Enclosed is the agenda package for the November 17-19, 2015 meeting for the NFPA 87 First Draft Meeting. Please ensure that you have reviewed the public input and the other agenda items in advance to prepare for discussion. The agenda and public input will be posted on the document information pages (www.nfpa.org/87).

Some items to have available during the meeting include:

- Agenda package with public input
- A copy of NFPA 87 (visit www.nfpa.org/87tc to download your free committee copy)
- Previous copies of the technical committees standard
- Regulations Governing the Development of NFPA Standards www.nfpa.org/regs

If you have any questions or comments, please feel free to reach me at (617) 984-7434 or by e-mail at enette@nfpa.org. I look forward to our meeting to begin the revision cycle!
Technical Committee on Fluid Heaters
AGENDA

NFPA 87 A2017 First Draft Meeting
November 17-19, 2015
Embassy Suites Orlando/Lake Buena Vista Resort
http://nfpa.adobeconnect.com/nette/
8:00 a.m. to 5:00 p.m. (Eastern Time Zone)

1. Meeting opening, introduction and attendance
3. Chair's remarks, Al Underys
4. Staff Liaison update:
 a. A2017 Schedule (Attachment B. A2017 Revision Cycle)
 b. Committee Membership Update (Attachment C. FLU-AAA Membership)
5. Old/New Business – Order of Consideration/Schedule for Task Group Work and Public Inputs
 a. Public Input for NFPA 87 (Attachment E. NFPA 87 - A2017 Public Input)
 b. Tuesday – November 17
 i. Chapter 4
 ii. Chapter 5
 iii. Lunch - noon
 iv. Chapter 6
 v. Chapter 7
 c. Wednesday – November 18
 i. Chapter 8
 ii. Lunch - noon
 iii. Chapter 8 (cont.)
 iv. Chapter 9
 v. Adjourn for the day when Chapter 9 is complete
 d. Thursday – November 19
 i. Chapter 12
 ii. Chapter 3
 iii. Chapter 1
 iv. Chapter 2
6. Other business
Technical Committee on Fluid Heaters
AGENDA

7. Date/Location of Next Meeting. (Second Draft Meeting between June 1, 2016 and October 31, 2016)
8. Adjournment at Noon (November 19)

Attachments:
A. October 1, 2013 Meeting Minutes
B. A2017 – Revision Cycle
C. FLU-AAA Committee Membership
D. NFPA Process – Quick Reference Guide
E. NFPA 87 - A2017 Public Input
Minutes “Second Draft Meeting”
NFPA 87 Technical Committee on Fluid Heaters
Liberty Mutual Group Training Center – Weston, Massachusetts
01 October 2013

2. **Phone/Web Attendees:** John Kane, Joel Gaither, Charles Macaulay

3. **Chair Introduction:**
 a. On Tuesday morning, Al Underys called the meeting to order.
 b. The Chair thanked Gary Andress of Liberty Mutual for hosting the meeting.
 c. Interim Staff Liaison – Welcome Guy Colonna, Division Manager of Industrial & Chemical Fire Protection Division, replacing Derek Duval
 d. The Chair discussed the milestones on the calendar for the next Edition of the document.
 e. The Chair welcomed the new members of the NFPA 87 Technical Committee
 f. The Chair indicated that the committee follows Roberts Rules of Order, but usually allows for flexibility within those rules.

4. **Staff Liaison Introduction:**
 a. Guy Colonna discussed the working guidelines for NFPA technical committees and how committee members can interact with the NFPA 87 TC website.
 b. The letter ballot will be distributed about 1 month after the 2nd Draft meeting.
 c. The Standards Council introduced a slight alteration to the rules on NITMAMs. NITMAMs must be submitted on Public Comments only.
 i. NITMAMs may not be submitted on Public Inputs, if there was no Public Comments.
 ii. The Standards Council will only “certify” the motion if it is addressed to a Public Comment.
 iii. The submitter must attend the Annual Meeting.
 d. NFPA 87 is in the “Annual 2014” cycle. The next Edition will be 2015, with effective date of May or August 2014.
 i. If no NITMAMs are submitted, the Standards Council will vote on the document in May.
 ii. If amending motions are presented to the General Assembly, the Standards Council vote occurs in August.
 iii. The effective date is 21 days after the issuance date (which is the date that the Standards Council votes on the approval of the document).
 iv. The 21 day period is allotted to allow for an “Appeal” of the Standards Council’s issuance of the document.
e. Current makeup of TC: 3 Insurance, 8 Manufacturer, 8 Special Expert, 5 User (+ 8 alternates) = 24 members total
f. See Calendar posted on website (www.nfpa.org/87) for NFPA imposed deadlines.
g. New terminology (First Draft Meeting, Public Input/Comment, Committee Input/Comment, etc.) – see terms posted on website.
h. The NFPA Code Fund was established by NFPA to sponsor small research projects that relate to the codes and standards.
 i. The goal is to create knowledge that can improve the accuracy and usefulness of the documents.
 ii. Approximately 50 proposals were submitted in 2012.
 iii. About 6 to 10 projects are funded annually from a budget of approximately $200,000.
5. Work Conducted on First Day (Tuesday):
 a. Minutes from First Draft meeting (October 2012) were approved.
 b. The TC voted to task the Chair with submitting a request to the NFPA Standards Council that the 87 document should become a Standard instead of a Recommended Practice.
 i. The TC should be prepared to subject the document to a full review to ensure that all the “shall” and “should” statements have been correctly applied.
 ii. During the next cycle, the TC should attempt to consolidate duplicative information from chapters 9, 10, and 11 and move it to the Introductory Chapters.
 c. Chair Underys suggested that 87 and 86 should not be on the same cycle.
 i. There would be a 2-step process to get exactly 2 years “off-cycle” from NFPA 86.
 ii. First we would enter a 3-year cycle (Annual 2017) for the next edition (2018)
 iii. Next another 3-year cycle (Annual 2020) for the ensuing edition (2021)
 iv. Subsequent cycles move back to a 4 year iteration.
 v. The TC approved the concept of moving to a 3-year cycle for the next Edition (i.e., Annual 2017, with a Public Input closing date of approximately June 2015).
 vi. Chair Underys was tasked with formally requesting this of the Standards Council.
 d. The requests in (b) and (c) above will be reviewed by the Standards Council at its March 2014 meeting.
 e. The Technical Committee resolved 14 Public and Committee Comments, and generated approximately 11 Second Revisions.
6. Chair Closing Statement
 a. Chair will identify Task Groups to work together to modify sections of the 2015 document for conversion from Recommended Practice to Standard.
 i. Staff Liaison will prepare and distribute a Word document with final version of 2015 RP for easier editing.
 b. The Technical Committee expresses its sincere appreciation and gratitude to Liberty Mutual Group, and especially to Gary Andress for his outstanding hospitality over the course of this meeting.
c. A very big thank you to Guy Colonna for his exceptional service to the committee.

d. On Tuesday afternoon, Al Underys thanked the Technical Committee for their hard work and adjourned the meeting.

Respectfully submitted,

Rick Martin
Secretary, NFPA 86 Technical Committee
NFPA 87 Revision Cycle
KEY DATES
Annual 2017

NFPA 2112 A2016 [FLG-AAA]

Important Dates For the Cycle:

Public Input Closing July 6, 2015 (DONE)
Posting of First Draft February 2, 2016
Public Comment Closing May 16, 2016
Posting of Second Draft December 12, 2016
Notice of Intent to Make Motion (NITMAM) February 20, 2017
Issuance of Consent Standard May 12, 2017 (published bit later)
NFPA Annual Meeting with CAMs June 4-7, 2017
Issuance of Standard – with CAMs August 10, 2017 (published bit later)
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Company</th>
<th>Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algirdas Underys</td>
<td>Chair</td>
<td>A. Finkl & Sons Co.</td>
<td>1355 East 93rd Street, Chicago, IL 60619</td>
<td></td>
</tr>
<tr>
<td>Gary S. Andress</td>
<td>Principal</td>
<td>Liberty Mutual Insurance Company</td>
<td>Risk Engineering, 20 Riverside Road, Weston, MA 02493-2231</td>
<td></td>
</tr>
<tr>
<td>Erik W. Christiansen</td>
<td>Principal</td>
<td>Exponent, Inc.</td>
<td>5401 McConnell Avenue, Los Angeles, CA 90066-7027</td>
<td></td>
</tr>
<tr>
<td>John Dauer</td>
<td>Principal</td>
<td>SCC, Inc.</td>
<td>1250 Lunt Avenue, Elk Grove Village, IL 60007-5618</td>
<td></td>
</tr>
<tr>
<td>James G. (Jay) Hudson</td>
<td>Principal</td>
<td>J. G. Hudson & Associates, PC</td>
<td>PO Box 4064, Salisbury, NC 28145</td>
<td></td>
</tr>
<tr>
<td>John F. Kane</td>
<td>Principal</td>
<td>The DuPont Company, Inc.</td>
<td>6324 Fairview Road, Suite 200, Charlotte, NC 28210-3271</td>
<td></td>
</tr>
<tr>
<td>Bruce L. Mickelson</td>
<td>Principal</td>
<td>Honeywell International, Inc.</td>
<td>1985 Douglas Drive North, Mail Station: MN10-181B, Golden Valley, MN 55422</td>
<td></td>
</tr>
<tr>
<td>Richard J. Martin</td>
<td>Secretary</td>
<td>Martin Thermal Engineering, Inc.</td>
<td>PO Box 2234, Hawthorne, CA 90251-2234</td>
<td></td>
</tr>
<tr>
<td>Amy Brown</td>
<td>Principal</td>
<td>FM Global</td>
<td>1151 Boston-Providence Turnpike, PO Box 9102, Norwood, MA 02062-9102</td>
<td></td>
</tr>
<tr>
<td>D. Jason Darrell</td>
<td>Principal</td>
<td>Eclipse, Inc.</td>
<td>1665 Elmwood Road, Rockford, IL 61103</td>
<td></td>
</tr>
<tr>
<td>Joel D. Gaither</td>
<td>Principal</td>
<td>Weyerhaeuser NR Company</td>
<td>33663 Weyerhaeuser Way South, Federal Way, WA 98003</td>
<td></td>
</tr>
<tr>
<td>Ted Jablowski</td>
<td>Principal</td>
<td>Fives North American Combustion, Inc.</td>
<td>287 Boston Post Road, PO Box 160, East Lyme, CT 06333</td>
<td></td>
</tr>
<tr>
<td>Charles S. Macaulay</td>
<td>Principal</td>
<td>Global Risk Consultants Corporation</td>
<td>7531 – 408th Avenue SE, PO Box 812, Snoqualmie, WA 98065</td>
<td></td>
</tr>
<tr>
<td>James Oetinger</td>
<td>Principal</td>
<td>Paratherm</td>
<td>31 Portland Road, West Conshohocken, PA 19086</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Company</td>
<td>Address</td>
<td>Phone</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>John Pendergraft</td>
<td>Principal</td>
<td>Exotherm Corporation</td>
<td>888 Wilcrest Drive</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Houston, TX 77042-1350</td>
<td></td>
</tr>
<tr>
<td>Adriano Santos</td>
<td>Principal</td>
<td>Heatec Inc.</td>
<td>5200 Wilson Road</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chattanooga, TN 37410</td>
<td></td>
</tr>
<tr>
<td>Franklin R. Switzer, Jr.</td>
<td>Principal</td>
<td>S-afe, Inc.</td>
<td>85 Denison Parkway E #201</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Corning, NY 14830-2726</td>
<td></td>
</tr>
<tr>
<td>Demetris T. Venizelos</td>
<td>Principal</td>
<td>Exterran</td>
<td>20602 East 81st Street</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Broken Arrow, OK 74014</td>
<td></td>
</tr>
<tr>
<td>Tom Wechsler</td>
<td>Principal</td>
<td>Wechsler Engineering & Consulting, Inc.</td>
<td>114 New Street, Suite I-1</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decatur, GA 30030</td>
<td></td>
</tr>
<tr>
<td>Kevin J. Carlisle</td>
<td>Alternate</td>
<td>Karl Dungs, Inc.</td>
<td>3890 Pheasant Ridge Drive, NE</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blaine, MN 55449</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principal: John J. Stanley</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amir Jokar</td>
<td>Alternate</td>
<td>Exponent, Inc.</td>
<td>320 Goddard, Suite 200</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Irvine, CA 92618</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principal: Erik W. Christiansen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kevin W. Ray</td>
<td>Principal</td>
<td>Moore Control Systems Inc.</td>
<td>PO Box 677</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Katy, TX 77492</td>
<td></td>
</tr>
<tr>
<td>John J. Stanley</td>
<td>Principal</td>
<td>Karl Dungs, Inc.</td>
<td>3890 Pheasant Ridge Drive NE, Suite 150</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blaine, MN 55449</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternate: Kevin J. Carlisle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francois Tanguay</td>
<td>Principal</td>
<td>Louisiana Pacific Canada Ltd.</td>
<td>426, Victoria, Suite 10</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saint-Lambert, QC J4P 2H9 Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternate: Kerry D. Miller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melissa M. Wadkinson</td>
<td>Principal</td>
<td>Fulton Companies</td>
<td>972 Centerville Road</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PO Box 257</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alternate: Douglas S. Jones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peter J. Willse</td>
<td>Principal</td>
<td>Global Asset Protection Services</td>
<td>100 Constitution Plaza, 12th Floor</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hartford, CT 06103</td>
<td></td>
</tr>
<tr>
<td>Jonathan Chandler</td>
<td>Alternate</td>
<td>Heatec Inc.</td>
<td>5200 Wilson Road</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chattanooga, TN 37410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principal: Adriano Santos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas S. Jones</td>
<td>Alternate</td>
<td>Fulton Thermal Corporation</td>
<td>972 Centerville Road</td>
<td>FLU-AAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pulaski, NY 13142-2595</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principal: Melissa M. Wadkinson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Role</td>
<td>Phone Date</td>
<td>Company Name</td>
<td>Address</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Kerry D. Miller</td>
<td>Alternate</td>
<td>08/09/2012</td>
<td>Louisiana Pacific Building Products, Inc.</td>
<td>414 Union Street, Suite 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nashville, TN 37219-1757</td>
</tr>
<tr>
<td>Ken Nichols</td>
<td>Alternate</td>
<td>08/09/2012</td>
<td>Weyerhaeuser Company</td>
<td>Mailstop WTC 2B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32901 Weyerhaeuser Way South</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Federal Way, WA 98003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Principal: Weyerhaeuser Company</td>
</tr>
<tr>
<td>Eric Nette</td>
<td>Staff Liaison</td>
<td>04/16/2014</td>
<td>National Fire Protection Association</td>
<td>1 Batterymarch Park</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quincy, MA 02169-7471</td>
</tr>
<tr>
<td>Mark F. Mooney</td>
<td>Alternate</td>
<td>08/09/2012</td>
<td>Liberty Mutual Insurance Company</td>
<td>20 Riverside Road, MS: 03BN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weston, MA 02493-2231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cleveland, OH 44105</td>
</tr>
</tbody>
</table>
There are only three actions a TC can take at the First Draft (ROP) meeting:

1. **Resolve a Public Input (no change to the document)**
 - TC must provide a response (Committee Statement/CS) to ALL Public Input (proposal).
 - CS for not doing what is suggested
 - Sample Motion: “I make a motion to resolve PI#_ with the following committee statement__.” Approval by meeting vote (simple majority). Not subject to Ballot.

2. **Create a First Revision (change to the document)**
 - TC must create a First Revision (FR) for each change they wish to make to the document, either using Public Input for the basis of the change or not using a Public Input for the basis. One or more Public Input can be considered for the FR.
 - All Public Input requires a response
 - TC can use a Public Input for basis
 i. Sample Motion: “I make a motion to revise section __ using PI#_ as the basis for change.” Approval by meeting vote (simple majority) and final approval through ballot.
 - TC develops revision without a Public Input for basis
 i. Sample Motion: “I make a motion to revise section __ as follows__.” Approval by meeting vote (simple majority) and final approval through ballot.
 - First Revisions require a committee statement

3. **Create Committee Input**
 - TC may create a Committee Input (CI). This replaces the old system “rejected” Committee Proposals. CIs will get printed in the report but will not be balloted or shown as a change in the draft. CIs are used to solicit public comments and/or as a placeholder for the comment stage.
 i. Sample Motion: “I make a motion to create a CI with a proposed revision to section__ as follows__.” Approval by meeting vote (simple majority). Not subject to ballot.
 - Requires a committee statement to explain the intent of making a CI.
Comparison to Previous Process:

<table>
<thead>
<tr>
<th>PREVIOUS ACTIONS</th>
<th>CURRENT PROCESS ACTIONS</th>
<th>SAMPLE MOTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept or any variation of Accept (APA, APR, APP) on a public proposal</td>
<td>1) Committee generates a First Revision and Substantiation (CS) for change</td>
<td>1) "I make a motion to revise section ___ using PI#__ as the basis for change."</td>
</tr>
<tr>
<td></td>
<td>2) Committee provides response (CS) to each PI that is associated with the revision</td>
<td>2) "I make a motion to resolve PIs#__ through ## with the following statement___"</td>
</tr>
<tr>
<td>Rejected Public Proposal</td>
<td>Committee provides response (CS) to PI</td>
<td>"I make a motion to resolve PI#__ with the following committee statement__."</td>
</tr>
<tr>
<td>Accepted Committee Proposal</td>
<td>Committee generates a First Revision and Substantiation (CS) for change</td>
<td>"I make a motion to revise section ___ as follows___."</td>
</tr>
<tr>
<td></td>
<td>Committee generates a statement for reason for change</td>
<td></td>
</tr>
<tr>
<td>Rejected Committee Proposal</td>
<td>Committee generates a Committee Input (CI) and reason (CS) for proposed change</td>
<td>"I make a motion to create a CI with a proposed revision to section ___ as follows___."</td>
</tr>
<tr>
<td></td>
<td>Committee generates a statement for reason for CI.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1) All meeting actions require a favorable vote of a simple majority of the members present.
2) All First Revisions will be contained in the ballot and will require a 2/3 affirmative vote to confirm the meeting action.
3) Only the First Revisions will be balloted. PIs and CIs will be contained in the report but will not be balloted.
4) Comments may be submitted on all PIs, FRs and CIs
Term Comparison between Current and Old:

<table>
<thead>
<tr>
<th>CURRENT TERM</th>
<th>OLD TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Stage</td>
<td>ROP Stage</td>
</tr>
<tr>
<td>Public Input (PI)</td>
<td>Proposal</td>
</tr>
<tr>
<td>First Draft Meeting</td>
<td>ROP Meeting</td>
</tr>
<tr>
<td>Committee Input</td>
<td>Committee Proposal that Fail</td>
</tr>
<tr>
<td></td>
<td>Ballot</td>
</tr>
<tr>
<td>Committee Statement (CS)</td>
<td>Committee Statement</td>
</tr>
<tr>
<td>First Revision (FR)</td>
<td>Committee Proposal or Accepted</td>
</tr>
<tr>
<td></td>
<td>Public Proposal</td>
</tr>
<tr>
<td>First Draft Report</td>
<td>ROP</td>
</tr>
<tr>
<td>First Draft</td>
<td>ROP Draft</td>
</tr>
<tr>
<td>Comment Stage</td>
<td>ROC Stage</td>
</tr>
<tr>
<td>Public Comment</td>
<td>Public Comment</td>
</tr>
<tr>
<td>Second Draft Meeting</td>
<td>ROC Meeting</td>
</tr>
<tr>
<td>Committee Comment</td>
<td>Committee Comment that Fail</td>
</tr>
<tr>
<td></td>
<td>Ballot</td>
</tr>
<tr>
<td>Committee Action</td>
<td>Committee Action</td>
</tr>
<tr>
<td>Second Revision</td>
<td>Committee Comment or Accepted</td>
</tr>
<tr>
<td></td>
<td>Public Comment</td>
</tr>
<tr>
<td>Second Draft Report</td>
<td>ROC</td>
</tr>
<tr>
<td>Second Draft</td>
<td>ROC Draft</td>
</tr>
</tbody>
</table>

Note: The highlighted terms are the ones that will be most applicable at the First Draft Meeting.
Throughout standard remove references to the following and replace with the following:

1. API # and replace with API STD #.
2. ANSI/ASME and replace with ASME.

Statement of Problem and Substantiation for Public Input

Corresponds with PI-2 and P1-3.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 2-NFPA 87-2015</td>
<td>Referenced current SDO names, addresses, standard names, numbers, and editions.</td>
</tr>
<tr>
<td>[Section No. 2.3]</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 3-NFPA 87-2015</td>
<td>Referenced current SDO names, addresses, standard names, numbers, and editions.</td>
</tr>
<tr>
<td>[Section No. D.1.2]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Aaron Adamczyk
Organization: [Not Specified]
Street Address:
City:
State:
Zip:
Submittal Date: Sun Feb 08 00:30:23 EST 2015
1.1 Scope.

