work required (as applicable at location)
    - No Energized Electrical Work Permit required
    - Energized Electrical Work Permit required

< 50 volts

The decision to de-energize should include consideration of the capacity of the electrical source and any overcurrent protection (fuse or circuit breaker) between the source and the worker.

Follow Section 130.7 for PPE requirements.
Permit to Work required (as applicable at location)
Informative Annex K  General Categories of Electrical Hazards

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

K.1 General Categories. There are three general categories of electrical hazards: electrical shock, arc-flash, and arc-blast.

K.2 Electric Shock. Approximately 30,000 nonfatal electrical shock accidents occur each year. The National Safety Council estimates that about 1000 fatalities each year are due to electrocution, more than half of them while servicing energized systems of less than 600 volts.

Electrocution is the fourth leading cause of industrial fatalities, after traffic, homicide, and construction accidents. The current required to light a 7½ watt, 120 volt lamp, if passed across the chest, is enough to cause a fatality. The most damaging paths through the body are through the lungs, heart, and brain.

K.3 Arc-Flash. When an electric current passes through air between ungrounded conductors or between ungrounded conductors and grounded conductors, the temperatures can reach 35,000°F. Exposure to these extreme temperatures both burns the skin directly and causes ignition of clothing, which adds to the burn injury. The majority of hospital admissions due to electrical accidents are from arc-flash burns, not from shocks. Each year more than 2000 people are admitted to burn centers with severe arc-flash burns. Arc-flashes can and do kill at distances of 3 m (10 ft).

K.4 Arc-Blast. The tremendous temperatures of the arc cause the explosive expansion of both the surrounding air and the metal in the arc path. For example, copper expands by a factor of 67,000 times when it turns from a solid to a vapor. The danger associated with this expansion is one of high pressures, sound, and shrapnel. The high pressures can easily exceed hundreds or even thousands of pounds per square foot, knocking workers off ladders, rupturing eardrums, and collapsing lungs. The sounds associated with these pressures can exceed 160 dB. Finally, material and molten metal is expelled away from the arc at speeds exceeding 1600 km/hr (700 mph), fast enough for shrapnel to completely penetrate the human body.
Informative Annex L  Typical Application of Safeguards in the Cell Line Working Zone

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

L.1 Application of Safeguards. This annex permits a typical application of safeguards in electrolytic areas where hazardous electrical conditions exist. Take, for example, an employee working on an energized cell. The employee uses manual contact to make adjustments and repairs. Consequently, the exposed energized cell and grounded metal floor could present a hazardous electrical condition. Safeguards for this employee can be provided in several ways:

(1) Protective boots can be worn that isolate the employee’s feet from the floor and that provide a safeguard from the hazardous electrical condition.

(2) Protective gloves can be worn that isolate the employee’s hands from the energized cell and that provide a safeguard.

(3) If the work task causes severe deterioration, wear, or damage to personal protective equipment, the employee might have to wear both protective gloves and boots.

(4) A permanent or temporary insulating surface can be provided for the employee to stand on to provide a safeguard.

(5) The design of the installation can be modified to provide a conductive surface for the employee to stand on. If the conductive surface is bonded to the cell, the hazardous electrical condition will be removed and a safeguard will be provided by voltage equalization.

(6) Safe work practices can provide safeguards. If protective boots are worn, the employee should not make long reaches over energized (or grounded) surfaces such that his or her elbow bypasses the safeguard. If such movements are required, protective sleeves, protective mats, or special tools should be utilized. Training on the nature of hazardous electrical conditions and proper use and condition of safeguards is in itself a safeguard.

(7) The energized cell can be temporarily bonded to ground to remove the hazardous electrical condition.

L.2 Electrical Power Receptacles. Power supply circuits and receptacles in the cell line area for portable electric equipment should meet the requirements of NFPA 70, National Electrical Code, Section 668.21. However, it is recommended that receptacles for portable electric equipment not be installed in electrolytic cell areas and that only pneumatic powered portable tools and equipment be used.
Informative Annex M  Layering of Protective Clothing and Total System Arc Rating

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

M.1 Layering of Protective Clothing.

M.1.1 Layering of arc-rated clothing is an effective approach to achieving the required arc rating. The use of all arc-rated clothing layers will result in achieving the required arc rating with the lowest number of layers and lowest clothing system weight.

M.1.2 The total system of protective clothing can be selected to take credit for the protection provided of all the layers of clothing that are worn. For example, to achieve an arc rating of 40 cal/cm², an arc flash suit with an arc rating of 40 cal/cm² could be worn over a cotton shirt and cotton pants. Alternatively, an arc flash suit with a 25 cal/cm² arc rating could be worn over an arc-rated shirt and arc-rated pants with an arc rating of 8 cal/cm² to achieve a total system arc rating of 40 cal/cm². This latter approach provides the required arc rating at a lower weight and with fewer total layers of fabric, and consequently would provide the required protection with a higher level of worker comfort.

M.2 Layering Using Arc-rated Clothing over Natural Fiber Clothing Under Layers.

M.2.1 Under some exposure conditions, natural fiber under layers can ignite even when they are worn under arc-rated clothing.

M.2.2 If the arc flash exposure is sufficient to break open all the arc-rated clothing outer layer or layers, the natural fiber under layer can ignite and cause more severe burn injuries to an expanded area of the body. This is due to the natural fiber under layers burning onto areas of the worker’s body that were not exposed by the arc flash event. This can occur when the natural fiber underlayer continues to burn underneath arc-rated clothing layers even in areas in which the arc-rated clothing layer or layers are not broken open due to a “chimney effect.”

M.3 Total System Arc Rating.

M.3.1 The total system arc rating is the arc rating obtained when all clothing layers worn by a worker are tested as a multilayer test sample. An example of a clothing system is an arc-rated coverall worn over an arc-rated shirt and arc-rated pants in which all of the garments are constructed from the same arc-rated fabric. For this two-layer arc-rated clothing system the arc rating would typically be more than three times higher than the arc rating of the individual layers, that is, if the arc rating of the arc-rated coverall, shirt, and pants were all in the range of 5 to 6 cal/cm², the total two-layer system arc rating would be over 20 cal/cm².

M.3.2 It is important to understand that the total system arc rating cannot be determined by adding the arc ratings of the individual layers. In a few cases, it has been observed that the total system arc rating actually decreased when another arc-rated layer of a specific type was added to the system as the outermost layer. The only way to determine the total system arc rating is to conduct a multilayer arc test on the combination of all of the layers assembled as they would be worn.
Informative Annex N  Example Industrial Procedures and Policies for Working Near Overhead Electrical Lines and Equipment

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

N.1 Introduction. This annex is an example of an industrial procedure for working near overhead electrical systems. Areas covered include operations that could expose employees or equipment to contact with overhead electrical systems.

When working near electrical lines or equipment, avoid direct or indirect contact. Direct contact is contact with any part of the body. Indirect contact is when part of the body touches or is in dangerous proximity to any object in contact with energized electrical equipment. Two assumptions should always be made: (1) Lines are “live” (energized), and (2) lines are operating at high voltage (over 1000 volts).

As the voltage increases, the minimum working clearances increase. Through arc-over, injuries or fatalities may occur even if actual contact with high voltage lines or equipment is not made. Potential for arc-over increases as the voltage increases.

N.2 Overhead Powerline Policy (OPP). This annex applies to all overhead conductors, regardless of voltage and requires the following:

1. That employees not place themselves in close proximity to overhead powerlines. “Close proximity” is within a distance of 10 ft for systems up to 50 kilovolts, and should be increased 4 in. for every 10 kilovolts above 50 kilovolts. [ROP-528]

2. That employees be informed of the hazards and precautions when working near overhead lines.

3. That warning decals be posted on cranes and similar equipment regarding minimum clearance of 10 ft.

4. That a “spotter” be designated when equipment is working near the proximity of overhead lines. This person’s responsibility is to observe safe working clearances around all overhead lines and to direct the operator accordingly.

5. That warning cones be used as visible indicators of the 10 ft safety zone when working near overhead powerlines.

Note: “Working near,” for the purpose of this annex, is defined as working within a distance from any overhead powerline that is less than the combined height or length of the lifting device, the associated load length, and the required minimum clearance distance [as stated in N.2(1)].