1.1.1 This recommended practice standard covers Type F, Type G, and Type H fluid heaters and related equipment.

1.1.2 Within the scope of this recommended practice standard, a fluid heater is considered to be any thermal fluid heater or process fluid heater with the following features:

(1) Fluid is flowing under pressure.
(2) Fluid is indirectly heated.
(3) Release of energy from combustion of a liquid or gaseous fuel or an electrical source occurs within the unit.

1.1.3 This recommended practice standard does not apply to the following:

(1) Boilers (which are covered by NFPA 85, Boiler and Combustion Systems Hazards Code, or ANSI/ASME CSD-1, Controls and Safety Devices for Automatically Fired Boilers)
(2) Class A, B, C, or Dovens and furnaces (which are covered by NFPA 86, Standard for Ovens and Furnaces)
(3) Fired heaters in petroleum refineries and petrochemical facilities that are designed and installed in accordance with API 560, Fired Heaters for General Refinery Services; API RP 556, Instrumentation and Control Systems for Fired Heaters and Steam Generators; and API RP 2001, Fire Protection in Refineries
(4) Fired heaters commonly called reformer furnaces or cracking furnaces in the petrochemical and chemical industries
(5) Units that heat air for occupiable space or comfort
(6) LP-Gas vaporizers designed and installed in accordance with NFPA 58, Liquefied Petroleum Gas Code
(7) Coal or other solid fuel–firing systems
(8) Listed equipment with a heating system(s) that supplies a total input not exceeding 150,000 Btu/hr (44 kW)

1.1.4 The following types of heaters are covered by this recommended practice standard:

(1) Class F heaters, which have fluid inside the tubes with a relatively constant flow rate
(2) Class G heaters, which have fluid inside the tubes with a modulated flow rate and firing rate
(3) Class H heaters, which have a heat source (combustion or electricity) inside the tubes.

1.2 Purpose. This recommended practice standard provides recommendations requirements for fluid heaters to minimize the fire and explosion hazards that can endanger the fluid heater, the building, or personnel.

1.3 Application.

1.3.1 * This recommended practice standard applies to new installations and to alterations or extensions of existing equipment.

1.3.2 Chapters 1 through 8 apply to equipment described in subsequent chapters except as modified by those chapters.

1.3.3 Chapter 7 applies to all operating fluid heaters.

1.4 Retroactivity. The provisions of this recommended practice standard reflect a consensus of what is necessary to provide an acceptable degree of protection from the hazards addressed in this recommended practice standard at the time the recommended practice standard was issued.

1.4.1 Unless otherwise specified, the provisions of this recommended practice standard do not apply to facilities, equipment, structures, or installations that existed or were approved for construction or installation prior to the effective date of the recommended practice standard. Where specified, the provisions of this recommended practice standard are retroactive.

1.4.2 In those cases where the authority having jurisdiction determines that the existing situation presents an unacceptable degree of risk, the authority having jurisdiction should shall be permitted to apply retroactively any portions of this recommended practice standard deemed appropriate.

1.4.3 The retroactive recommendations requirements of this recommended practice standard should shall be permitted to be modified if their application clearly would be impractical in the judgment of the authority having jurisdiction and only where it is clearly evident that a reasonable degree of safety is provided.

1.5 * Equivalency. Nothing in this recommended practice standard is intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, and safety over those recommended by this recommended practice standard.

1.5.1 Technical documentation should shall be submitted to the authority having jurisdiction to demonstrate equivalency.

1.5.2 The system, method, or device should shall be approved for the intended purpose by the authority having jurisdiction.

1.6 Units and Formulas.

1.6.1 SI Units. Metric units of measurement in this recommended practice standard are in accordance with the modernized metric system known as the International System of Units (SI).

1.6.2 Primary and Equivalent Values. If a value for a measurement as given in this recommended practice standard is followed by an equivalent value in other units, the first stated value is the recommended requirement. A given equivalent value might be approximate.

1.6.3 Conversion Procedure. SI units have been converted by multiplying the quantity by the conversion factor and then rounding the result to the appropriate number of significant digits.
The provisions of this recommended practice reflect a consensus of what is necessary to provide an acceptable degree of protection from the hazards addressed in this recommended practice at the time the recommended practice was issued.

1.4.1 Unless otherwise specified, the provisions of this recommended practice do not apply to facilities, equipment, structures, or installations that existed or were approved for construction or installation prior to the effective date of the recommended practice. Where specified, the provisions of this recommended practice are retroactive.

1.4.2 In those cases where the authority having jurisdiction determines that the existing situation presents an unacceptable degree of risk, the authority having jurisdiction should be permitted to apply retroactively any portions of this recommended practice deemed appropriate.

1.4.3 The retroactive recommendations of this recommended practice should be permitted to be modified if their application clearly would be impractical in the judgment of the authority having jurisdiction and only where it is clearly evident that a reasonable degree of safety is provided.

1.5* Equivalency.

Nothing in this recommended practice is intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, and safety over those recommended by this recommended practice.

1.5.1 Technical documentation should be submitted to the authority having jurisdiction to demonstrate equivalency.

1.5.2 The system, method, or device should be approved for the intended purpose by the authority having jurisdiction.

1.6 Units and Formulas.

1.6.1 SI Units.

Metric units of measurement in this recommended practice are in accordance with the modernized metric system known as the International System of Units (SI).

1.6.2 Primary and Equivalent Values.

If a value for a measurement as given in this recommended practice is followed by an equivalent value in other units, the first stated value is the recommendation. A given equivalent value might be approximate.

1.6.3 Conversion Procedure.

SI units have been converted by multiplying the quantity by the conversion factor and then rounding the result to the appropriate number of significant digits.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch01.docx</td>
<td>REVISE ENTIRE CHAPTER 1 (SEE ATTACHMENT)</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 11-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 12-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 13-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 14-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 15-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 17-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 18-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 19-NFPA 87-2015</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 22-NFPA 87-2015</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2 Referenced Publications

2.1 General. The documents or portions thereof listed in this chapter are referenced within this recommended practice standard and should shall be considered part of the recommendations requirements of this document.

2.2 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

2.3 Other Publications.

2.3.1 API Publications. American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005-4070.

2.3.2 ASME Publications. American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016-5990.

2.3.3 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

2.3.4 IEC Publications. International Electrical Commission, 3 rue de Varembé, P.O. Box 131, CH - 1211, Geneva 20, Switzerland.

2.3.5 UL Publications. Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.

2.4 References for Extracts in Recommended Mandatory Sections.
Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch02.docx</td>
<td>REVISE ENTIRE CHAPTER 2 (SEE ATTACHMENT)</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word "should" has been replaced by "shall" wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td>Should/Shall Replacement</td>
</tr>
</tbody>
</table>

Submitter Information Verification

- **Submitter Full Name**: RICHARD MARTIN
- **Organization**: MARTIN THERMAL ENGINEERING INC
- **Affiliation**: Secretary of NFPA 87 Technical Committee
- **Street Address**
- **City**
- **State**
- **Zip**
- **Submittal Date**: Fri Jul 03 18:28:50 EDT 2015
Public Input No. 2-NFPA 87-2015 [Section No. 2.3]

2.3 Other Publications.
2.3.1 API Publications.
American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005-4070.

2.3.2 ASME Publications.

2.3.3 ASTM Publications.
ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

2.3.4 IEC Publications.
International Electrical Commission, 3 rue de Varembé, P.O. Box 131, CH - 1211, Geneva 20, Switzerland.

2.3.5 UL Publications.
Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.

2.3.6 Other Publications.

Statement of Problem and Substantiation for Public Input

Referenced current SDO names, addresses, standard names, and editions.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 1-NFPA 87-2015 [Global Input]</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 3-NFPA 87-2015 [Section No. D.1.2]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: Aaron Adamczyk
Organization: [Not Specified]
Street Address:
City:
State:
Zip:
Submittal Date: Sun Feb 08 00:32:09 EST 2015
Public Input No. 6-NFPA 87-2015 [Section No. 2.3.5]

<table>
<thead>
<tr>
<th>2.3.5</th>
<th>UL Publications.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The proposed change reflect a revision/update to the reference UL Standard edition.

Submitter Information Verification

<table>
<thead>
<tr>
<th>Submitter Full Name:</th>
<th>RONALD FARR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>UL LLC</td>
</tr>
<tr>
<td>Street Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Zip:</td>
<td></td>
</tr>
<tr>
<td>Submittal Date:</td>
<td>Mon Jun 15 11:05:44 EDT 2015</td>
</tr>
</tbody>
</table>
Chapter 3 Definitions

3.1 General. The definitions contained in this chapter apply to the terms used in this recommended practice/standard. Where terms are not defined in this chapter or within another chapter, they should be defined using their ordinarily accepted meanings within the context in which they are used. *Merriam-Webster’s Collegiate Dictionary*, 11th edition, is the source for the ordinarily accepted meaning.

3.2 NFPA Official Definitions.

3.2.1 *Approved*. Acceptable to the authority having jurisdiction.

3.2.2 *Authority Having Jurisdiction (AHJ)*. An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.

3.2.3 *Labeled*. Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

3.2.4 *Listed*. Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.

3.2.5 Recommended Practice. A document that is similar in content and structure to a code or standard but that contains only nonmandatory provisions using the word “should” to indicate recommendations in the body of the text.

3.2.6 Shall. Indicates a mandatory requirement.

3.2.7 Should. Indicates a recommendation or that which is advised but not required.

3.2.8 Standard. A document, the main text of which contains only mandatory provisions using the word “shall” to indicate requirements and which is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions are not to be considered a part of the requirements of a standard and shall be located in an appendix, annex, footnote, informational note, or other means as permitted in the Manual of Style for NFPA Technical Committee Documents.

3.3 General Definitions.

3.3.1 Automatic Fire Check. A flame arrester equipped with a check valve to shut off the fuel gas supply automatically if a backfire occurs. [86, 2015]

3.3.2 Backfire Arrester. A flame arrester installed in fully pre-mixed air-fuel gas distribution piping to terminate flame propagation therein, shut off fuel supply, and relieve pressure resulting from a backfire. [86, 2015]

3.3.3 Burner. A device or group of devices used for the introduction of fuel and air into a fluid heater at the required velocities, turbulence, and concentration to maintain ignition and combustion of fuel.

3.3.3.1 Dual-Fuel Burner. A burner designed to burn either fuel gas or liquid fuel but not to burn both simultaneously.

3.3.4 *Burner Management System*. The field devices, logic system, and final control elements dedicated to combustion safety and operator assistance in the starting and stopping of fuel preparation and burning equipment and for preventing misoperation of and damage to fuel preparation and burning equipment.

3.3.5 Combustion Air. The air necessary to provide for the complete combustion of fuel and usually consisting of primary air, secondary air, and excess air. [211, 2013]

3.3.6 Combustion Safeguard. A safety control directly responsive to flame properties that senses the presence or absence of flame and de-energizes the fuel safety shutoff valve in the event of flame failure.

3.3.7 Combustion Safety Circuity. That portion of the fluid heater control circuitry that contains the contacts, arranged in series ahead of the safety shutoff valve(s) holding medium, for the recommended required safety interlocks and the excess temperature limit controller(s).

3.3.8 Controller.

3.3.8.1 Programmable Controller. A digital electronic system designed for use in an industrial environment that uses a programmable memory for the internal storage of user-oriented instructions for implementing specific functions to control, through digital or analog inputs and output, various types of machines or processes. [86, 2015]

3.3.8.2 Temperature Controller. A device that measures the temperature and automatically controls the input of heat into the fluid heater.

3.3.9 Emergency Shutoff Valve. A manual shutoff valve to allow the fuel to be turned off in an emergency.

3.3.10 Equipment Isolation Valve. A manual shutoff valve for shutoff of the fuel to each piece of equipment.

3.3.11 Flammable Limit. The range of concentration of a flammable gas in air within which a flame can be propagated, with the lowest flammable concentration known as the lower flammable limit (LFL), and the highest flammable concentration known as the upper flammable limit (UFL).

3.3.12 Fluid Heater.
3.3.12.1 **Class F Fluid Heater.** A heater that has fluid inside the tubes with essentially constant fluid flow rate and where the outlet temperature of the fluid is controlled by modulating the heat input rate to the heater.

3.3.12.2 **Class G Fluid Heater.** A heater that has fluid inside the tubes with modulated fluid flow rate (e.g., by process demand) and where the outlet temperature of the fluid is controlled by modulating the heat input rate to the heater.

3.3.12.3 **Class H Fluid Heater.** A heater that has the heat source (combustion or electricity) inside the tube(s) with fluid surrounding the tube.

3.3.13 **Fuel Gas.** A gas used as a fuel source, including natural gas, manufactured gas, sludge gas, liquefied petroleum gas–air mixtures, liquefied petroleum gas in the vapor phase, and mixtures of these gases. [82, 2012]

3.3.14 **Fuel Oil.** Grades 2, 4, 5, or 6 fuel oils as defined in ASTM D 396, Standard Specifications for Fuel Oils.

3.3.15 **Gas Analyzer.** A device that measures concentrations, directly or indirectly, of some or all components in a gas or mixture. [86, 2015]

3.3.16 **Guarded.** Covered, shielded, fenced, enclosed, or otherwise protected by means of suitable covers, casings, barriers, rails, screens, mats, or platforms to remove the likelihood of approach or contact by persons or objects to a point of danger. [70: Article 100]

3.3.17 **Hardwired.** The method of interconnecting signals or interlocks to a logic system or between logic systems using a dedicated interconnection for each individual signal.

3.3.18 **Interlock.**

3.3.18.1 **Excess Temperature Limit Interlock.** A device designed to cut off the source of heat if the operating temperature exceeds a predetermined temperature set point.

3.3.18.2 **Safety Interlock.** A device required to ensure safe start-up and safe operation and to cause safe equipment shutdown.

3.3.19 **Lower Flammable Limit (LFL).** See 3.3.11, Flammable Limits.

3.3.20 **Manufacturer.** The entity that directs and controls any of the following: product design, product manufacturing, or product quality assurance; or the entity that assumes the liability for the product or provides the warranty for the product.

3.3.21 **Mixer.**

3.3.21.1 **Air–Fuel Gas Mixer.** A mixer that combines air and fuel gas in the proper proportions for combustion. [86, 2015]

3.3.21.2 **Proportional Mixer.** A mixer comprising an inspirator that, when supplied with air, draws all the fuel gas necessary for combustion into the airstream, and a governor, zero regulator, or ratio valve that reduces incoming fuel gas pressure to approximately atmospheric. [86, 2015]

3.3.22 **Mixing Blower.** A motor-driven blower to supply air–fuel gas mixtures for combustion through one or more fuel burners or nozzles on a single-zone industrial heating appliance or on each control zone of a multizone installation. Mixing machines operated at 10 in. w.c. (2.49 kPa) or less static pressure are considered mixing blowers. [86, 2015]

3.3.23 **Mixing Machine.** An externally powered mechanical device that mixes fuel and air and compresses the resultant mixture to a pressure suitable for delivery to its point of use. [86, 2015]

3.3.24 **Operator.** An individual trained and responsible for the start-up, operation, shutdown, and emergency handling of the fluid heater and associated equipment.

3.3.25 **Pilot.** A flame that is used to light the main burner. [86, 2015]

3.3.25.1 **Interrupted Pilot.** A pilot that is ignited and burns during light-off and is automatically shut off at the end of the trial-for-ignition period of the main burner(s). [86, 2015]

3.3.26 **Pressure Regulator.** Equipment placed in a gas line for reducing, controlling, and maintaining the pressure in that portion of the piping system downstream of the [device]. [54, 2015]

3.3.27 **Purge.** The replacement of a flammable, indeterminate, or high-oxygen-bearing atmosphere with another gas that, when complete, results in a nonflammable final state. [86, 2015]

3.3.28 **Resistance Heating System.** A heating system in which heat is produced by current flow through a resistive conductor. [86, 2015]

3.3.29 **Safe-Start Check.** A checking circuit incorporated in a safety-control circuit that prevents light-off if the flame-sensing relay of the combustion safeguard is in the unsafe (flame-present) position due to component failure within the combustion safeguard or due to the presence of actual or simulated flame. [86, 2015]

3.3.30 **Safety Device.** An instrument, a control, or other equipment that acts, or initiates action, to cause the [fluid heater] to revert to a safe condition in the event of equipment failure or other hazardous event. [86, 2015]

3.3.31 **Safety Relay.** A relay listed for safety service. [86, 2015]

3.3.32 **Safety Shutoff Valve.** A normally closed valve installed in the piping that closes automatically to shut off the fuel in the event of abnormal conditions or during shutdown.

3.3.33 **Scf.** One cubic foot of gas at 70°F (21°C) and 14.7 psia (an absolute pressure of 101 kPa). [86, 2015]

3.3.34 **Switch.**

3.3.34.1 **Closed Position Indicator Switch.** A switch that indicates when a valve is within 0.040 in. (1 mm) of its closed position but does not indicate proof of closure. [86, 2015]

3.3.34.2 **Differential Pressure Switch.** A switch that is activated by a differential pressure that is detected by comparing the pressure drop across a flow restriction with a reference pressure.
the pressure at two different points.