6. Notify the local responsible person at least 24 hours before any work begins to allow time to identify voltages and clearances, or to place the line in an electrically safe work condition.

N.3 Policy. All employees and contractors shall conform to the OPP. The first line of defense in preventing electrical contact accidents is to remain outside the Limited Approach Boundary. Because most company and contractor employees are not qualified to determine the system voltage level, a qualified person shall be called to establish voltages and minimum clearances, and take appropriate action to make the work zone safe.

N.4 Procedures.

N.4.1 General. Prior to the start of all operations where potential contact with overhead electrical systems is possible, the person in charge shall identify overhead lines or equipment, reference their location with respect to prominent physical features, or physically mark the area directly in front of the overhead lines with safety cones, survey tape, or other means. Electrical line location shall be discussed at a pre-work safety meeting of all employees on the job (through a job briefing). All company employees and contractors shall attend this meeting and require their employees to conform to electrical safety standards. New or transferred employees shall be informed of electrical hazards and proper procedures during orientations.

On construction projects, the contractor shall identify and reference all potential electrical hazards and document such actions with the on-site employers. The location of overhead electrical lines and equipment shall be conspicuously marked by the person in charge. New employees shall be informed of electrical hazards and of proper precautions and procedures.

Where there is potential for contact with overhead electrical systems, local area management shall be called to decide whether to place the line in an electrically safe work condition, or to otherwise protect the line against accidental contact. Where there is a suspicion of lines with low clearance (height under 20 ft), the local on-site electrical supervisor shall be notified to verify and take appropriate action.

All electrical contact incidents, including “near misses,” shall be reported to the local area health and safety specialist.

N.4.2 LOOK UP AND LIVE Flags. In order to prevent accidental contacts of overhead lines, all aerial lifts, cranes,
boom trucks, service rigs, and similar equipment shall use “LOOK UP AND LIVE” flags. The flags are visual indicators that the equipment is currently being used or has been returned to its “stowed or cradled” position. The flags shall be yellow with black lettering and shall state in bold lettering “LOOK UP AND LIVE.”

The procedure for the use of the flag shall be:

1. When the boom or lift is in its stowed or cradled position, the flag shall be located on the load hook or boom end.
2. Prior to operation of the boom or lift, the operator of the equipment shall assess the work area to determine the location of all overhead lines and communicate this information to all crews on site. Once completed, the operator shall remove the flag from the load hook or boom and transfer the flag to the steering wheel of the vehicle. Once the flag is placed on the steering wheel, the operator may begin to operate the equipment.
3. After successfully completing the work activity and returning the equipment to its stowed or cradled position, the operator shall return the flag to the load hook.
4. The operator of the equipment is responsible for the placement of the LOOK UP AND LIVE flag.

N.4.3 High Risk Tasks.

N.4.3.1 Heavy Mobile Equipment. Prior to the start of each workday, a high visibility marker (orange safety cones or other devices) shall be temporarily placed on the ground to mark the location of overhead wires. The supervisors shall discuss electrical safety with appropriate crew members at on-site tailgate safety talks. When working in the proximity of overhead lines, a spotter shall be positioned in a conspicuous location to direct movement and observe for contact with the overhead wires. The spotter, equipment operator, and all other employees working on the job location shall be alert for overhead wires and remain at least 3 m (10 ft) from the mobile equipment.

All mobile equipment shall display a warning decal regarding electrical contact. Independent truck drivers delivering materials to field locations shall be cautioned about overhead electrical line before beginning work, and a properly trained on-site or contractor employee shall assist in the loading or off-loading operation. Trucks that have tied their material shall not leave the work location until the boom, lift, or box is down and is safely secured.

N.4.3.2 Aerial Lifts, Cranes, and Boom Devices. Where there is potential for near operation or contact with overhead lines or equipment, work shall not begin until a safety meeting is conducted and appropriate steps taken to identify, mark, and warn against accidental contact. The supervisor will review operations daily to ensure compliance.

Where the operator’s visibility is impaired, a spotter shall guide the operator. Hand signals shall be used and clearly understood between operator and spotter. When visual contact is impaired, the spotter and operator shall be in radio contact. Aerial lifts, cranes, and boom devices shall have appropriate warning decals and shall use warning cones or similar devices to indicate the location of overhead lines and identify the 3 m (10 ft) minimum safe working boundary.

N.4.3.3 Tree Work. Wires shall be treated as live and operating at high voltage until verified as otherwise by the local area on-site employer. The local maintenance organization or an approved electrical contractor shall remove branches touching wires before work begins. Limbs and branches shall not be dropped onto overhead wires. If limbs or branches fall across electrical wires, all work shall stop immediately and the local area maintenance organization called. When climbing or working in trees, pruners shall try to position themselves so that the trunk or limbs are between their bodies and electrical wires. If possible, pruners shall not work with their backs toward electrical wires. An insulated bucket truck is the preferential method of pruning when climbing poses a greater threat of electrical contact. Personal protective equipment shall be used while working on or near lines.

N.4.4 Underground Electrical Lines and Equipment. Before excavation starts and where there exists reasonable possibility of contacting electrical or utility lines or equipment, the local area supervision (or USA DIG organization, when appropriate), shall be called and a request made for identifying/markting the line location(s).

When USA DIG is called, telephone operators will need the following:

1. Minimum of 2 working days’ notice prior to start of work, name of county, name of city, name and number of street or highway marker, and nearest intersection
2. Type of work
3. Date and time work is to begin
4. Caller’s name, contractor/department name and address
5. Telephone number for contact
6. Special instructions

Utilities that do not belong to USA DIG must be contacted separately. USA DIG may not have a complete list of utility owners. Utilities discovered shall be marked before work begins. Supervisors shall periodically refer their location to all workers, including new employees, subject to exposure.

N.4.5 Vehicles with Loads in Excess of a Height of 4.25 m (14 ft). This policy requires that all vehicles with loads in excess of 4.25 m (14 ft) use specific procedures to maintain safe working clearances when in transit below overhead lines.
The specific procedures for moving loads in excess of 4.25 m (14 ft) or via routes with lower clearance heights are listed below:

1. Prior to movement of any load in excess of 4.25 m (14 ft), the local health and safety department, along with the local person in charge, shall be notified of the equipment move.

2. An on-site electrician, electrical construction representative, or qualified electrical contractor should check the intended route to the next location before relocation.

3. Check the new site for overhead lines and clearances.

4. Powerlines and communication lines shall be noted and extreme care used when traveling beneath the lines.

5. The company moving the load or equipment will provide a driver responsible for measuring each load and ensuring each load is secured and transported in a safe manner.

6. An on-site electrician, electrical construction representative, or qualified electrical contractor shall escort the first load to the new location, ensuring safe clearances. A service company representative shall be responsible for subsequent loads to follow the same safe route.

If proper working clearances cannot be maintained, the job must be shut down until a safe route can be established or the necessary repairs or relocations have been completed to ensure that a safe working clearance has been achieved.

All work requiring movement of loads in excess of 4.25 m (14 ft) are required to begin only after a General Work Permit has been completed, detailing all pertinent information about the move.

N.4.6 Emergency Response. If an overhead line falls or is contacted, the following precautions should be taken:

1. Keep everyone at least 3 m (10 ft) away.

2. Use flagging to protect motorists, spectators, and other individuals from fallen or low wires.

3. Call the local area electrical department or electric utility immediately.

4. Place barriers around the area.

5. Do not attempt to move the wire(s).

6. Do not touch anything that is touching the wire(s).

7. Be alert to water or other conductors present.

8. Crews shall have emergency numbers readily available. These numbers shall include local area electrical department, utility, police/fire, and medical assistance.

9. If an individual becomes energized, DO NOT TOUCH the individual or anything in contact with the person. Call for emergency medical assistance and call the local utility immediately. If the individual is no longer in contact with the energized conductors, CPR, rescue breathing, or first aid should be administered immediately, but only by a trained person. It is safe to touch the victim once contact is broken or the source is known to be de-energized.

10. Wires that contact vehicles or equipment will cause arcing, smoke, and possibly fire. Occupants should remain in the cab and wait for the local area electrical department or utility. If it becomes necessary to exit the vehicle, leap with both feet as far away from the vehicle as possible, without touching the equipment. Jumping free of the vehicle is the last resort.