3.3.34.3 **Flow Switch.** A switch that is activated by the flow of a fluid in a duct or piping system. [86, 2015]

3.3.34.4 **Pressure Switch.**

3.3.34.4.1 **Atomizing Medium Pressure Switch.** A pressure-activated switch arranged to effect a safety shutdown or to prevent the liquid fuel burner system from being actuated in the event of inadequate atomizing medium pressure.

3.3.34.4.2 **High Fuel Pressure Switch.** A pressure-activated switch arranged to effect a safety shutdown of the burner system in the event of abnormally high fuel pressure. [86, 2015]

3.3.34.4.3 **Low Fuel Pressure Switch.** A pressure-activated switch arranged to effect a safety shutdown of the burner system in the event of abnormally low fuel pressure. [86, 2015]

3.3.34.5* **Proof-of-Closure Switch.** Non-field-adjustable switch installed in a safety shutoff valve by the manufacturer that activates only after the valve is fully closed.

3.3.35 **Tank.**

3.3.35.1 **Expansion Tank.** A reservoir that allows expansion of a liquid to occur as the liquid is heated.

3.3.36 **Trial-for-Ignition Period (Flame-Establishing Period).** The interval of time during light-off that a safety control circuit allows the fuel safety shutoff valve to remain open before the combustion safeguard is required to supervise the flame. [86, 2015]

3.3.37 * **Valve Proving System.** A system used to check the closure of safety shutoff valves by detecting leakage. [86, 2015]

3.3.38 **Vent Limiter.** A fixed orifice that limits the escape of gas from a vented device into the atmosphere. [86, 2015]
3.3.34.1 Atomizing Medium Pressure Switch
A pressure-activated switch arranged to effect a safety shutdown or to prevent the liquid fuel burner system from being actuated in the event of inadequate atomizing medium pressure.

3.3.34.2 High Fuel Pressure Switch
A pressure-activated switch arranged to effect a safety shutdown of the burner system in the event of abnormally high fuel pressure.

3.3.34.3 Low Fuel Pressure Switch
A pressure-activated switch arranged to effect a safety shutdown of the burner system in the event of abnormally low fuel pressure.

3.3.35 Tank

3.3.35.1 Expansion Tank
A reservoir that allows expansion of a liquid to occur as the liquid is heated.

3.3.36 Trial-for-Ignition Period (Flame-Establishing Period)
The interval of time during light-off that a safety control circuit allows the fuel safety shutoff valve to remain open before the combustion safeguard is required to supervise the flame.

3.3.37 Valve Proving System
A system used to check the closure of safety shutoff valves by detecting leakage.

3.3.38 Vent Limiter
A fixed orifice that limits the escape of gas from a vented device into the atmosphere.

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td>Should/Shall</td>
</tr>
</tbody>
</table>

Submitter Information Verification

- **Submitter Full Name:** RICHARD MARTIN
- **Organization:** MARTIN THERMAL ENGINEERING INC
- **Affiliation:** Secretary of NFPA 87 Technical Committee
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Fri Jul 03 18:31:49 EDT 2015
3.3.6 Combustion Safeguard.
A safety control directly responsive to flame properties that senses the presence or absence of flame and de-energizes the fuel safety shutoff valve in the event of flame failure properties using one or more flame detectors and provides safe start-up, safe operation, and safe shutdown of a burner under normal and abnormal conditions.

Statement of Problem and Substantiation for Public Input

Align definition with NFPA 86-2015. Changes are important to other proposed changes to BMS logic.

Submitter Information Verification

Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTION
Street Address:
City:
State:
Zip:
Submittal Date: Mon Jul 06 15:02:30 EDT 2015
Chapter 4 General

4.1 Approvals, Plans, and Specifications.
4.1.1 Before new equipment is installed or existing equipment is remodeled, complete plans, sequence of operations, and specifications should be submitted for approval to the authority having jurisdiction.

4.1.1.1 Plans should be drawn that show all essential details with regard to location, construction, ventilation, piping, and electrical safety equipment. A list of all combustion, control, and safety equipment giving manufacturer, type, and number should be included.

4.1.1.2 * Wiring diagrams and sequence of operations for all safety controls should be provided.

4.1.2 Any deviation from this recommended practice should require special permission from the authority having jurisdiction.

4.1.3 Electrical.
4.1.3.1 * All wiring should be in accordance with NFPA 70, National Electrical Code; NFPA 79, Electrical Standard for Industrial Machinery; and as described hereafter.

4.1.3.2 Where seal leakage or diaphragm failure in a device can result in flammable gas or flammable liquid flow through a conduit or cable to an electrical ignition source, a conduit seal or a cable type that is sealed should be installed.

4.1.3.3 Wiring and equipment installed in hazardous (classified) locations should comply with the applicable requirements of NFPA 70, National Electrical Code.

4.1.3.4 * The installation of a fluid heater in accordance with this recommended practice should not in and of itself require a change to the classification of the fluid heater location.

4.2 Safety Labeling.
4.2.1 A safety design data form or nameplate that states the operating conditions for which the fluid heater was designed, built, altered, or extended should be accessible to the operator.

4.2.2 A warning label stating that the equipment should be operated and maintained according to instructions should be provided.

4.2.3 The warning label should be affixed to the fluid heater or control panel.

4.3 Thermal Fluids and Process Fluids.
4.3.1 Mixtures of thermal or process fluids should not be used unless such mixtures are in accordance with recommendations of the manufacturer of the fluids.

4.3.2 * When a fluid is being changed from one fluid type to another, a study should be performed to determine that all aspects of the system are compatible with the new fluid.
The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td>Should/Shall</td>
</tr>
</tbody>
</table>

Submitter Information Verification

- **Submitter Full Name:** RICHARD MARTIN
- **Organization:** MARTIN THERMAL ENGINEERING INC
- **Affiliation:** Secretary of NFPA 87
- **Submitter Date:** Fri Jul 03 18:34:29 EDT 2015
Chapter 5 Location and Construction

5.1 Location.

5.1.1 General.

5.1.1.1 * Fluid heaters and related equipment shall be located so as to protect personnel and buildings from fire or explosion hazards.

5.1.1.2 Fluid heaters shall be located so as to be protected from damage by external heat, vibration, and mechanical hazards.

5.1.1.3 Fluid heaters shall be located so as to make maximum use of natural ventilation, to minimize restrictions to adequate explosion relief, and to provide sufficient air supply for personnel.

5.1.1.4 * Where fluid heaters are located in basements or enclosed areas, sufficient ventilation shall be supplied so as to provide required combustion air and to prevent the hazardous accumulation of vapors.

5.1.1.5 Fluid heaters designed for use with fuel gas having a specific gravity greater than air shall be located at or above grade and shall be located so as to prevent the escape of the fuel gas from accumulating in basements, pits, or other areas below the fluid heater.

5.1.1.6 Location of the fluid heater, piping, and related equipment shall consider the minimum pumpable viscosity of the fluid.

5.1.2 Structural Members of the Building.

5.1.2.1 Fluid heaters shall be located and erected so that the building structural members are not affected adversely by the maximum anticipated temperatures (see 5.1.4.3) or by the additional loading caused by the fluid heater.

5.1.2.2 Structural building members shall not pass through or be enclosed within a fluid heater.

5.1.3 Location in Regard to Stock, Processes, and Personnel.

5.1.3.1 Fluid heaters shall be located so as to minimize exposure to power equipment, process equipment, and sprinkler risers.

5.1.3.2 Unrelated stock and combustible materials shall be located at a distance from a fluid heater, its heating system, or ductwork so that the combustible materials will not be ignited, with a minimum separation distance of 2.5 ft (0.8 m).

5.1.3.3 Adequate clearance between heat transfer fluid piping and wood or other combustible construction materials shall be provided.

5.1.3.3.1 Minimum 1 in. (25 mm) clearance shall be provided for insulated piping with surface temperature below 200°F (93°C).

5.1.3.3.2 For insulated pipe whose surface temperature exceeds 200°F (93°C), suitable clearance to keep the surface temperature of nearby combustible construction materials below 160°F (71°C) shall be provided.

5.1.3.3.3 Minimum 18 in. (450 mm) clearance for uninsulated piping shall be provided.

5.1.3.4 Fluid heaters shall be located so as to minimize exposure of people to possible injury from fire, explosion, asphyxiation, and hazardous materials and shall not obstruct personnel travel to exits.

5.1.3.5 * Fluid heaters shall be designed or located so as to prevent their becoming an ignition source to nearby flammable vapors, gases, dusts, and mists.

5.1.3.6 Equipment shall be protected from corrosive external processes and environments, including fumes or materials from adjacent processes or equipment that produce corrosive conditions when introduced into the fluid heater environment.

5.1.4 Floors and Clearances.

5.1.4.1 Space shall be provided above and on all sides for inspection, maintenance, and operational purposes.

5.1.4.2 In addition to the recommendation requirement in 5.1.4.1, where applicable, adequate space shall be provided for the installation of extinguishing systems and for the functioning of explosion venting.

5.1.4.3 * Fluid heaters shall be constructed and located to keep temperatures at combustible floors, ceilings, and walls less than 160°F (71°C).

5.1.4.4 Floors in the area of mechanical pumps, liquid fuel burners, or other equipment using oil shall be provided with a noncombustible, nonporous surface to prevent floors from becoming soaked with oil.

5.1.4.5 Means shall be provided to prevent released fluid from flowing into adjacent areas or floors below.

5.1.5 Manifolds and External Piping. Manifolds and external piping shall be located to allow access for removal of tubes.

5.2 Fluid Heater Design.

5.2.1 Fluid heaters and related equipment shall be designed to minimize the fire hazard inherent in equipment operating at elevated temperatures.

5.2.2 Fluid heater components exposed simultaneously to elevated temperatures and air shall be constructed of
5.2.3 * Fluid heater structural members **should** be designed to support the maximum loads of the fluid heater throughout the anticipated range of operating conditions.

5.2.4 * Fluid heaters **should** withstand the strains imposed by expansion and contraction, as well as static and dynamic mechanical loads and seismic, wind, and precipitation loads.

5.2.5 Provision **should** be made for draining the fluid heater for maintenance and emergency conditions.

5.2.6 Fluid heaters and related equipment **should** be designed and located to provide access for recommended inspection and maintenance.

5.2.6.1 * Ladders, walkways, or access facilities **should** be provided so that equipment can be operated or accessed for testing and maintenance.

5.2.6.2 Means **should** be provided for recommended internal inspection by maintenance and other personnel.

5.2.7 Radiation shields, refractory material, and insulation **should** be retained or supported so they do not fall out of place under designed use and maintenance.

5.2.8 External parts of fluid heaters that operate at temperatures in excess of 160°F (71°C) **should** be guarded by location, guard rails, shields, or insulation to prevent accidental contact by personnel.

5.2.8.1 Openings or other parts of the fluid heater from which flames, hot gases, or fluids could be discharged **should** be located or guarded to prevent injury to personnel.

5.2.8.2 Where it is impractical to provide adequate shields or guards **recommended** or **required** by 5.2.8, warning signs or permanent floor markings visible to personnel entering the area **should** be provided.

5.2.9 Observation ports or other visual means for observing the operation of individual burners **should** be provided and **should** be protected from damage by radiant heat.

5.2.10 *Pressure Relief Devices.*

5.2.10.1 Each section of the fluid flow path that can exceed the design pressure **should** be equipped with pressure relief.

5.2.10.2 Pressure relief **should** be provided for fluid piping and tanks that can be isolated.

5.2.10.3 Fluid vented from a pressure relief device **should** be directed to an approved location.

5.2.10.3.1 Vent piping **should** be sized for the anticipated flow of vented fluid, which can be a two-phase mixture. Horizontal piping in the vent line **should** be sloped so that liquid does not accumulate.

5.2.10.3.2 Heat tracing of the vent line **should** be considered for fluids having a minimum pour point above expected ambient temperatures.

5.2.11 The metal frames of fluid heaters **should** be electrically grounded.

5.2.12 Fluid heaters **should** be designed for relatively uniform heat flux to all heat transfer surfaces.

5.2.13 Heater components **should** be designed to allow for thermal expansion.

5.2.14 Refractory and insulation **should** be adequately supported by materials that are fit for the conditions.

5.2.15 Fluid heater tube materials **should** be selected to accommodate the chosen fluid at the desired operating temperature, with sufficient protection against corrosion and erosion.

5.2.16 Heater pressure vessels operating at pressures greater than 15 psi (100 kPa) **should** be stamped as ASME *Boiler and Pressure Vessel Code* Section I or ASME Section VIII Division 1 vessels.

5.2.17 For combustible fluids, seamless tubes and fittings **should** be utilized.

5.2.18 Tubing within the heat transfer area **should** have welded connections. Tubing or piping outside the heat transfer area **should** have either flanged or welded connections. Threaded connections can be used outside the heat transfer area for instrument connections and pressure relief valve corrections of 1¼ in. (32 mm) and smaller diameter only.

5.2.19 Low point drains and high point vents **should** be accessible outside the heater.

5.2.20 The maximum unsupported length of tubes **should** be such that tube stress does not exceed one-half of the stress to produce 1 percent creep in 10,000 hours.

5.2.21 Tube hangers that cannot be easily inspected and replaced **should** be designed such that their stress does not exceed one-half of the stress to produce 1 percent creep in 10,000 hours.

5.2.22 Burners **should** be designed to prevent flame impingement on tubes and tube supports when operating at maximum heat release.

5.2.23 Fluid heaters **should** be designed to accommodate a specific range of fluid volume and mass and **should** not be operated outside those ranges.

5.2.24 Fluid heaters **should** be designed for a specific range of fluid viscosities, densities, and velocities and **should** not be operated outside those ranges.

5.3 *Explosion Mitigation.* Explosion hazards **should** be mitigated through one of the following methods:

1. Containment
2. Explosion relief
5.4.1 *Building Makeup Air.* A quantity of makeup air shall be admitted to fluid heater rooms and buildings to provide the air volume required for fluid heater safety ventilation and combustion air.

5.4.2 Fans and Motors.

5.4.2.1 Electric motors that drive exhaust or recirculating fans shall not be located inside the fluid heater or ductwork.

5.4.2.2 Fluid heater recirculating and exhaust fans shall be designed for the maximum heating system temperature.

5.4.3 Ductwork.

5.4.3.1 Ventilating and exhaust systems, where applicable, shall be installed in accordance with NFPA 31, Standard for the Installation of Oil-Burning Equipment, or NFPA 54, National Fuel Gas Code, unless otherwise noted in this standard.

5.4.3.2 Wherever fluid heater exhaust ducts or stacks pass through combustible walls, floors, or roofs, noncombustible insulation, clearance, or both shall be provided to prevent combustible surface temperatures from exceeding 160°F (71°C).

5.4.3.3 *Where* ducts pass through fire resistance-rated or noncombustible walls, floors, or partitions, the space around the duct shall be sealed with noncombustible material to maintain the fire-resistance rating of the barrier.

5.4.3.4 Ducts shall be constructed entirely of sheet steel or other noncombustible material capable of meeting the intended installation and conditions of service, and the installation shall be protected where subject to physical damage.

5.4.3.5 *No* portions of the building shall be used as an integral part of the duct.

5.4.3.6 *All* ducts shall be made tight throughout and shall have no openings other than those required for the operation and maintenance of the system.

5.4.3.7 *All* ducts shall be braced where required and shall be supported by metal hangers or brackets.

5.4.3.8 Stacks shall be properly braced and shall not be supported with guy wires.

5.4.3.9 Hand holes for inspection or other purposes shall be equipped with tight-fitting doors or covers.

5.4.3.10 Exposed hot fan casings, fluid piping, and hot ducts (temperatures exceeding 160°F (71°C)) shall be guarded by location, guard rails, shields, or insulation to prevent injury to personnel.

5.4.3.11 Exhaust ducts shall not discharge near openings or other air intakes where effluents can be entrained and directed to locations creating a hazard.

5.5 Mountings and Auxiliary Equipment.

5.5.1 Fluid Piping System.

5.5.1.1 Piping and fittings shall be compatible with the fluid being used and with the system operating temperatures and pressures.

5.5.1.2 For fluid piping systems that operate above 15 psig (100 kPa), piping materials shall be in accordance with ANSI/ASME B31.1, Power Piping, or ANSI/ASME B31.3, Process Piping.

5.5.1.3 *In* applications where fluid leakage creates a hazard, all pipe connections shall be welded.

5.5.1.3.1 Flange connections shall be limited to pump, valve, boundary limit, spool, and equipment connections.

5.5.1.3.2 Threaded connections shall be limited to instruments and other miscellaneous connections less than 1 in. (25 mm).

5.5.1.4 Thread sealant shall be compatible with the fluid used and with the maximum operating temperature.

5.5.1.5 Seal and gasket materials shall be compatible with the fluid and with the operating temperature and pressure.

5.5.1.6 The system design shall accommodate the thermal expansion of the pipe.

5.5.1.7 *The* system shall be pneumatically tested with dry air prior to being filled with fluid.

5.5.1.8 Thermal insulation used on pipes and equipment shall be selected for the intended purpose and for compatibility with the fluid.

5.5.1.8.1 Where there is a potential for fluid system leaks, the thermal insulation selected shall be nonabsorbent.

5.5.1.8.2 Flanges, pumps, and equipment requiring routine maintenance shall not be insulated.

5.5.1.8.3 Insulation applied to system piping and equipment shall be applied only after a leakage or pressure test of the plant has been conducted.

5.5.1.8.4 Insulation shall be applied only after a full heating cycle.

5.5.1.9 It is recommended that shielding shall be provided against hot fluid sprays in the event that a gasket or seal fails.

5.5.2 Pipes, valves, and manifolds shall be mounted so as to provide protection against damage by heat,
vibration, and mechanical hazard.

5.5.3 Fluid heater systems shall have provisions such as motion stops, lockout devices, or other safety mechanisms to prevent injury to personnel during maintenance or inspection.

5.5.4 Instrumentation and control equipment shall meet the following criteria:

1. Be located for ease of observation, adjustment, and maintenance
2. Be protected from physical and thermal damage and other hazards

5.6 Heating Elements and Insulation.

5.6.1 Material for electric heating elements shall be suitable for the specified range of design conditions.

5.6.2 Internal electrical insulation material shall be suitable for the specified range of design conditions.

5.7 Heat Baffles and Reflectors.

5.7.1 To prevent fluid heater damage, baffles, reflectors, and internal component supports shall be designed to minimize warpage due to expansion and contraction.

5.7.2 To prevent fluid heater damage, baffles, reflectors, and internal component supports shall be of heat-resistant material that minimizes sag, rupture, or cracking under normal operating limits specified by the manufacturer.

5.7.3 Baffles and reflectors shall be accessible and removable for the purpose of cleaning and repairing.
To prevent fluid heater damage, baffles, reflectors, and internal component supports should be of heat-resistant material that minimizes sag, rupture, or cracking under normal operating limits specified by the manufacturer.