11. If operating the equipment and an overhead wire is contacted, stop the equipment immediately and if safe to do so jump free and clear of the equipment. Maintain your balance, keep your feet together and either shuffle or bunny hop away from the vehicle another 3 m (10 ft) or more. Do not return to the vehicle or allow anyone else for any reason to return to the vehicle until the local utility has removed the powerline from the vehicle and has confirmed that the vehicle is no longer in contact with the overhead lines.
Informative Annex O  Safety-Related Design Requirements

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

O.1 Introduction. This annex addresses the responsibilities of the facility owner or manager, or the employer having responsibility for facility ownership or operations management, to apply electrical hazard analysis during the design of electrical systems and installations.

O.1.1 This annex covers employee safety–related design concepts for electrical equipment and installations in workplaces covered by the scope of this standard. This annex discusses design considerations that have impact on the application of the safety-related work practices only.

O.1.2 This annex does not discuss specific design requirements. The facility owner or manager, or the employer should choose design options that eliminate or reduce exposure risks and enhance the effectiveness of safety-related work practices.

O.2 General Design Considerations.

O.2.1 Employers, facility owners, and managers who have responsibility for facilities and installation having electrical energy as a potential hazard to employees and other personnel should ensure the application of 130.3(B)(1), Electrical Hazard Analysis, during the design of electrical systems and installations.

O.2.2 The application of 130.3(B)(1) should be used to compare design options and choices to facilitate design decisions that serve to eliminate risk, reduce frequency of exposure, reduce magnitude or severity of exposure, enable the ability to achieve an electrically safe work condition, and otherwise serve to enhance the effectiveness of the safety-related work practices contained in this standard.

O.2.3 Arc Energy Reduction. Where a circuit breaker rated for, or can be adjusted to, 1,000 amperes or more is utilized, one of the following or equivalent means have proven to be effective in reducing arc flash energy:

1. Zone-selective interlocking;
2. Differential relaying;
3. Energy-reducing maintenance switching with a local status indicator.

An energy-reducing maintenance switch allows a worker to set a circuit breaker trip unit to operate faster while the worker is working within an arc flash boundary as defined in NFPA 70E, and then to set the circuit breaker back to a normal setting after the potentially hazardous work is complete. [ROP-530]
Informative Annex P  Aligning Implementation of this Standard with Occupational Health and Safety Management Standards [ROP-538]

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

P.1 General. Injuries from electrical energy are a significant cause of occupational fatalities in the workplace in the United States. This Standard specifies requirements unique to the hazards of electrical energy. By itself, however, this Standard does not constitute a comprehensive and effective electrical safety program. The most effective application of the requirements of this Standard can be achieved within the framework of a recognized health and safety management system standard. ANSI/AIHA Z10 provides comprehensive guidance on the elements of an effective health and safety management system, and is one recognized Standard. ANSI/AIHA Z10 is harmonized with other internationally recognized Standards, including CAN/CSA Z1000, ISO 14001, and OSHAS 18001. Some companies and other organizations have proprietary health and safety management systems that are aligned with the key elements of ANSI/AIHA Z10.

The most effective design and implementation of an electrical safety program can be achieved through a joint effort involving electrical subject matter experts and safety professionals knowledgeable about safety management systems.

This collaboration can help ensure that proven safety management principles and practices applicable to any hazard in the workplace are appropriately incorporated into the electrical safety program.

This Annex provides guidance on implementing this Standard within the framework of ANSI/AIHA Z10 and other recognized or proprietary comprehensive occupational health and safety management system Standards.
Informative Annex Q  Electrical Hazard Labels, Arc Flash and Shock Labelling [ROP-537]

This annex is not a part of the requirements of this NFPA document but is included for informational purposes only.

Q.1 General. Arc flash and shock warning labels should meet the applicable production and installation requirements of ANSI Z535.4. Applicable requirements of ANSI Z535.4 are as follows:

(1) Label content: Labels consist of a signal word panel ("DANGER", "WARNING", or "CAUTION") plus a message panel (concise explanation of the hazard). The signal word panel may include a safety alert symbol (triangle and exclamation mark). The label may also include a safety symbol panel (a symbol that effectively communicates the message in the message panel).