Baffles and reflectors should be accessible and removable for the purpose of cleaning and repairing.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch05.docx</td>
<td>The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

- Public Input No. 10-NFPA 87-2015 [Chapter 1]

Submitter Information Verification

- **Submitter Full Name:** RICHARD MARTIN
- **Organization:** MARTIN THERMAL ENGINEERING INC
- **Affiliation:** Secretary of NFPA 87 Technical Committee
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Fri Jul 03 18:36:03 EDT 2015
Chapter 6 Heating Systems

6.1 General.

6.1.1 For the purposes of this chapter, the term heating system includes the heating source, the associated piping and wiring used to heat the enclosure, and the process fluid therein.

6.1.2 All components of the heating system and control cabinet should be grounded.

6.1.3 Pilot burners should be considered burners, and all provisions of Section 6.2 or Section 6.3 should apply.

6.2 Fuel Gas-Fired Units.

6.2.1 * Scope. Section 6.2 applies to the following:

(1) Fluid heating systems fired with fuel gases such as the following:
 (a) Natural gas
 (b) Mixed gas
 (c) Manufactured gas
 (d) Liquefied petroleum gas (LP-Gas) in the vapor phase
 (e) LP-Gas–air systems
 (2) Gas-burning portions of dual-fuel or combination burners

6.2.2 General. Burners, along with associated mixing, valving, and safety controls and other auxiliary components, should be selected for the intended application, type, and pressure of the fuel gases to be used and temperatures to which they are subjected.

6.2.3 * Combustion Air.

6.2.3.1 The fuel-burning system design should provide a supply of clean combustion air delivered in amounts prescribed by the fluid heater designer or burner manufacturer across the full range of burner operation.

6.2.3.2 Products of combustion should not be mixed with the combustion air supply.

6.2.3.3 The recommendation requirement of 6.2.3.2 should not exclude the use of flue gas recirculation systems specifically designed to accommodate such recirculation.

6.2.3.4 * Where combustion air is provided by a fan or blower, combustion airflow or fan discharge pressure and damper position should be proven and interlocked with the safety shutoff valves so that fuel gas cannot be admitted prior to establishment of combustion air and so that the gas is shut off in the event of combustion air failure.

6.2.3.5 Where a burner register air adjustment is provided, adjustment should include a locking device to prevent an unintentional change in setting.

6.2.4 Fuel Gas Supply Piping.

(1) * An emergency shutoff valve should be provided that meets the following requirements:
 (2) It should be remotely located away from the fluid heater so that fire or explosion at a fluid heater does not prevent access to the valve.
 (3) It should be readily accessible.
 (4) It should have permanently affixed visual indication of the valve position.
 (5) A removable handle should be permitted provided all the following requirements are satisfied:
 (a) The valve position is clearly indicated whether the handle is attached or detached.
 (b) The valve handle is tethered to the gas main no more than 3 ft (1 m) from the valve in a manner that does not cause personnel safety issues and that allows trouble-free reattachment of the handle and operation of the valve without untethering the handle.
 (6) It should be able to be operated from full open to full close and return without the use of tools.

6.2.4.1 Installation of LP-Gas storage and handling systems should comply with NFPA 58, Liquefied Petroleum Gas Code.

6.2.4.2 Piping from the point of delivery to the equipment isolation valve should comply with NFPA 54, National Fuel Gas Code. (See 6.2.5.2.)

6.2.4.3 An equipment isolation valve should be provided.
6.2.5 Equipment Fuel Gas Piping.

6.2.5.1 Equipment Isolation Valves. Equipment isolation valves shall meet the following requirements:

1. They shall be provided for each piece of equipment.
2. They shall have permanently affixed visual indication of the valve position.
3. They shall be quarter-turn valves with stops.
4. Wrenches or handles shall remain affixed to valves and shall be oriented with respect to the valve port to indicate the following:
 a. An open valve when the handle is parallel to the pipe.
 b. A closed valve when the handle is perpendicular to the pipe.
5. They shall be readily accessible.
6. Valves with removable wrenches shall not allow the wrench handle to be installed perpendicular to the fuel gas line when the valve is open.
7. They shall be able to be operated from full open to full close and return without the use of tools.

6.2.5.2 * Fuel gas piping materials shall be in accordance with NFPA 54, National Fuel Gas Code.

6.2.5.3 Fuel gas piping shall be sized to provide flow rates and pressures that maintain a stable flame over the burner operating range.

6.2.6 Control of Contaminants.

6.2.6.1 A sediment trap or other acceptable means of removing contaminants shall be installed downstream of the equipment isolation valve and upstream of all other fuel-gas system components.

6.2.6.2 Sediment traps shall have a vertical leg with a minimum length of three pipe diameters [minimum of 3 in. (80 mm)] of the same size as the supply pipe, as shown in Figure 6.2.6.2.

6.2.6.3 * A gas filter or strainer shall be installed in the fuel gas piping and shall be located downstream of the equipment isolation valve and sediment trap and upstream of all other fuel gas system components.

6.2.7 Pressure Regulators, Pressure Relief Valves, and Pressure Switches.

6.2.7.1 A pressure regulator shall be furnished wherever the plant supply pressure exceeds the burner operating parameters or the design parameters or wherever the plant supply pressure is subject to fluctuations, unless otherwise permitted by 6.2.7.2.

6.2.7.2 An automatic flow control valve is permitted to meet the recommendation requirement of 6.2.7.1, provided that it can compensate for the full range of expected source pressure variations.

6.2.7.3 * Regulators, relief valves, and switches shall be vented to an approved location, and the following criteria also shall be met:

1. Heavier-than-air flammable gases shall be vented outside the building to a location where the gas is diluted below its lower flammable limit (LFL) before coming in contact with sources of ignition or re-entering the building.
2. Vents shall be designed to prevent the entry of water and insects without restricting the flow capacity of the vent.

6.2.7.4 * Fuel gas regulators, ratio regulators, and zero governors are not required to be vented to an approved location in the following situations:

1. Where backloaded from combustion air lines, air-gas mixture lines, or combustion chambers, provided that gas leakage through the backload connection does not create a hazard
2. Where a listed regulator–vent limiter combination is used
3. Where a regulator system is listed for use without vent piping

6.2.7.5 * A pressure switch is not required to be vented if it employs a vent limiter rated for the service intended.

6.2.7.6 Vent lines from multiple fluid heaters shall not be manifolded together.

6.2.7.7 Vent lines from multiple regulators and switches of a single fluid heater, where manifolded together, shall be piped in such a manner that diaphragm rupture of one vent line does not backload the others.

6.2.7.1 Vents from systems operating at different pressure control levels shall not be manifolded together.
6.2.7.2 Vents from systems using different fuel sources shall not be manifolded together.

6.2.7.8 The cross-sectional area of the manifold line shall not be less than the greater of the following:

(1) The cross-sectional area of the largest vent plus 50 percent of the sum of the cross-sectional areas of the additional vent lines

6.2.7.9 The sum of the cross-sectional areas of the two largest vent lines A vent between safety shutoff valves, where installed:

(1) Shall not be combined with other vents
(2) Shall terminate to an approved location
6.6.4.1 The provisions of 6.6.4 should apply to resistance heating systems, including infrared lamps, such as quartz, ceramic, and tubular glass types.

6.6.4.2 Resistance heating systems shall be constructed in accordance with the following:

1. The heater housing should be constructed so as to provide access to heating elements and wiring.

2. Heating elements and insulators should be supported securely or fastened so that they do not become easily dislodged from their intended location.

3. Heating elements that are electrically insulated and that are supported by a metallic frame should have the frame electrically grounded.

4. Open-type resistor heating elements should be supported by electrically insulated hangers and should be secured to prevent the effects of motion induced by thermal stress, which could result in adjacent segments of the elements touching one another, or the effects of touching a grounded surface.

5. External parts of heaters that are energized at voltages that could be hazardous as specified in NFPA 70, National Electrical Code, should be guarded.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch06.docx</td>
<td>The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

<table>
<thead>
<tr>
<th>Submitter Full Name:</th>
<th>RICHARD MARTIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>MARTIN THERMAL ENGINEERING INC</td>
</tr>
<tr>
<td>Affiliation:</td>
<td>Secretary of NFPA 87 Technical Committee</td>
</tr>
<tr>
<td>Street Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Zip:</td>
<td></td>
</tr>
<tr>
<td>Submittal Date:</td>
<td>Fri Jul 03 18:38:39 EDT 2015</td>
</tr>
</tbody>
</table>
Chapter 7 Commissioning, Operations, Maintenance, Inspection, and Testing

7.1 Scope. Chapter 7 applies to safety systems and their application to fluid heaters.

7.2 Commissioning.

7.2.1 * Commissioning is recommended-required for all new installations or for any changes that affect the safety system.

7.2.2 The party responsible shall ensure that all pertinent apparatus is installed and connected in accordance with the system design.

7.2.3 The party responsible shall not release the fluid heater for operation before the installation and checkout of the recommended-required safety systems have been successfully completed.

7.2.4 The party responsible shall ensure that any changes to the original design made during commissioning are reflected in the documentation.

7.2.5 * The party responsible shall ensure that set points of all safety interlocks are documented.

7.2.6 * The party responsible shall perform a test of the fire protection system to verify proper functioning of all interlocks and actuators.

7.2.7 The party responsible shall verify that distribution piping for the extinguishing agent is unobstructed.

7.2.8 * If hazardous conditions could result from the presence of air, water, and other contaminants, they shall be removed from the fluid system prior to charging.

7.2.9 * The fluid shall be added to the heater system according to the heater manufacturer’s instructions.

7.2.10 * Initial preheating and operation of the heater shall be conducted according to the heater manufacturer’s instructions.

7.2.11 Minimum fluid flow shall be established before the burner is operated.

7.2.12 * A confirmed source of combustible gas shall be provided to the inlet to the equipment isolation valve(s) (see 6.2.5.1) each time a combustible gas supply is placed into service or restored to service.

7.3 Training.

7.3.1 * The personnel responsible for operating, maintaining, and supervising the fluid heater shall be thoroughly instructed and trained in their respective job functions under the direction of a qualified person(s).

7.3.2 The personnel responsible for operating, maintaining, and supervising the fluid heater shall be required to demonstrate an understanding of the equipment, its operation, and the practice of safe operating procedures in their respective job functions.

7.3.3 Operating, maintenance, and supervisory personnel shall receive regularly scheduled retraining and testing.

7.3.4 * The training program shall cover start-up, operation, shutdown, maintenance, and emergency procedures in detail.

7.3.5 The training program shall be kept current with changes in equipment and operating procedures, and training materials shall be available for reference.

7.4 Operations.

7.4.1 The fluid heater shall be operated in accordance with the design parameters.

7.4.2 Operating instructions that include all of the following shall be provided by the parties responsible for the system design:

1. Design limits (maximum and minimum) on process parameters such as firing rate, turndown, fluid flow rates, and fluid characteristics
2. Schematic piping and wiring diagrams and instrument configurations
3. Startup procedures
4. Shutdown procedures
5. Emergency procedures occasioned by loss of essential utilities, such as electric power, instrument air, and inert gas
6. Emergency procedures occasioned by process upsets, such as low fluid flow, excess firebox temperature, and indicators of fluid-fed fires
7. Maintenance procedures, including interlock and valve tightness testing

7.4.3 * If the original equipment manufacturer no longer exists, the user shall develop inspection, testing, and maintenance procedures.

7.4.4 The user shall establish plant operating procedures that cover normal and emergency conditions and use of fire protection equipment.

7.4.4.1 Plant operating procedures shall be directly applicable to the equipment involved and shall be consistent with safety requirements and the manufacturer’s recommendations.

7.4.4.2 Plant operating procedures shall be kept current with changes in equipment and processes.
Where different modes of operation are possible, plant operating procedures should be prepared for each operating mode and for switching from one mode to another.

4.5 Personnel should have access to operating instructions at all times.

4.6 Plant operating procedures should prohibit the removal or disabling of safety devices.

4.7 *The system should be operated within the limits specified by the manufacturer of the heat transfer fluid and by the manufacturer of the heater.

5 Inspection, Testing, and Maintenance.

5.1 Safety devices should be maintained in accordance with the manufacturer’s instructions.

5.2 It should be the responsibility of the fluid heater manufacturer to provide instructions for inspection, testing, and maintenance.

5.3 For recirculating fluid systems, the instructions in 7.5.2 should include instructions for inspection, testing, and maintenance of the heat transfer fluid.

5.3.1 If indications of fluid overheating or contamination are observed, an investigation should be performed to evaluate and eliminate the cause of the overheating and contamination. The fluid should be drained from the heater and evaluated.

5.3.2 If there are indications that the material being heated is infiltrating into the fluid loop, an investigation should be performed to identify the internal leakage point.

5.3.3 If the fluid testing results indicate an unacceptable level of degradation or contamination, the fluid should be replaced.

5.4 It should be the responsibility of the user to establish, schedule, and enforce the frequency and extent of the inspection, testing, and maintenance program, as well as the corrective action to be taken.

5.5 *A test of the fire protection system to verify proper functioning of all interlocks and actuators should be performed annually.

5.6 Fluid and fuel leaks should be repaired promptly.

5.7 Fluid spills and releases should be cleaned promptly, and fluid-soaked insulation should be replaced.

5.8 *Pressure relief valves should be tested in accordance with applicable codes and regulations.

5.9 Cleaning of the inside or outside of heater tubes should not adversely affect tube integrity.

5.10 All safety interlocks should be tested for function at least annually.

5.11 *The setpoint of temperature, pressure, or flow devices used as safety interlocks should be verified at least annually.

5.12 Safety device testing should be documented at least annually.

5.13 Explosion relief devices, if installed, should be visually inspected at least annually to ensure that they are unobstructed and properly labeled.

5.14 Pressure relief devices should be tested at least annually to ensure that they are functioning properly.

5.15 *Testing of fuel gas safety shutoff valve seat leakage and valve proving systems should be performed at least annually.

5.16 Manual shutoff valves should be maintained in accordance with the manufacturer’s instructions.

5.17 *Lubricated manual shutoff valves should be lubricated and subsequently leak tested for valve closure at least annually.

5.18 The temperature indication of the excess temperature controller should be verified at least annually as being accurate.

5.19 Wherever any safety interlock is replaced, it should be tested for function.

5.20 Wherever any temperature, pressure, or flow device used as a safety interlock is replaced, the setpoint should be verified.

5.21 An inspection should be completed at least annually to verify that all designed safety interlocks are present and have not been bypassed or rendered ineffective.

5.22* Whenever combustible gas piping is placed into service or removed from service, any release of combustible gas should be vented to an approved location.

6 Record Retention. Records of inspection, testing, and maintenance activities should be retained for a period of 1 year or until the next inspection, testing, or maintenance activity, whichever is longer.

6.1 Procedures. The user’s operational and maintenance program should include procedures that apply to worker safety in accordance with all applicable regulations.
Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch07.docx</td>
<td>REVISE ENTIRE CHAPTER 7 (SEE ATTACHMENT)</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word "should" has been replaced by "shall" wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td>Should/Shall</td>
</tr>
</tbody>
</table>

Submitter Information Verification

- **Submitter Full Name:** RICHARD MARTIN
- **Organization:** MARTIN THERMAL ENGINEERING INC
- **Affiliation:** Secretary of NFPA 87 Technical Committee
- **Street Address:**
- **City:**
- **State:**
- **Zip:**
- **Submittal Date:** Fri Jul 03 18:42:51 EDT 2015
Chapter 8 Heating System Safety Equipment and Application

8.1 Scope.

8.1.1 Chapter 8 applies to safety equipment and its application to the fluid heater heating system.

8.1.2 Section 8.3 shall be applied to all safety controls included in this recommended practice standard.

8.1.3* For the purpose of this chapter, the term heating system includes the heating source, associated piping, wiring, and controls used to heat the fluid heater and the fluid therein.

A.8.1.3 For the protection of personnel and property, consideration shall also be given to the supervision and monitoring of conditions in systems other than the heating system that could cause or that could lead to a potential hazard on any installation.

8.2 General.

8.2.1 The recommendations-requirements of Chapter 8 shall not apply to thermal liquid heaters with fuel input ratings less than 12,500,000 Btu/hr (3.7 MW) that conform with ASME CSD-1, Controls and Safety Devices for Automatically Fired Boilers, or with UL 795, Standard for Commercial-Industrial Gas Heating Equipment.

8.2.2 All safety devices shall meet one of the following criteria:

(1) Be listed for the service intended

(2) Be approved, where listed devices are not available

(3) Be programmable controllers applied in accordance with Section 8.4

8.2.3 Safety devices shall be applied and installed in accordance with this recommended practice standard and the manufacturer’s instructions.

8.2.4 Electric relays shall not be used as substitutes for electrical disconnects, and safety shutoff valves shall not be used as substitutes for manual shutoff valves.

8.2.5 Regularly scheduled inspection, testing, and maintenance of all safety devices shall be performed. (See Section 7.5.)

8.2.6 Safety devices shall be installed, used, and maintained in accordance with the manufacturer’s instructions.

8.2.7 Safety devices shall be located or guarded to protect them from physical damage.

8.2.8 Safety devices shall not be bypassed electrically or mechanically.
8.2.8.1 The recommendation in 8.2.8 shall not prohibit safety device testing and maintenance in accordance with 8.2.5. Where a system includes a “built-in” test mechanism that bypasses any safety device, it shall be interlocked to prevent operation of the system while the device is in the test mode, unless listed for that purpose.

8.2.8.2 The recommendation in 8.2.8 shall not prohibit a time delay applied to the action of a pressure-proving, flow-proving, or proof-of-closure safety switch, where the following conditions exist:

(1) There is an operational need demonstrated for the time delay.

(2) The use of a time delay is approved.

(3) The time delay feature is not adjustable beyond 5 seconds.

(4) A single time delay does not serve more than one pressure-proving or flow-proving safety device.

(5) The time from an abnormal pressure or flow condition until the holding medium is removed from the safety shutoff valves does not exceed 5 seconds

8.2.9* At least one hardwired manual emergency switch shall be provided to initiate a safety shutdown.

A.8.2.9 For some applications, additional manual action might be required to bring the process to a safe condition. The actions resulting from a manual emergency switch action take into account the individual system design and the hazards (e.g., mechanical, combustion system, process fluid, thermal fluid, etc.) associated with changing the existing state to another state and initiates actions to cause the system to revert to a safe condition.

8.2.10 Shutdown of the heating system by any safety feature or safety device shall require manual intervention of an operator for re-establishment of normal operation of the system.

8.2.11 Where transmitters are used in place of switches for safety functions, the following shall apply:

(1) The transmitter shall possess a safety integrity level (SIL) rating of 2.

(2) Transmitter failure shall be detected and initiate a safety shutdown.

(3) The transmitter shall be dedicated to safety service unless listed for simultaneous process and safety service.

8.3* Burner Management System Logic.

A.8.3 Fluid heater controls that meet the performance-based requirements of ANSI/ISA 84.00.01, Application of Safety Instrumented Systems for the Process Industries, or IEC 61511, Functional Safety: Safety Instruments Systems for the Process Industry Sector, can be considered equivalent. The
determination of equivalency involves complete conformance to the safety life cycle, including risk analysis, safety integrity level selection, and safety integrity level verification, which shall be submitted to the authority having jurisdiction.

8.3.1 General.

8.3.1.1 Purge, ignition trials, and other burner safety sequencing shall be performed using either devices listed for such service or programmable controllers used in accordance with 8.4.

8.3.1.2 The activation of any safety interlock recommended in Chapter 8 shall result in a safety shutdown.

8.3.1.3 Safety interlocks shall meet one or more of the following:

(1) Be connected to a combustion safeguard
(2) Be hardwired without relays in series ahead of the controlled device
(3) Be connected to an input of a programmable controller logic system complying with Section 8.4
(4) Be connected to a relay that represents a single safety interlock configured to initiate safety shutdown in the event of power loss
(5) Be connected to a listed safety relay that represents one or more safety interlocks and initiates safety shutdown upon power loss

8.3.1.4* Electrical power for safety control circuits shall be dc or single-phase ac, 250 volt maximum, one-side grounded, with all breaking contacts in the ungrounded, fuse-protected, or circuit breaker-protected line.

A.8.3.1.4 This control circuit and its non-furnace-mounted or furnace-mounted control and safety components shall be housed in a dusttight panel or cabinet, protected by partitions or secondary barriers, or separated by sufficient spacing from electrical controls employed in the higher voltage furnace power system. Related instruments might or might not be installed in the same control cabinet. The door providing access to this control enclosure might include means for mechanical interlock with the main disconnect device required in the furnace power supply circuit.

Temperatures within this control enclosure shall be limited to 125°F (52°C) for suitable operation of plastic components, thermal elements, fuses, and various mechanisms that are employed in the control circuit.

8.4* Programmable Logic Controller Systems.

A.8.4 One PLC approach to combustion interlocks on multi-burner heating systems is as follows:

(1) Interlocks relating to purge are done via the PLC.
(2) Purge timer is implemented in the PLC.

(3) Interlocks relating to combustion air and gas pressure are done via the PLC.

(4) Gas valves for pilot and burner directly connected to combustion safeguard shall conform to the recommendations of 8.7.2.

(5) Operation of pilot and burner gas valves shall be confirmed by the PLC.

(6) A PLC can be set up as intermittent, interrupted, or constant pilot operation. With appropriate flame safeguard, it would be possible to provide an interrupted pilot with one flame sensor and one flame safeguard.

This recommended practice suggests that the signal from the safety device be directly transmitted to the safety PLC input. Once the safety PLC processes the signal, the resulting data can be used for any purpose.

8.4.1 Programmable logic controller (PLC)–based systems listed for combustion safety service shall be used in accordance with the listing requirements and the manufacturer’s instructions.

8.4.2 For PLCs that are not listed for combustion safeguards, the PLC and its associated I/O used to perform safety functions shall be certified to IEC 61508 for use in safety applications with a safety integrity level of 3 or greater.

8.4.4 Software.

8.4.4.1 Safety-related software shall be logically independent from non-safety-related software.

8.4.4.2 Safety-related software shall be password-protected or otherwise locked so that access is limited to the fluid heater manufacturer or the burner management system manufacturer.

8.4.4.3 Software shall be documented as follows:

(1) Labeled to identify elements or groups of elements containing safety software

(2) Labeled to describe the function of each element containing safety software

8.4.4.4 A listing of the programs with documentation shall be available.

8.5.1 Pre-Ignition Purging. Prior to each heating system startup, provision shall be made for the removal of all flammable vapors and gases that have entered the heating chambers during the shutdown period.

8.5.1.1 Mechanical Purging. When a combustion air blower or exhaust blower is provided, a timed pre-ignition purge shall be provided that incorporates all of the following:
(1) At least four system volumes of fresh air or inert gas are introduced during the purging cycle.

(2) The system volume includes the combustion chambers and all other passages that handle the recirculation and exhaust of products of combustion to the stack inlet.

(3) All passages from the air inlet to the heater to the stack inlet shall be purged.

(4) To begin the timed pre-ignition purge interval, all of the following conditions are satisfied:

 (a) The minimum required pre-ignition purge airflow is proved.

 (b) Fluid heaters with total pilot capacity over 400,000 Btu/hr shall have at least one safety shutoff valve required by 8.7.2.2 proved closed between all pilot burners and the fuel supply.

 (c) Fluid heaters with total capacity over 400,000 Btu/hr shall have at least one safety shutoff valve proved closed between all main burners and the fuel supply.

(5) The minimum required pre-ignition purge airflow is proved and maintained throughout the timed pre-ignition purge interval.

(6) Failure to maintain the minimum required pre-ignition purge airflow stops the pre-ignition purge and resets the purge timer.

8.5.1.1.1 Prior to the re-ignition of a burner after a burner shutdown or flame failure, a pre-ignition purge shall be accomplished.

CAUTION: Repeated ignition attempts can result in a combustible concentration greater than 25 percent of the LFL. Liquid fuels can accumulate, causing additional fire hazards.

8.5.1.1.2 Repeating the pre-ignition purge on any fuel-fired system can be omitted where all of the following conditions are satisfied:

(1) Each burner and pilot is supervised by a combustion safe-guard in accordance with Section 8.9.

(2) Each burner system is equipped with safety shutoff valves in accordance with Section 8.7.

(3) At least one burner remains operating in the common combustion chamber of the burner to be re-ignited.

8.5.1.2 Natural Draft Purging. When no combustion air blower or exhaust blower is provided, a natural draft purge is permissible provided all of the following conditions are satisfied:

(1)*A permanently installed, interlocked combustible gas analyzer is provided that samples the firebox atmosphere in a location selected to account for the characteristics of the heater and the fuel(s) used:

(2) Means are provided for proving that inlet air registers and outlet dampers are in the fully open position to admit air.
A.8.5.1.2(1) Sampling in more than one location could be necessary to adequately confirm the absence of combustible vapors or gas in the heating chambers and all the passages that contain the products of combustion.

A.8.5.1.2.1(2) Consideration shall be given to the proximity of operating burners when the common combustion chamber exception to repeating purges is utilized. Accumulation of localized vapors or atmospheres is possible even with an operating burner in a chamber, depending on the size of the chamber, the number of burners, and the proximity of operating burners to the accumulation. In addition to proximity, burner design and exposure of the flame can also impact the ability of the operating burner to mitigate vapor or gaseous accumulations.

8.5.1.2 The purge shall be considered complete when all of the following conditions are satisfied:

(1) The flammable vapor or gas concentration in the combustion chamber is measured to be 25 percent or less of the LFL of the fuel in air.

(2) The inlet air registers and outlet dampers are proved in the fully open position.

8.5.2* Trial-for-Ignition Period.

A.8.5.2 When the purge is complete, there shall be a limit to the time between the completed purge and the trial for ignition. Delay can result in the need for a repurge.

8.5.2.1 The trial-for-ignition period of the pilot burner shall not exceed 15 seconds.

8.5.2.2 The trial-for-ignition period of the main gas burner shall not exceed 15 seconds, unless both of the following conditions are satisfied:

(1) A written request for an extension of trial for ignition is approved by the authority having jurisdiction.

(2) It is determined that 25 percent of the LFL cannot be exceeded in the extended time.

8.5.2.3 The trial-for-ignition period of the main liquid fuel burner shall not exceed 15 seconds.

8.5.2.4 Electrical ignition energy for direct spark ignition systems shall be terminated after the main burner trial-for-ignition period.

8.6 Combustion Air Safety Devices.

8.6.1 Where air from the exhaust or recirculating fans is required for combustion of the fuel, airflow shall be proved prior to an ignition attempt.

8.6.2 Reduction of airflow to a level below the minimum required level shall result in closure of the safety shutoff valves.
8.6.3 Where a combustion air blower is used, the minimum combustion airflow or source pressure needed for burner operation shall be proved prior to each attempt at ignition.

8.6.4 Motor starters on equipment required for combustion of the fuel shall be interlocked into the combustion safety circuitry.

8.6.5* Combustion air minimum pressure or flow shall be interlocked into combustion safety circuitry.

A.8.6.5 Interlocks for combustion air minimum pressure or flow can be provided by any of the following methods:

(1) A low-pressure switch that senses and monitors the combustion air source pressure. In industrial combustion applications with modulating flow control valves downstream of the combustion air blower, it is most common to interlock the constant combustion air source pressure on single-burner and multiburner systems to meet the recommendations requirements of 8.6.3 and 8.6.5. Because the combustion airflow is proved during each purge cycle along with the combustion air source pressure, the most common convention is to prove the combustion air source pressure during burner operation following purge. In a multiburner system, the proof of combustion airflow during purge proves that any manual valves in the combustion air system are in an adequately open position. These manual air valves are provided for maintenance and combustion airflow balancing among burners in a temperature control zone. In combustion air supply systems that use either an inlet damper or a speed control, the combustion air pressure can fall below reliably repeatable levels with listed pressure switch interlocks at low fire. For these systems, the proof of minimum airflow can be a more reliable interlock.

(2) A differential pressure switch that senses the differential pressure across a fixed orifice in the combustion air system.

In combustion air supply systems that use either an inlet damper or a speed control, the combustion air pressure can fall below reliably repeatable levels with listed pressure switch interlocks at low fire. For these systems, the proof of minimum airflow by use of a differential pressure switch across an orifice can be a more reliable interlock.

(3) An airflow switch. In combustion air supply systems that use either an inlet damper or a speed control, the combustion air pressure can fall below reliably repeatable levels with listed pressure switch interlocks at low fire. For these systems, the proof of minimum airflow by use of an airflow switch can be a more reliable interlock.

(4) A pressure switch on the inlet (suction) side of an induced draft (I.D.) fan. For heaters where airflow is induced by an I.D. fan, a pressure switch on the inlet of the I.D. fan can be used to prove that the minimum required suction pressure is available, which along with proof that air and stack dampers are not closed can be used as a minimum air flow interlock.

(5) For combustion systems that use high pressure gas/air to induce (inspirate) air locally at each burner or that use natural draft to induce air into the burners or combustion chamber, proof that air and stack
dampers are not closed/open to at least a minimum position can be used to satisfy the intent of a low air flow interlock. It is not possible to monitor and prove the availability of combustion air for fluid heaters that use natural draft or air in-spiriting burners.

8.6.6* Where it is possible for combustion air pressure to exceed the maximum safe operating pressure, a high pressure switch interlocked into the combustion safety circuitry shall be used.

A.8.6.6 Where compressed air is utilized, the maximum safe operating pressure can be exceeded.

8.7 Safety Shutoff Valves (Fuel Gas or Liquid Fuel).

8.7.1.1 Safety shutoff valves are a key safety control to protect against explosions and fires.

8.7.1.2* Each safety shutoff valve recommended in 8.7.2.1 and 8.7.3.1 shall automatically shut off the fuel to the burner system after interruption of the holding medium (such as electric current or fluid pressure) by any one of the interlocking safety devices, combustion safeguards, or operating controls, unless otherwise permitted by 8.7.1.3.

A.8.7.1.2 See Figure A.8.7.1.2.

FIGURE A.8.7.1.2 Multiple Burner System Using Proof-of-Closure Switches.

8.7.3.1 shall automatically shut off the fuel to the burner system after interruption of the holding medium (such as electric current or fluid pressure) by any one of the interlocking safety devices, combustion safeguards, or operating controls.

8.7.1.3* Safety shutoff valves shall not be used as modulating control valves unless they are designed as both safety shut-off and modulation valves and tested for concurrent use.
A.8.7.1.3 Paragraph 8.7.1.3 addresses conditions under which only one safety shutoff valve is too close to isolate a burner from its fuel gas supply. Figure A.8.7.1.3 provides a summary of 8.7.1.3 in the form of a decision tree. See 8.5.1.1.2 for guidance regarding conditions that are needed to allow that burner to be placed back in service. The requirements of 8.5.1.1.2 might not allow a burner shut off by closing a single safety shutoff valve to be placed back in service without repeating a pre-ignition purge.

The requirements of 8.7.1.3 do not preclude opening of the safety shutoff valve located upstream of the individual burners using single safety shutoff valves during the trial for ignition for the first burner being lighted.

FIGURE A.8.7.1.3 Safety Shutoff Decision Tree.
8.7.1.4 The use of listed safety shutdown valves designed as both a safety shutdown valve and a modulating valve and tested for concurrent use is permitted.

8.7.1.5 Safety shutdown valves shall not be open-close cycled at a rate that exceeds that specified by its manufacturer.

8.7.1.6 Valve components shall be of a material selected for compatibility with the fuel handled and for ambient conditions.

8.7.1.7 Safety shutdown valves in systems containing particulate matter or highly corrosive fuel gas shall be operated at time intervals in accordance with the manufacturer’s instructions in order to maintain the safety shutdown valves in operating condition.

8.7.1.8 Valves shall not be subjected to supply pressures in excess of the manufacturer’s ratings.

8.7.1.9* Valves shall be selected to withstand the maximum anticipated backpressure of the system.

A.8.7.1.9 Backpressure can lift a valve from its seat, permitting combustion gases to enter the fuel system. Examples of situations that create backpressure conditions are leak testing, combustion chamber back pressure, and combustion air pressure during prepurge.

8.7.1.10* If the inlet pressure to a fuel pressure regulator exceeds the pressure rating of any downstream component, overpressure protection shall be provided.

A.8.7.1.10 See A.6.2.7.3.

8.7.1.11 Local visual position indication shall be provided at each safety shutdown valve to burners or pilots in excess of 150,000 Btu/hr (44 kW).

(A) The local visual position indication shall directly indicate the physical position, closed and open, of the valve.

(B) Where lights are used for position indication, the absence of light shall not be used to indicate open or closed position.

(C) Indirect indication of valve position, such as by monitoring operator current voltage or pressure, shall not be permitted.

8.7.2* Fuel Gas Safety Shutoff Valves.

A.8.7.2 See Figure A.8.7.2.
FIGURE A.8.7.2 Typical Piping Arrangement Showing Fuel Gas Safety Shutoff Valves.

8.7.2.1 Each main and pilot fuel gas burner system shall be separately equipped with two safety shutoff valves piped in series.

8.7.2.2* Where the main or pilot fuel gas burner system capacity exceeds 400,000 Btu/hr (117 kW), at least one of the safety shutoff valves between each burner and the fuel supply shall be proved closed and interlocked with the pre-ignition purge interval.

(A) A proved closed condition shall be accomplished by either of the following means:

(1) A proof-of-closure switch incorporated in a listed safety shutoff valve assembly in accordance with the terms of the listing

(2) A valve-proving system

(B) Auxiliary and closed-position indicator switches do not satisfy the proved-closed recommendation requirements of 8.7.2.2(A).

A.8.7.2.2 An additional safety shutoff valve located to be common to the heating system and that is proved closed and inter-locked with the pre-ignition purge circuit can be used to meet the recommendations requirements of 8.7.2.2.
8.7.2.3 Means for testing all fuel gas safety shutoff valves for valve seat leakage shall be installed.

8.7.3 Liquid Fuel Safety Shutoff Valves.

8.7.3.1 At least one liquid fuel safety shutoff valve shall be provided.

8.7.3.2 Two safety shutoff valves shall be used where any one of the following conditions exists:

(1) The pressure is greater than 125 psi (862 kPa).
(2) The liquid fuel pump operates without the main liquid fuel burner firing, regardless of the pressure.
(3) The liquid fuel pump operates during the fuel gas burner operation of combination gas and liquid fuel burners.

8.7.3.3* Where the burner system capacity exceeds 400,000 Btu/hr (117 kW), at least one of the safety shutoff valves between each burner and the fuel supply shall be proved closed and interlocked with the pre-ignition purge interval.

A.8.7.3.3 An additional safety shutoff valve that is located so as to be common to the heating system and that is proved closed and interlocked with the pre-ignition purge circuit can be used to meet the recommendations of 8.7.3.2.

8.8 Fuel Pressure Switches (Gas or Liquid Fuel).

8.8.1 A low fuel pressure switch shall be provided and shall be interlocked into the combustion safety circuitry.

8.8.2 A high fuel pressure switch shall be provided and shall meet the following criteria:

(1) Be interlocked into the combustion safety circuitry
(2) Be located downstream of the final pressure-reducing regulator

8.8.3 Pressure switch settings shall be made in accordance with the operating limits of the burner system.

8.9 Combustion Safeguards (Flame Supervision).

8.9.1 Each burner flame shall have a combustion safeguard that has a maximum flame failure response time of 4 seconds or less and that performs a safe-start check.

8.9.2* Flame Supervision. Each pilot and main burner flame shall be equipped with flame supervision in one of the following ways:

(1) Main and pilot flames supervised with independent flame sensors
(2) Main and interrupted pilot flames supervised with a single flame sensor
(3)*Self-piloted burner supervised with a single flame sensor

A.8.9.2 Ultraviolet detectors can fail in such a manner that the loss of flame is not detected. When these detectors are placed in continuous service, failures can be detected by use of a self-checking ultraviolet detector or by periodic testing of the detector for proper operation.

Flame detectors (scanners) with combustion safeguards that continuously operate beyond the maximum interval recommended-required by the combustion safeguard and flame detector manufacturer’s instructions are not compliant.

A.8.9.2(3) The term self-piloted burner is defined in NFPA 86, Standard for Ovens and Furnaces, 3.3.5.14.

8.10 Liquid Fuel Atomization (Other than Mechanical Atomization).

8.10.1 The pressure of the atomizing medium shall be proved and interlocked into the combustion safety circuitry.

8.10.2 The low pressure switch used to supervise the atomizing medium shall be located downstream from all valves and other obstructions that can shut off flow or cause pressure drop of atomization medium.

8.10.2.1 The low pressure switch used to supervise the atomizing medium shall be permitted to be located upstream of atomizing media balancing orifices and balancing valves provided balancing devices are equipped with a locking device to prevent an unintentional change in the setting.

8.10.3 Where the atomizing medium requires modulation, an additional low atomizing medium pressure switch, located upstream of the modulating valve, shall be provided to meet the recommendations in 8.10.1.

8.11* Liquid Fuel Temperature Limit Devices. Where equipment is used to regulate liquid fuel temperature, liquid fuel temperature limit devices shall be provided and interlocked into the combustion safety circuitry if it is possible for the liquid fuel temperature to rise above or fall below the temperature range required by the burners.

A.8.11 Some liquid fuel can become too viscous for proper atomization at low temperatures. Some liquid fuels can congeal if their temperature falls below their pour point. Some liquid fuels can vaporize at higher temperatures and negatively affect burner stability.

8.12 Multiple Fuel Systems.

8.12.1* Safety equipment in accordance with the provisions of this recommended practice-standard shall be provided for each fuel used.