(2) Safety alert symbol: If a safety alert symbol is used, it needs to precede the signal word. The base of the symbol needs to be on the same horizontal line as the base of the signal word, and the height of the symbol needs to be equal to or greater than the signal word.

(3) Border: The label can include a contrasting border.

(4) Colors:
   a. Danger labels need to have the word "DANGER" in safety white letters on a safety red background;
   b. Warning labels need to have the word "WARNING" in safety black letters on a safety orange background; and
   c. If a safety alert symbol is used, it needs to be the same color as the signal word lettering and the exclamation mark needs to be the same color as the signal word panel background.

(5) Location: a label must be readily visible to the worker and alert the worker to the potential hazard in time to take appropriate action.

Persons who will be producing and/or installing arc flash and shock warning labels should consult ANSI Z535.4 to ensure that all applicable requirements of ANSI Z535.4 are met.

Q.2 National Electrical Code and Canadian Electrical Code Label Example. The label shown in Figure Q.2 meets the minimum requirements and the intent of Section 110.16 of the National Electrical Code (NEC), NFPA 70 and Rule 2-306 of the Canadian Electrical Code (CEC), Part 1.

The rule was first introduced in the 2002 edition of the National Electrical Code and in the 2006 edition of the Canadian Electrical Code, Part 1. The labeling requirement is not retroactive; it applies to equipment installed or modified after the date the respective Code was adopted by the authority having jurisdiction.

Q.3 NFPA 70E and CSA Z462 Equipment Label Example. NFPA 70E 130.5(C) and CSA Z462 Clause 4.3.3.4 requires that equipment be field marked with a label containing the available incident energy or required level of PPE. CSA Z462 has an additional requirement that the label contain the date of the hazard evaluation.

See Figure Q.3 for an example of a label that meets the requirements of NFPA 70E 130.5(C) and CSA Z462 Clause 4.3.3.4 in addition to the requirements of the National Electrical Code and Canadian Electrical Code.

Q.4 Detailed Electrical Hazard Analysis Label. When incident energy calculations have been completed as part of an arc flash hazard analysis study, a more detailed label can be installed to provide additional information. A typical label consists of four sections (see Figure Q.4):

(1) The first section contains the information from the label required by the National Electrical Code and Canadian Electrical Code

(2) The second section contains information from an arc flash hazard analysis (e.g. Arc Flash Protection Bound-
ary distance, energy levels at the assumed working distance).

(3) The third section contains information from a shock hazard analysis (e.g., voltage, shock protection boundaries and Class of rubber insulating gloves).

(4) The fourth section contains information on the designation of the equipment or protective device, or both. In addition, it can also identify the name of the individual or company that performed the analysis, the engineering calculation method utilized, date of the evaluation, and the power system study file designation.

---

**WARNING**

**Arc Flash and Shock Hazard**

**Appropriate PPE Required**

<table>
<thead>
<tr>
<th>ARC FLASH PROTECTION</th>
<th>SHOCK PROTECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Distance:</td>
<td>Shock Hazard when cover is removed</td>
</tr>
<tr>
<td>Incident Energy:</td>
<td>600VAC</td>
</tr>
<tr>
<td>Arc Flash Prot. Boundary:</td>
<td>Limited Approach</td>
</tr>
<tr>
<td>Refer to NFPA 70E/CSA Z462</td>
<td>42 inch</td>
</tr>
<tr>
<td></td>
<td>Restricted Approach</td>
</tr>
<tr>
<td></td>
<td>12 inch</td>
</tr>
<tr>
<td></td>
<td>Prohibited Approach</td>
</tr>
<tr>
<td></td>
<td>1 inch</td>
</tr>
<tr>
<td></td>
<td>Glove Class:</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

**Equipment Name:** MCC#3

**Arc Flash Analysis by:** XYZ Consulting

**March 26, 2008 Std. IEEE 1584**

**File:** “ABC PLANT Rev X.xyz”

---

Figure Q.4 Example of a Detailed Electrical Hazard Analysis Label.