A.8.12.1 The fact that oil or gas is considered a standby fuel shall not reduce the safety requirements for that fuel.
8.12.2 Where dual-fuel burners, excluding combination burners, are used, positive provision shall be made to prevent the simultaneous introduction of both fuels.

8.13 Air–Fuel Gas Mixing Machines.

8.13.1 Safety shutoff valves shall be installed in the fuel gas supply connection of any mixing machine.

8.13.2 The safety shutoff valves shall be arranged to shut off the fuel gas supply automatically when the mixing machine is not in operation or in the event of an air or fuel gas supply failure.

8.14 Ignition of Main Burners — Fuel Gas or Liquid Fuel. Where a reduced firing rate is required for ignition of the burner, an interlock shall be provided to prove the control valve has moved to the design position prior to each attempt at ignition.

8.15* Stack Excess Temperature Limit Interlock.

A.8.15 The fluid shall be protected with an additional temperature limit interlock to prevent excess fluid temperatures.

8.15.1 A stack excess temperature limit interlock shall be provided and interlocked into the combustion safety circuitry.

8.15.2 The stack excess temperature limit interlock shall operate before the maximum stack temperature, as specified by the fluid heater manufacturer, is exceeded.

8.15.2.1 Operation of the stack excess temperature limit interlock shall cut off the heating system.

8.15.2.2 If the process fluid is combustible, operation of the stack excess temperature limit interlock shall also cut off the process fluid supply.

8.15.3 Operation of the stack excess temperature limit interlock shall require manual reset before restart of the fluid heater or affected zone.

8.15.4* The temperature-sensing element of the stack excess temperature limit interlock shall be selected for the temperature and atmosphere to which they are exposed.

A.8.15.4 Temperature-sensing components, such as thermo-couple and extension wires, that are not rated for the environment are at greater risk of short-circuiting.

8.15.5 The temperature-sensing element of the stack excess temperature limit interlock shall be located where recommended by the fluid heater manufacturer.

8.15.6 The operating temperature controller and its temperature-sensing element shall not be used as the excess temperature limit interlock.

8.16 Fluid Excess Temperature Limit Interlock.
8.16.1 All heaters shall have the fluid excess temperature measurements on the heater outlet.

8.16.1.1 The temperature-sensing device shall be compatible with the fluid being measured and the expected operating temperature and pressure.

8.16.1.2 Temperature-sensing devices shall be located so that they are exposed to the stream and are not in a stagnant location or where they might be insulated by deposits.

8.16.2 The fluid excess temperature set point shall be set no higher than the maximum temperature specified by the fluid manufacturer, the heater design, or downstream process limits, whichever is lowest.

8.16.3 The fluid excess temperature limit interlock shall be provided and interlocked into the combustion safety circuitry.

8.16.4 Operation of the fluid excess temperature limit interlock shall require manual reset before restart of the fluid heater or affected zone.

8.16.5 Open-circuit failure of the temperature-sensing components of the fluid excess temperature limit interlock shall cause the same response as does an excess temperature condition.

8.16.6 Fluid excess temperature interlocks shall be equipped with temperature indication.

8.16.7 The fluid excess temperature limit interlock shall indicate its set point in temperature units that are consistent with the primary temperature-indicating controller.

8.16.8 The temperature-sensing element of the fluid excess temperature limit interlock can be monitored by other instrumentation, provided that the accuracy of the fluid excess temperature limit interlock temperature reading is not diminished.

8.16.9 The operating temperature controller and its temperature-sensing element shall not be used as the fluid excess temperature limit interlock.

8.17 Electrical Heating Systems.

8.17.1 Heating Equipment Controls.

8.17.1.1* Electric heating equipment shall be equipped with a main disconnect device or with multiple devices to provide backup circuit protection to equipment and to persons servicing the equipment.

A.8.17.1.1 Abnormal conditions that could occur and require automatic or manual de-energization of affected circuits are as follows:

(1) A system fault (short circuit) not cleared by normally provided branch-circuit protection (see NFPA 70, National Electrical Code)
(2) The occurrence of excess temperature in a portion of the furnace that has not been abated by normal temperature-controlling devices

(3) A failure of any normal operating controls where such failure can contribute to unsafe conditions

(4) A loss of electric power that can contribute to unsafe conditions

8.17.1.2 The disconnecting device(s) recommended required by 8.17.1.1 shall be capable of interrupting maximum available fault current as well as rated load current.

8.17.1.3 Shutdown of the heating power source shall not affect the operation of equipment such as pumps, ventilation or recirculation fans, cooling components, and other auxiliary equipment, unless specifically designed to do so.

8.17.1.4 Resistance heaters larger than 48 amperes shall not be required to be subdivided into circuits of 48 amperes or less.

8.17.1.5* The capacity of all electrical devices used to control energy for the heating load shall be selected on the basis of continuous duty load ratings where fully equipped for the location and type of service proposed.

A.8.17.1.5 The permitted use in 8.17.1.5 could necessitate the derating of some components listed by manufacturers for other types of industrial service and motor control and as shown in Table A.8.17.1.5.

Table A.8.17.1.5 Heater Ratings

<table>
<thead>
<tr>
<th>Control Device</th>
<th>Rating (% actual load)</th>
<th>Permissible Current (% rating)</th>
<th>Rating (% actual load)</th>
<th>Permissible Current (% rating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusible safety switch (% rating of fuse employed)</td>
<td>125</td>
<td>80</td>
<td>135</td>
<td>75</td>
</tr>
<tr>
<td>Individually enclosed circuit breaker</td>
<td>125</td>
<td>80</td>
<td>125</td>
<td>80</td>
</tr>
<tr>
<td>Circuit breakers in enclosed panelboards</td>
<td>135</td>
<td>75</td>
<td>135</td>
<td>75</td>
</tr>
<tr>
<td>Magnetic contactors</td>
<td>9-30 amperes</td>
<td>111</td>
<td>90</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>30-100 amperes</td>
<td>111</td>
<td>90</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>150-600 amperes</td>
<td>111</td>
<td>90</td>
<td>125</td>
</tr>
</tbody>
</table>

Note: This table applies to maximum load or open ratings for safety switches, circuit breakers, and industrial controls approved under current National Electrical Manufacturers Association (NEMA) standards.

8.17.1.6 All controls using thermal protection or trip mechanisms shall be located or protected to preclude faulty operation due to ambient temperatures.

8.17.2* Heating Element Excess Temperature Limit Interlock.

A.8.17.2 The excess temperature set point shall be set no higher than the maximum element temperature specified by the element manufacturer. The fluid shall be protected with an additional temperature limit controller to prevent excess fluid temperatures.
8.17.2.1 An excess temperature limit interlock shall be provided and interlocked into the heating element circuitry, unless it can be demonstrated that the maximum temperature limit specified by the element manufacturer cannot be exceeded.

8.17.2.2 Operation of the excess limit interlock shall shut off the heating system before the heating element’s maximum temperature, as specified by the element manufacturer, is exceeded.

8.17.2.3 Operation of the excess temperature limit interlock shall require manual reset before restart of the fluid heater or affected zone.

8.17.2.4 Open-circuit failure of the temperature-sensing components of the excess temperature limit interlock shall cause the same response as an excess temperature condition.

8.17.2.5* The temperature-sensing components of the excess temperature limit interlock shall be rated for the temperature and environment to which they are exposed.

A.8.17.2.5 Temperature-sensing components, such as thermocouple and extension wires, that are not rated for the environment are at greater risk of short-circuiting.

8.17.2.6* The temperature-sensing element of the heating element excess temperature limit interlock shall be located where recommended by the heating element manufacturer.

A.8.17.2.6 The sensing element shall be positioned where the difference between the temperature control sensor and the excess temperature limit sensor is minimized. The temperature-sensing element of the excess temperature limit interlock shall be located where it will sense the excess temperature condition that will cause the first damage to the heating element.
Electric heating equipment should be equipped with a main disconnect device or with multiple devices to provide backup circuit protection to equipment and to persons servicing the equipment.

The disconnecting device(s) recommended by 8.17.1.1 should be capable of interrupting maximum available fault current as well as rated load current.

Shutdown of the heating power source should not affect the operation of equipment such as pumps, ventilation or recirculation fans, cooling components, and other auxiliary equipment, unless specifically designed to do so.

Resistance heaters larger than 48 amperes should not be required to be subdivided into circuits of 48 amperes or less.

The capacity of all electrical devices used to control energy for the heating load should be selected on the basis of continuous duty load ratings where fully equipped for the location and type of service proposed.

All controls using thermal protection or trip mechanisms should be located or protected to preclude faulty operation due to ambient temperatures.

Heating Element Excess Temperature Limit Interlock.

An excess temperature limit interlock should be provided and interlocked into the heating element circuitry, unless it can be demonstrated that the maximum temperature limit specified by the element manufacturer cannot be exceeded.

Operation of the excess limit interlock should shut off the heating system before the heating element’s maximum temperature, as specified by the element manufacturer, is exceeded.

Operation of the excess temperature limit interlock should require manual reset before restart of the fluid heater or affected zone.

Open-circuit failure of the temperature-sensing components of the excess temperature limit interlock should cause the same response as an excess temperature condition.

The temperature-sensing components of the excess temperature limit interlock should be rated for the temperature and environment to which they are exposed.

The temperature-sensing element of the heating element excess temperature limit interlock should be located where recommended by the heating element manufacturer.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch08.docx</td>
<td>REVISE ENTIRE CHAPTER 8 (SEE ATTACHMENT)</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word “should” has been replaced by “shall” wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td>Should/Shall</td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: RICHARD MARTIN
8.2.11
Where transmitters are used in place of switches for safety functions, the following should apply:

(1) The transmitter should possess a safety integrity level (SIL) rating of 2 capable.
(2) Transmitter failure should be detected and initiate a safety shutdown.
(3) The transmitter should be dedicated to safety service unless listed for simultaneous process and safety service.

Statement of Problem and Substantiation for Public Input
Align with NFPA 86-2015 and other related BMS changes.

Submitter Information Verification
Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTIO
Street Address:
City:
State:
Zip:
Submittal Date: Mon Jul 06 15:12:39 EDT 2015
8.3.1.3 Safety interlocks should meet one or more of the following:

1. Be connected to a combustion safeguard
2. Be hardwired without relays in series ahead of the controlled device
3. Be connected to an input of a programmable controller logic system complying with Section 8.4
4. Be connected to a relay that represents a single safety interlock configured to initiate safety shutdown in the event of power loss
5. Be connected to a listed safety relay that represents one or more safety interlocks and initiates safety shutdown upon power loss

Statement of Problem and Substantiation for Public Input

Aligns with NFPA 86-2-15 and other suggested changes to PLC based BMS requirements.

Submitter Information Verification

Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTIO
Street Address:
City:
State:
Zip:
Submittal Date: Mon Jul 06 15:10:43 EDT 2015
8.4.2 **For Where PLCs that are not listed for combustion safeguards safety service or as combustion safeguard, the PLC and its associated input and output (I/O) used to perform safety functions should be:**

1. Third-party certified to IEC 61508, for use in safety applications with a safety integrity level of 3 or greater. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems, safety integrity level (SIL) 2 or greater.

2. Applied to achieve at least an SIL 2 capability per the manufacturer’s safety manual.

A.8.4.2 Compliance with the manufacturer’s safety manual would achieve actions such as, but not limited to, the PLC detecting the following:

1. Failure to execute any program or task containing safety logic
2. Failure to communicate with any safety I/O
3. Changes in software set points of safety functions
4. Failure of outputs related to safety functions
5. Failure of timing related to safety functions

An SIL 3–capable PLC includes third-party certification, the actions above, and partitioning to separate safety logic from process logic.

The requirements for SIL capability in 8.4.2 pertain only to the PLC and its I/O and not to the implementation of the burner management system. The purpose of the SIL capability requirement is to provide control reliability.

Statement of Problem and Substantiation for Public Input

Align with NFPA 86-2015 and related suggested BMS changes.

Submitter Information Verification

Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTION
Street Address:
City:
State:
Zip:
Submittal Date: Mon Jul 06 15:15:18 EDT 2015
Public Input No. 33-NFPA 87-2015 [Section No. 8.4.3(B)]

(B)
All changes to hardware or software should be documented and maintained in a file that is separate from the fluid heater PLC.

Statement of Problem and Substantiation for Public Input

The use of "fluid heater" is not consistent with other PLC statements.

Submitter Information Verification

Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTION
Street Address:
City:
State:
Zip:
Submittal Date: Mon Jul 06 15:28:19 EDT 2015
Public Input No. 31-NFPA 87-2015 [New Section after 8.4.4]

TITLE OF NEW CONTENT
Access to the PLC and its logic shall be restricted to authorized personnel.

Statement of Problem and Substantiation for Public Input
Align with NFPA 86-2015 and related suggested changes to BMS requirements.

Submitter Information Verification

Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTION
Street Address:
City:
State:
Zip:
Submittal Date: Mon Jul 06 15:21:11 EDT 2015
8.4.X Any PLC shall be permitted to perform purge timing.

8.4.Y Safety PLCs.

(A) Where used for combustion safety service, safety PLCs shall have the following characteristics:

(1) The processor and the I/O shall be listed for control reliable service with an SIL rating of at least 2.

(2) Access to safety functions shall be separate from access to nonsafety functions.

(3) Access to PLC logic dedicated to safety functions shall be restricted to prevent unauthorized changes.

(4) All safety function sensors and final elements shall be independent of operating sensors and final elements.

(B) Safety PLCs shall not implement the following:

(1) Manual emergency switches

(2) Continuous vapor concentration high-limit controllers

A.8.4.Y The burner management system logic, memory, and I/O should be characterized by the following:

(1) Independent from nonsafety logic and memory

(2) Protected from alteration by non–BMS logic or memory access

(3) Protected from alteration by unauthorized users

Statement of Problem and Substantiation for Public Input

Align with NFPA 86-2015 and related suggested changes to BMS requirements.

Submitter Information Verification

Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTIO
Street Address: City: State: Zip:
Submittal Date: Mon Jul 06 15:23:40 EDT 2015
8.5.1.1.2
Repeating the pre-ignition purge on any fuel-fired system can be omitted where all of the following conditions are satisfied:

1. Each burner and pilot is supervised by a combustion safeguard in accordance with Section 8.9.

2. Each burner system is equipped with safety shutoff valves in accordance with Section 8.7.

3. At least one burner remains operating in the common combustion chamber of the burner to be re-ignited and the burner remaining in operation shall provide ignition without explosion of any unintended release of fuel through the other burners not in operation.

4. All of the following conditions are satisfied (does not apply to fuel oil systems):
 a. The number of safety shutoff valves required to close in 8.7 will close between the burner system and the fuel gas supply when that burner system is off.
 b. Safety shutoff valve seat leak testing is performed on at least a semiannual basis.
 c. The burner system uses natural gas, butane, or propane fuel gas.
 d. It can be demonstrated based on the leakage rate, that the combustible concentration in the heating chamber and all other passages that handle the recirculation and exhaust of products of combustion cannot exceed 25 percent of the LFL.
 e. The minimum airflow used in the LFL calculation in 8.5.1.1.2 (4)(d) is proved and maintained during the period the burner(s) are off.

Add new Annex for 8.5.1.1.2 (4) directly from NFPA 86-2015 A.8.5.1.8 (4).

Statement of Problem and Substantiation for Public Input

Align with NFPA 86-2015.

Submitter Information Verification

Submitter Full Name: TED JABLKOWSKI
Organization: FIVES NORTH AMERICAN COMBUSTIO
Street Address:
City:
State:
Zip:
Submittal Date: Mon Jul 06 15:30:38 EDT 2015
8.7.1.3*

Safety shutoff valves should not be used as modulating control valves unless they are designed as both safety shutoff and modulation valves and tested for concurrent use.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_8.7.1.3_InputTedJ_.docx</td>
<td>Input for 8.7.1.3 proposed by Intro Chapters Task Group Chair</td>
</tr>
<tr>
<td></td>
<td>Ted Jablowski</td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

This is a placeholder for the technical committee to be sure to address the subject of purge following a single burner shutdown in a multiple-burner fluid heater and to ensure the requirements are clear and improve safety.

Submitter Information Verification

Submitter Full Name: RICHARD MARTIN
Organization: MARTIN THERMAL ENGINEERING INC
Affiliation: Secretary of NFPA 87 Technical Committee
Street Address:
City:
State:
Zip:
Submittal Date: Fri Jul 03 19:53:13 EDT 2015
Flame-sense shall only use rectification property of the flame

Some manufacturers of combustion safeguards (BMS controllers) used in NFPA-87 equipment have ionization flame-sense circuits utilizing simple ohmic resistance.

These circuits are fooled by flame-rod leakage current or a short to ground, and then report a false-positive flame present.

The leakage current is caused by contamination, soot, glycol etc. on the flame-rod insulator or moisture in the wiring, melted connections etc. expected in normal use.

NFPA-87 3.3.24 Safe-Start Check covers any problem only on start-up, but in use, the failure can also happen when the burner is running.

Situation is flame-out occurs but the main valve remains ON, as the flame-sense circuit incorrectly reports flame present due to contamination.

Please consider adding a clause to 8.9 like ANSI Z21.20/CSA C22.2 No. 199:

11.101.2 "Flame detector devices using ionization sensors (flame rods) shall only make use of the rectification property of the flame."

This means using AC excitation to sense flame, rather than DC. DC flame detection is unsafe.

Statement of Problem and Substantiation for Public Input

Unsafe condition due to false (positive) flame-sense, which is seen in the design of at least 3 combustion safeguard products on the market today.
Normal burner operation can result in a contaminated flame-rod, and then a false positive flame sense.

Submitter Information Verification

Submitter Full Name: KEN SIDHU
Organization: TITAN LOGIX CORP.
Street Address:
City:
State:
Zip:
Submittal Date: Tue May 05 14:59:48 EDT 2015
Chapter 9 **Class F Heaters**

9.1* General.

9.1.1

Class F heaters *should* be designed to ensure that the required minimum fluid flow is achieved through all tube passes.

9.1.1.1

Quiescent bath fire tube heaters are not covered by this standard.

9.1.2*

The maximum allowable bulk fluid temperature *should* be determined based on the maximum allowable fluid film temperature and the maximum allowable material temperature.

A.9.1.2

If other gases or hydrocarbons are being heated care should be taken to avoid excessive film temperatures and/or coking.

9.1.3*

The heater manufacturer *should* determine the minimum flow rate, taking into consideration the maximum allowable bulk and film fluid temperature at the design flow rate and all heat input rates.

9.1.4 Flow

9.1.4.1

Where backflow into the heater presents a hazard, a means to prevent backflow *should* be provided.

9.1.4.2

Means of limiting the firing rate in accordance with the actual flow shall be provided so that maximum fluid film temperature and maximum material temperature is not exceeded.

9.1.4.3*

When multiple parallel tube passes are used, balanced flow distribution between passes shall be ensured, such that each parallel pass maintains the minimum design flow rate, so that maximum fluid film temperatures and maximum allowable material temperatures are not exceeded.

A.9.1.4.3

Balanced flow is typically achieved by the piping geometry/symmetry between passes, balancing trim valves, or fixed flow restrictions. If fluid flow rates fall below the designed minimum flow rate, fluid overheating and subsequent degradation can occur. If balancing trim valves are used, the flow through each pass should be monitored and interlocked into the combustion safety circuitry. Manual
balancing trim valves should also have provisions to lock the valve to prevent inadvertent adjustment of the valve.

9.1.5*

The installation of a pressure relief device, of appropriate pressure and flow rating, should be installed to protect the coil if the fluid can be trapped in the heated zone.

A.9.1.5

The fluid heating vessel, be it a coil or other design, is often designed to the ASME Boiler & Pressure Vessel Code (BPVC), Section I, or Section VIII, Div. 1. In such case the BPVC provides the necessary requirements and guidance for the installation and sizing of relief devices. Additional guidance may be found in API 520 and API 521.

9.1.5.1

Discharge from relief valves should be handled in accordance with 9.2.2.

9.1.5.2

Vent lines should be sized designed to handle effluent flow in accordance with recognized and generally accepted good engineering practice, 150 percent of the maximum anticipated flow.

9.1.6*

The fluid system should be designed to maintain at least the minimum required fluid flow required to prevent high metal temperatures or high fluid film temperatures in the heat transfer coil, as determined in 9.1.3, through the heater under all operating conditions.

9.1.7

An expansion tank should be provided for all closed-loop liquid circuits.

9.1.8

A hard-wired manual emergency switch at a remote location should be provided to initiate a safety shutdown of the entire fluid heater system.

9.1.9

A means of sampling for fluid contamination or degradation should be provided from the active loop.

9.2 Auxiliary Equipment.

9.2.1 Pumps.

9.2.1.1*

Pumps that are specifically designed for fluid heater hot fluid service should be used.

9.2.1.2*

The pumps should be designed to be compatible with the fluid used as well as the operating fluid system pressures and temperatures.

9.2.1.3
The system **should-shall** be designed such that there is sufficient net positive suction head available for the pump.

9.2.1.4

Positive displacement pumping systems **should-shall** incorporate means of pressure relief.

9.2.1.5*

If water-cooled pumps are used, a means of verifying cooling water flow **should-shall** be provided.

9.2.1.6*

Cold alignment of air- and water-cooled pumps **should-shall** be done in accordance with the pump manufacturer’s recommendations prior to the pump being started.

9.2.1.7*

Hot alignment of air- and water-cooled pumps **should-shall** be done within the first 24 hours after operating temperature has been reached, **according to the pump manufacturer’s instructions.**

9.2.1.8

Cold and hot alignment **should-shall** be performed during commissioning and following pump maintenance.

9.2.1.9*

Means **should be provided** to protect pumps from debris **shall be provided**, if required for the safe operation of the fluid heater.

9.2.2* Effluent Handling.

All effluent from relief valves, vents, and drains **should-shall** be directed to an approved location.

9.2.2.1 Gaseous Effluent.

9.2.2.1.1

Gaseous effluents that are asphyxiants, toxic, or corrosive are outside the scope of this **recommended practice standard**, and other standards **should-shall** be consulted for appropriate venting.

9.2.2.1.2

Flammable gases and oxidizers **should-shall** be vented to an approved location to prevent fire or explosion hazards.

9.2.2.1.3

When gaseous effluents are vented, the vent **pipe-piping should-shall** be located designed in accordance with **recognized and generally accepted good engineering practices** the following:

(1) Gaseous effluents should not impinge on equipment, support, building, windows, or materials because the gas could ignite and create a fire hazard.

(2) Gaseous effluents should not impinge on personnel at work in the area or in the vicinity of the exit of the vent pipe because the gas could ignite and create a fire hazard.
Gaseous effluents should not be vented in the vicinity of air intakes, compressor inlets, or other devices that utilize ambient air.

9.2.2.1.4

The vent exit should be designed in accordance with the following:

1. The pipe exit should not be subject to physical damage or foreign matter that could block the exit.
2. The vent pipe should be sized to minimize the pressure drop associated with length, fitting, and elbows at the maximum vent flow rate.
3. The vent piping should not have any shutoff valves in the line.

9.2.2.1.5

If the gas is to be vented inside the building, the following additional guidance is offered:

1. If the gaseous effluents are flammable and lighter than air, the flammable gases should be vented to a location where the gas is diluted below its LFL before coming in contact with sources of ignition.
2. The gaseous effluents should not re-enter the work area without extreme dilution.

9.2.2.2 Liquid Phase Effluent.

9.2.2.2.1

Liquid phase effluent should be directed to an approved location.

9.2.2.2.2

The effluent containment vessel should have a vent to atmosphere, with the vent outlet directed at an approved location.

9.2.2.2.3

If the containment vessel vent has the potential to vent gaseous effluents, the requirements of 9.2.2.1 should apply.

9.2.2.2.4

The vent from the effluent containment vessel should be designed in accordance with recognized and generally accepted good engineering practices, adequately sized to handle 150 percent of the maximum anticipated flow.

9.2.2.2.5

The effluent containment vessel's inlets should be located to prevent siphoning of the contents back into the system.

9.2.2.2.6

Means for indicating liquid level should be provided on the effluent containment vessel.
The effluent containment vessel shall be designed for the intended service.

9.2.3 Valves.

9.2.3.1 Valves shall be compatible with the fluid being used and the system operating design temperatures and pressures.

9.2.3.2 Valves shall be selected for the intended application.

9.2.4 Expansion Tanks.

9.2.4.1 The expansion tank shall be connected to the fluid system piping upstream of the fluid pump. A.9.2.4.1

Where possible, the expansion tank should be located at the high point of the system. If this is not possible, inert gas pressure can be applied to the tank vapor space to provide sufficient pressure to keep all parts of the system filled with fluid. If inert gas pressure is used, the system may have both a pressure control regulator (or control valve) and a back pressure regulator (or control valve). The user may wish to consider the installation of a low pressure alarm or low pressure interlock to use in the event of low blanket gas pressure. The pressure relief valve is installed on the tank to protect against over pressure and is not a control device. The pressure relief valve may not be used as a back pressure control device.

9.2.4.2 The expansion tank shall be compatible with the fluid being used and the system operating design temperatures and pressures.

9.2.4.3 The expansion tank shall be sized to accommodate the fluid expansion in the entire system.

9.2.4.4 The expansion tank should be equipped with a low-level interlock.

9.2.4.X A means will be provided to separate and vent water, air or other noncondensables through the expansion tanks. A.9.2.4.X

In addition to the primary expansion line, it is advisable to have a second entry point so that gases can separate efficiently from the fluid during, for example, initial fills, after maintenance or if water has entered the system. This can be accomplished with in-line de-aerator, a valved line parallel to the primary expansion line or a valved line directly from the heater outlet to the top of the expansion tank.

9.2.4.4.1 The low-level interlock should be satisfied before the pumps and the heater can be started.
9.2.4.4.2
The low-level interlock should shut down the pump and heater if a low level occurs.

9.2.4.4.2.1
In situations where maintaining flow is required to protect the heater due to residual heat, an emergency pump should be used to circulate fluid through an emergency cooling system.

9.2.4.4.3
Indication of low-level interlock activation should be provided.

9.2.4.5
Means of draining the expansion tank to an approved location should be provided.

9.2.4.6
An expansion tank vent or an expansion tank pressure relief device should be provided, and the effluent should be directed to an approved location, in accordance with 9.2.2.

9.2.4.7
Local or remote indication of expansion tank level should be provided.

9.2.4.8*
An expansion tank pressurized with an inert gas should be used if any of the following conditions exist:

(1) The tank is not the highest point in the system.

(2) The tank contents can be at a temperature such that exposure of the fluid to air would cause degradation of the fluid.

(3) The fluid manufacturer recommends use of an inert blanket.

(4) The fluid is operated at or above its atmospheric boiling point.

9.2.4.9*
All expansion tanks that are pressurized over a gauge pressure of 15 psi (100 kPa) should meet the requirements of ASME Boiler and Pressure Vessel Code, Section VIII Division 1.

9.2.4.10*
If pressurization of the expansion tank is required due to the vapor pressure of the fluid, the expansion tank should have a blanket gas low-pressure alarm set at a value above the vapor pressure of the fluid at the operating temperature.

9.2.4.11*
If pressurization of the expansion tank is required due to the net positive suction head (NPSH) of the pump, the expansion tank should have a blanket gas low-pressure alarm set to satisfy the NPSH required by the pump.

9.2.4.12*
A means shall be provided for separation of air, water, or other non-condensables in the vapor
9.3 Safety Devices for Class F Heaters.

9.3.1 Low Fluid Flow.

9.3.1.1 One or more interlocks should be provided to prove minimum fluid flow through the heater at all operating conditions.

9.3.1.2 The minimum flow–proving device should be interlocked into the combustion safety circuitry.

9.3.1.3 The minimum flow–proving device should be interlocked to shut down the heater if a low flow occurs.

9.3.2 Interlocks.

The combustion safety circuitry should incorporate the following interlocks:

(1) High flue gas temperature
(2) High fluid outlet temperature, measured as close as possible to exit of heating chamber
(3) Minimum flow limit
(4) Low expansion tank fluid level
(5) Activation of the heater’s fire suppression system, where provided
(6) Activation of an emergency stop
Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch09.docx</td>
<td>REVISE ENTIRE CHAPTER 9 (SEE ATTACHMENT)</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word "should" has been replaced by "shall" wherever applicable, and the words recommended practice have been replaced by standard. In addition to the changes related to converting the document into a standard, the Task Group on Heater Types also incorporated changes into the Chapter 9 attachment related to consolidating fluid heater safeguards that were identical across types F, G, and H. As such, the Task Group has proposed eliminating Chapters 10 and 11 and renaming Chapter 9 simply "Heaters".

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td>Should/Shall</td>
</tr>
<tr>
<td>Public Input No. 20-NFPA 87-2015 [Chapter 10]</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 21-NFPA 87-2015 [Chapter 11]</td>
<td></td>
</tr>
<tr>
<td>Public Input No. 23-NFPA 87-2015 [Chapter A]</td>
<td></td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: RICHARD MARTIN
Organization: MARTIN THERMAL ENGINEERING INC
Affiliation: Secretary of NFPA 87 Technical Committee
Street Address:
City:
State:
Zip:
Submittal Date: Fri Jul 03 19:25:45 EDT 2015

9.3.1.3 The minimum flow–proving device should be interlocked to shut down the heater if a low flow occurs.

9.3.2 Interlocks.

The combustion safety circuitry should incorporate the following interlocks:

1. High flue gas temperature
2. High fluid outlet temperature, measured as close as possible to exit of heating chamber
3. Minimum flow limit
4. Low expansion tank fluid level
5. Activation of the heater’s fire suppression system, where provided
6. Activation of an emergency stop
10.1 General.

10.1.1 Class G heaters should be designed to ensure that the required minimum fluid flow is achieved through all tube passes.

10.1.1.1 When multiple parallel tube passes are used, balanced flow distribution between passes should be ensured, such that each parallel pass maintains the minimum design flow rate, so that maximum fluid film temperatures and maximum allowable material temperatures are not exceeded.

10.1.2 The maximum allowable bulk fluid temperature should be determined based on the maximum allowable fluid film temperature and the maximum allowable material temperature.

10.1.3 The heater manufacturer should determine the minimum designed flow rate, taking into consideration the maximum allowable bulk and film fluid temperature at all flow rates and heat input rates.

10.1.4 Means of limiting the firing rate in accordance with the actual flow should be provided so that maximum fluid film temperature and maximum material temperature is not exceeded.

10.1.5 Where backflow into the heater presents a hazard, a means to prevent backflow should be provided.

10.1.6 The installation of a pressure relief valve, of appropriate pressure and flow rating, should be installed if the fluid can be trapped in the heated zone.

10.1.6.1 Discharge from relief valves should be handled in accordance with 10.2.2.

10.1.6.2 Vent lines should be sized to handle 150 percent of the maximum anticipated flow.

10.1.7 The fluid system should be designed to maintain at least the minimum required fluid flow (as determined in 10.1.3) through the heater under all operating conditions.

10.1.8 An expansion tank should be provided for all closed-loop liquid circuits.

10.1.9 A hard-wired manual emergency switch at a remote location should be provided to initiate a safety shutdown of the entire fluid heater system.

10.1.10 A means of sampling for fluid contamination or degradation should be provided from the active loop.

10.2 Auxiliary Equipment.

10.2.1 Pumps.

10.2.1.1 Pumps that are specifically designed for fluid heater service should be used.

10.2.1.2 The pumps should be compatible with the fluid used as well as the operating pressures and temperatures.

10.2.1.3 The system should be designed such that there is sufficient net positive suction head available for the pump.

10.2.1.4 Positive displacement pumping systems should incorporate means of pressure relief.

10.2.1.5 If water-cooled pumps are used, a means of verifying cooling water flow should be provided.
If pressurization of the expansion tank is required due to the net positive suction head (NPSH) of the pump, the expansion tank should have a blanket gas low-pressure alarm set to satisfy the NPSH required by the pump.

10.3 Safety Devices for Class G Heaters.
10.3.1 Low Fluid Flow.

One or more interlocks should be provided to prove minimum fluid flow through the heater at all operating conditions.

10.3.1.2 The minimum flow-proving device should be interlocked into the combustion safety circuitry.

10.3.1.3 The minimum flow-proving device should be interlocked to shut down the heater if a low flow occurs.

10.3.2 Interlocks.

The combustion safety circuitry should incorporate the following interlocks:

1. High flue gas temperature
2. High fluid outlet temperature, measured as close as possible to exit of heating chamber
3. Minimum flow limit
4. Low expansion tank fluid level
5. Activation of the heater's fire suppression system, where provided
6. Activation of an emergency stop

Statement of Problem and Substantiation for Public Input

In addition to the changes related to converting the document into a standard, the Task Group on Heater Types also incorporated changes into the Chapter 9 attachment (PI 19-NFPA87-2018) related to consolidating fluid heater safeguards that were identical across types F, G, and H. As such, the Task Group has proposed eliminating Chapters 10 and 11 and renaming Chapter 9 simply "Heaters".

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 19-NFPA 87-2015 [Chapter 9]</td>
<td>Eliminating Chapters 10 and 11 and renaming Chapter 9 simply "Heaters".</td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: RICHARD MARTIN
Organization: MARTIN THERMAL ENGINEERING INC
Affiliation: Secretary of NFPA 87 Technical Committee
Street Address:
City:
State:
Zip:
Submittal Date: Fri Jul 03 19:32:11 EDT 2015
Chapter 11 -- Class H Heaters

11.1 * -- General.

11.1.1 --

Class H heaters should be designed to ensure that the required minimum fluid flow is achieved through all flow paths.

11.1.1.1 * --

When multiple parallel flow paths are used, balanced flow distribution between flow paths should be ensured, such that each parallel path maintains the minimum design flow rate, so that maximum fluid film temperatures and maximum allowable material temperatures are not exceeded.

11.1.2 --

The maximum allowable bulk fluid temperature should be determined based on the maximum allowable fluid film temperature and the maximum allowable material temperature.

11.1.3 * --

The heater manufacturer should determine the minimum designed flow rate, taking into consideration the maximum allowable bulk and film fluid temperature at the design flow rate and all heat input rates.

11.1.4 --

The temperature of all heat transfer surfaces in contact with the fluid should be below the temperature at which fluid degradation can occur under all operating conditions.

11.1.5 --

Where backflow into the heater presents a hazard, a means to prevent backflow should be provided.

11.1.6 --

The installation of a pressure relief valve, of appropriate pressure and flow rating, should be installed if the fluid can be trapped in the heated zone.

11.1.6.1 * --

Discharge from relief valves should be handled in accordance with 11.2.2.

11.1.6.2 --

Vent lines should be sized to handle 150 percent of the maximum anticipated flow.

11.1.7 * --

The fluid system should be designed to maintain at least the minimum required fluid flow (as determined in 11.1.13) through the heater under all operating conditions.

11.1.8 --

An expansion tank should be provided for all closed-loop liquid circuits.

11.1.9 --

A hard-wired manual emergency switch at a remote location should be provided to initiate a safety shutdown of the entire fluid heater system.

11.1.10 --

A means of sampling for fluid contamination or degradation should be provided from the active loop.

11.2 -- Auxiliary Equipment.

11.2.1 -- Pumps.

11.2.1.1 * --

Pumps that are specifically designed for fluid heater service should be used.

11.2.1.2 * --

The pumps should be compatible with the fluid used as well as the operating pressures and temperatures.

11.2.1.3 --

The system should be designed such that there is sufficient net positive suction head available for the pump.

11.2.1.4 --

Positive displacement pumping systems should incorporate means of pressure relief.

11.2.1.5 * --

If water-cooled pumps are used, a means of verifying cooling water flow should be provided.
11.2.4.11 If pressurization of the expansion tank is required due to the net positive suction head (NPSH) of the pump, the expansion tank should have a blanket gas low-pressure alarm set to satisfy the NPSH required by the pump.

11.3 Safety Devices for Class H Heaters.
11.3.1 Low Fluid Flow.
11.3.1.1 One or more interlocks should be provided to prove minimum fluid flow through the heater at all operating conditions.
11.3.1.2 The minimum flow-proving device should be interlocked into the combustion safety circuitry.
11.3.1.3 The minimum flow-proving device should be interlocked to shut down the heater if a low flow occurs.

11.3.2 Interlocks.
The combustion safety circuitry should incorporate the following interlocks:

1. High flue gas temperature
2. High fluid outlet temperature, measured as close as possible to exit of heating chamber
3. Minimum flow limit
4. Low expansion tank fluid level
5. Activation of the heater’s fire suppression system, where provided
6. Activation of an emergency stop

Statement of Problem and Substantiation for Public Input

In addition to the changes related to converting the document into a standard, the Task Group on Heater Types also incorporated changes into the Chapter 9 attachment related to consolidating fluid heater safeguards that were identical across types F, G, and H. As such, the Task Group has proposed eliminating Chapters 10 and 11 and renaming Chapter 9 simply “Heaters”.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 19-NFPA 87-2015 [Chapter 9]</td>
<td>Eliminating Chapters 10 and 11 and renaming Chapter 9 simply “Heaters”.</td>
</tr>
</tbody>
</table>

Submitter Information Verification

Submitter Full Name: RICHARD MARTIN
Organization: MARTIN THERMAL ENGINEERING INC
Affiliation: Secretary of NFPA 87 Technical Committee
Street Address:
City:
State:
Zip:
Submittal Date: Fri Jul 03 19:35:03 EDT 2015
Chapter 12 Fire Protection

12.1* General. The user shall determine the need for fire protection systems for fluid heaters or related equipment based on the hazards associated with the equipment.

A.12.1 This standard addresses the fire protection needs of fluid heaters and related equipment. Fire protection needs external to this equipment are beyond the scope of this standard.

Fire extinguishing systems and methods should be designed in accordance with fire protection engineering principles and applicable standards.

Hazards associated with combustible or high temperature fluid migration to other areas through open or incompletely sealed floors should be considered.

Fixed fire protection for the equipment can consist of sprinklers, water spray, carbon dioxide, foam, dry chemical, water mist, or steam extinguishing systems. The extent of the protection depends on the construction, arrangement, and location of the fluid heater or related equipment, as well as the materials being processed.

Hydrogen and other flammable gas fires normally are not extinguished until the supply of gas has been shut off because of the danger of re-ignition or explosion. Re-ignition can occur if a hot surface adjacent to the flame is not cooled with water or by other means. Personnel should be cautioned that hydrogen flames are invisible and do not radiate heat.

12.1.1* Where determined to be necessary, portable, manual-fixed, or automatic-fixed fire protection systems shall be provided.

A.12.1.1 Where automatic fire protection systems are installed, alarming and actuation can be based on one or more of the following criteria:
1. High values from differential flow detectors comparing fluid flowing into and out of the heater
2. Low fluid level in the expansion tank (Note: This function can be used only if the expansion tank level is not automatically corrected with a pumped resupply of fluid from the storage tank.)
3. High values from flue gas combustibles analyzer
4. Increase in opacity of smoke exiting the heater
5. High flue gas temperature
6. Increase in carbon monoxide in flue gas
7. Decrease in oxygen in flue gas

12.1.2 The fire protection system shall be provided with a remotely located manual actuator.

12.1.3 The fire protection system design shall be submitted for approval to the authority having jurisdiction.

12.1.4* Where a sustained fluid fire is possible, fireproofing of exposed heater-supporting members shall be provided.

A.12.1.4 Fire resistance duration, corrosion resistance, and weathering resistance should be considered when fireproofing is applied to heater structural members.

12.1.5 If a fluid fire occurs in the combustion chamber of a heater, the following actions shall be taken:
1. Shut off the heating system fuel supply.
2. Stop combustion air fans.
3. Shut combustion air inlet dampers.
4. Open outlet dampers to prevent overpressure of the fire box. Implement fail-safe damper position.
(5) Activate the discharge of extinguishing agent or use portable extinguishers at openings to the fire box.
(6) Depressurize the fluid system to reduce the flow of fluid into the firebox.
(7) To extinguish the fluid-fed fire, drain the fluid to a location where it will not create a hazard.
(8) Isolate or repair the fluid leak before restarting the heating system.

CAUTION: Where a pressurized fluid is at a temperature above its atmospheric boiling point, rapid draining can lead to flashing of the fluid and the generation of combustible vapors. An emergency cooler can be provided to cool the fluid to below its atmospheric boiling point.

12.1.6 The emergency response team (ERT) and the fire service *shall* be aware of the fluid identity and associated hazards, the location of the fluid and the fuel piping and shutoff valves, and proper firefighting methods.

12.2 Types of Fire Protection Systems.

12.2.1* Where automatic sprinklers are provided, they *shall* be installed in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems, unless otherwise permitted by 12.2.2.

CAUTION: The introduction of water into a hot chamber can create a steam explosion hazard.

A.12.2.1 Sprinkler protection alone cannot ensure that a fire involving a fluid release will not cause catastrophic heater or building damage.

12.2.2 Where sprinklers that protect only fluid heaters are installed and connection to a reliable fire protection water supply is not feasible, a domestic water supply connection can be permitted to supply the sprinklers, subject to the approval of the authority having jurisdiction.

12.2.3 Where water spray systems are provided, they *shall* be installed in accordance with NFPA 15, Standard for Water Spray Fixed Systems for Fire Protection.

12.2.4 Where carbon dioxide protection systems are provided, they *shall* be installed in accordance with NFPA 12, Standard on Carbon Dioxide Extinguishing Systems.

12.2.5 Where foam extinguishing systems are provided, they *shall* be installed in accordance with NFPA 11, Standard for Low-, Medium-, and High-Expansion Foam.

12.2.6 Where chemical protection systems are provided, they *shall* be installed in accordance with NFPA 17, Standard for Dry Chemical Extinguishing Systems or NFPA 17A, Standard for Wet Chemical Extinguishing Systems.

12.2.7 Where water mist systems are provided, they *shall* be installed in accordance with NFPA 750, Standard on Water Mist Fire Protection Systems.

12.2.8 Where steam extinguishing systems are provided, they *shall* be installed in accordance with accepted industry practice. (See Annex C.)

12.2.9 Where portable fire-extinguishing systems are provided, they *shall* be used in accordance with NFPA 10, Standard for Portable Fire Extinguishers.

12.2.9.1 When portable fire protection is relied upon for extinguishing internal fluid-fed fires, an effective means of access for the extinguishing agent *shall* be provided.

12.3 Inspection, Testing, and Maintenance of Fire Protection Equipment. All fire protection equipment *shall* be inspected, tested, and maintained as specified in the following standards:

(1) NFPA 10, Standard for Portable Fire Extinguishers
(2) NFPA 11, Standard for Low-, Medium-, and High-Expansion Foam
(3) NFPA 12, Standard on Carbon Dioxide Extinguishing Systems
(4) NFPA 13, Standard for the Installation of Sprinkler Systems
(6) NFPA 17, Standard for Dry Chemical Extinguishing Systems
(7) NFPA 17A, Standard for Wet Chemical Extinguishing Systems
(8) NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems
(9) NFPA 750, Standard on Water Mist Fire Protection Systems
Where chemical protection systems are provided, they should be installed in accordance with NFPA 17, Standard for Dry Chemical Extinguishing Systems or NFPA 17A, Standard for Wet Chemical Extinguishing Systems.

Where water mist systems are provided, they should be installed in accordance with NFPA 750, Standard on Water Mist Fire Protection Systems.

Where steam extinguishing systems are provided, they should be installed in accordance with accepted industry practice. (See Annex C.)

Where portable fire-extinguishing systems are provided, they should be used in accordance with NFPA 10, Standard for Portable Fire Extinguishers.

When portable fire protection is relied upon for extinguishing internal fluid-fed fires, an effective means of access for the extinguishing agent should be provided.

Inspection, Testing, and Maintenance of Fire Protection Equipment.

All fire protection equipment should be inspected, tested, and maintained as specified in the following standards:

1. NFPA 10, Standard for Portable Fire Extinguishers
2. NFPA 11, Standard for Low-, Medium-, and High-Expansion Foam
3. NFPA 12, Standard on Carbon Dioxide Extinguishing Systems
4. NFPA 13, Standard for the Installation of Sprinkler Systems
6. NFPA 17, Standard for Dry Chemical Extinguishing Systems
7. NFPA 17A, Standard for Wet Chemical Extinguishing Systems
8. NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems
9. NFPA 750, Standard on Water Mist Fire Protection Systems

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15-Word_Ch12.docx</td>
<td>REVISE ENitre CHAPTER 12 (SEE ATTACHMENT)</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

The Technical Committee is seeking to convert the document from a Recommended Practice to Standard during this cycle. As such, the word "should" has been replaced by "shall" wherever applicable, and the words recommended practice have been replaced by standard.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Input No. 10-NFPA 87-2015 [Chapter 1]</td>
<td>Should/Shall</td>
</tr>
</tbody>
</table>

Submitter Information Verification

<table>
<thead>
<tr>
<th>Submitter Full Name</th>
<th>RICHARD MARTIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization:</td>
<td>MARTIN THERMAL ENGINEERING INC</td>
</tr>
<tr>
<td>Affiliation:</td>
<td>Secretary of NFPA 87 Technical Committee</td>
</tr>
</tbody>
</table>
Annex A Explanatory Material

Annex A is not a part of the recommendations of this NFPA document but is included for informational purposes only. This annex contains explanatory material, numbered to correspond with the applicable text paragraphs.

A.1.1

Explosions and fires in fuel-fired and electric fluid heaters constitute a loss potential in life, property, and production. This recommended practice is a compilation of guidelines, rules, and methods applicable to the safe operation of this type of equipment.

Conditions and regulations that are not covered in this standard — such as toxic vapors, hazardous materials, noise levels, heat stress, and local, state, and federal regulations (EPA and OSHA) — should be considered in the design and operation of fluid heaters.

Most causes of failures can be traced to human error. The most significant failures include inadequate training of operators, lack of proper maintenance, and improper application of equipment. Users and designers must utilize engineering skill to bring together that proper combination of controls and training necessary for the safe operation of equipment. This recommended practice classifies fluid heaters as Class F fluid heaters.

Class F fluid heaters operate at approximately atmospheric pressure and present a potential explosion or fire hazard that could be occasioned by the overheating and/or release of flammable or combustible fluids from the tubing that carries them through the heating chamber. Class F fluid heaters operate with a relatively constant flow of fluid through the tubes, and the flowing fluid is intended to remove sufficient heat to maintain tubing walls cool enough to avoid irreversible damage that could lead to rupture. Safeguards that reduce the risk of fire or explosion associated with the use of fuel gases or fuel oils are also a major consideration for the design and operation of Class F fluid heaters.

A.1.1.3(7)

For guidance on solid fuel systems, see NFPA 85, Boiler and Combustion Systems Hazards Code.
Because this recommended practice is based on the current state of the art, application to existing installations is not recommended. Nevertheless, users are encouraged to adopt those features that are considered applicable and reasonable for existing installations.

A.1.5

No recommended practice can guarantee the elimination of fires and explosions in fluid heaters. Technology in this area is under constant development, which is reflected in fuels, fluids, geometries, and materials. Therefore, the designer is cautioned that this recommended practice is not a design handbook and thus does not eliminate the need for an engineer or competent engineering judgment. It is the intention of this recommended practice that a designer capable of applying more complete and rigorous analysis to special or unusual problems have latitude in the development of fluid heater designs. In such cases, the designer should be responsible for demonstrating and documenting the safety and validity of the design.

A.3.2.1 Approved.

The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.

A.3.2.2 Authority Having Jurisdiction (AHJ).

The phrase “authority having jurisdiction,” or its acronym AHJ, is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

A.3.2.4 Listed.

The means for identifying listed equipment may vary for each organization concerned with product evaluation; some organizations do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.

A.3.3.4 Burner Management System.

The burner management system includes the combustion safety circuitry, safety interlocks, combustion safeguards, and safety devices.
A.3.3.17 Hardwired.

When the term *hardwired* is applied to the logic system itself, it refers to the method of using individual devices and interconnecting wiring to program and perform the logic functions without the use of software-based logic solvers.

A.3.3.34.5 Proof-of-Closure Switch.

A common method of effecting proof of closure is by valve seal overtravel. [86,2015]

A.3.3.37 Valve Proving System.

A.4.1.1.2

Ladder-type schematic diagrams are recommended.

A.4.1.3.1

The proximity of electrical equipment and flammable gas or liquid in an electrical enclosure or panel is a known risk and would be considered a classified area. Article 500 of *NFPA 70, National Electrical Code*, should be consulted.

If the device fails, conduit-connecting devices handling flammable material might carry this material to an electrical enclosure, creating a classified area in that enclosure. Sealing of such conduits should be considered.

A.4.1.3.4

Unless otherwise required by the local environment, fluid heaters and the surrounding area are not classified as a hazardous (classified) location. The primary source of ignition associated with a fluid heater installation is the heating system or the materials heated. The presence of these ignition sources precludes the need for imposing requirements for wiring methods appropriate for a hazardous (classified) location. Refer to Section 3.3 of NFPA 497, *Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas*, regarding equipment with open flames or other ignition sources. In addition, fluid heaters are considered unclassified internally, since proved ventilation is provided to ensure safety.

A.4.3.2

The following items are examples of compatibility issues to be studied: system materials, flow rates, temperatures, pressures, venting, inerting, and fire protection.

A.5.1.1.1

Hazards to be considered include spillage of molten metal, salt, or other molten material, hydraulic oil ignition, overheating and/or release of material being heated in the fluid heater, and escape of fuel or flue gases.
A.5.1.1.4

A.5.1.1.6

Solidification of the fluid in the fluid heater and associated piping should be avoided. Consider providing insulation and heat tracing on piping and equipment where it is impractical to reliably guarantee that temperatures will not go below the minimum pumpable viscosity for an extended period of time.

A.5.1.3.5

The hazard is particularly severe where vapors from nearby processes could flow by means of gravity to ignition sources at or near floor level. See NFPA 30, *Flammable and Combustible Liquids Code*; NFPA 33, *Standard for Spray Application Using Flammable or Combustible Materials*; and NFPA 34, *Standard for Dipping, Coating, and Printing Processes Using Flammable or Combustible Liquids*.

A.5.1.4.3

If the fluid heater is located in contact with a wood floor or other combustible floor and the operating temperature is above 160°F (71°C), one or both of the following steps should be adequate to prevent surface temperatures of combustible floor members from exceeding 160°F (71°C):

1. Combustible floor members should be removed and replaced with a monolithic concrete slab that extends a minimum of 3 ft (1 m) beyond the outer extremities of the fluid heater.

2. Air channels, either naturally or mechanically ventilated, should be provided between the floor and the equipment (perpendicular to the axis of the equipment), or noncombustible insulation should be provided.

A.5.2

Steam or hot water boilers should not be converted to fluid heating operation except under the guidance of the equipment manufacturer.

A.5.2.3

Fluid heater design should include factors of safety so as to avoid failures when the heater is operating at maximum design loading.

A.5.2.4

For fluid heaters that utilize induced draft fans, the design should account for operation at subambient pressure and should be designed to prevent implosion.

A.5.2.6.1

Ladders, walkways, and access facilities, where provided, should be designed in accordance with 29 CFR 1910.24 through 29 CFR 1910.29 and with ANSI A14.3, *Safety Requirements for Fixed Ladders*.
A.5.2.10

Adequate coolant flow is vital to the safe operation of fluid heaters. Where flow switches are provided to verify flow, they should be tested regularly. Other means, such as flow indicators, should also be considered for supplementing the function of flow switches.

A.5.3

For additional information regarding explosion protection of equipment and buildings, see NFPA 68, Standard on Explosion Protection by Deflagration Venting, and NFPA 69, Standard on Explosion Prevention Systems.

Where explosion relief is provided, its location is a critical concern and should be close to the ignition source. Personnel considerations and proximity to other obstructions can affect the location selected for these vents. The intent of providing explosion relief in furnaces is to limit damage to the furnace and to reduce the risk of personnel injury due to explosions. To achieve those goals, relief panels and doors should be sized so that their inertia does not preclude their ability to relieve internal explosion pressures.

Damage-limiting construction could include exterior panels that are designed to become detached under the influence of internal pressure from a deflagration. In such cases, tethering the panels is vitally important to ensure dislodged panels don’t cause injury or damage. NFPA 68 provides guidance for tethering doors and walls that can become dislodged in a deflagration event.

A.5.4

A.5.4.1

Some fluid heaters rely on the air in a building or room for safety ventilation and combustion. If the fluid heater fans must compete with other building fans (such as building exhausts), safety and performance of the fluid heater could be compromised.

When the air requirements of a building or room are being determined or reviewed for safety ventilation and combustion, provisions should be made for air being removed from the room for other purposes, such as for removal of heat, flue products, emergency generators, and other combustion equipment. Safety ventilation and combustion air must be in excess of air that is to be removed from the room for other purposes. Seasonal factors could also be relevant in cold climates, where building openings are closed during cold weather.

In the case of fluid heaters, especially those using natural draft, combustion air consistent with the requirements identified in Section 8.3 of NFPA 54, National Fuel Gas Code, should be provided.

A.5.4.3.3

Ducts that pass through fire walls should be avoided.

A.5.4.3.5
High temperature or corrosive gases conveyed in the duct could compromise structural members if contact occurs.

A.5.4.3.6

All interior laps in the duct joints should be made in the direction of the flow.

A.5.5.1.3

Flanged and threaded connections are not recommended for flammable or combustible liquids due to possible leakage. Additional guidance can be found in ASME B31.3, *Process Piping*.

A.5.5.1.7

Care should be taken that none of the fluid heater system components is overpressurized. Hydrostatically testing with water can contaminate the system due to residual water in the system.

A.6.2.1

The term *ignition temperature* means the lowest temperature at which a gas–air mixture will ignite and continue to burn. This condition is also referred to as the *autoignition temperature*. Where burners supplied with a gas–air mixture in the flammable range are heated above the autoignition temperature, flashbacks could occur. In general, such temperatures range from 870°F to 1300°F (465°C to 704°C). A much higher temperature is needed to ignite gas dependably. The temperature necessary is slightly higher for natural gas than for manufactured gases, but for safety with manufactured gases, a temperature of about 1200°F (649°C) is needed, and for natural gas, a temperature of about 1400°F (760°C) is needed. Additional safety considerations should be given to dirt-laden gases, sulfur-laden gases, high-hydrogen gases, and low-Btu waste gases.

The term *rate of flame propagation* means the speed at which a flame progresses through a combustible gas–air mixture under the pressure, temperature, and mixture conditions existing in the combustion space, burner, or piping under consideration. *(See Table A.6.2.1 and Figure A.6.2.1.)*

Table A.6.2.1 Properties of Typical Flammable Gases

<table>
<thead>
<tr>
<th>Flammable Gas</th>
<th>Molecular Weight</th>
<th>Heating Value (Btu/ft³)</th>
<th>Auto-Ignition (°F)</th>
<th>LFL (% by volume)</th>
<th>UFL (% by volume)</th>
<th>Vapor Density (Air = 1)</th>
<th>Air Required to Burn 1 ft³ of Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butane</td>
<td>58.0</td>
<td>3200</td>
<td>550</td>
<td>1.9</td>
<td>8.5</td>
<td>2.0</td>
<td>31.0</td>
</tr>
<tr>
<td>CO</td>
<td>28.0</td>
<td>310</td>
<td>1128</td>
<td>12.5</td>
<td>74.0</td>
<td>0.97</td>
<td>2.5</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2.0</td>
<td>311</td>
<td>932</td>
<td>4.0</td>
<td>74.2</td>
<td>0.07</td>
<td>2.5</td>
</tr>
<tr>
<td>Natural gas (high-Btu type)</td>
<td>18.6</td>
<td>1115</td>
<td>—</td>
<td>4.6</td>
<td>14.5</td>
<td>0.64</td>
<td>10.6</td>
</tr>
<tr>
<td>Natural gas (high-methane type)</td>
<td>16.2</td>
<td>960</td>
<td>—</td>
<td>4.0</td>
<td>15.0</td>
<td>0.56</td>
<td>9.0</td>
</tr>
<tr>
<td>Natural gas (high-inert type)</td>
<td>20.3</td>
<td>1000</td>
<td>—</td>
<td>3.9</td>
<td>14.0</td>
<td>0.70</td>
<td>9.4</td>
</tr>
</tbody>
</table>
Flammable Gas Data

<table>
<thead>
<tr>
<th>Flammable Gas</th>
<th>Molecular Weight</th>
<th>Heating Value (Btu/ft(^3))</th>
<th>Auto-Ignition (°F)</th>
<th>LFL (% by volume)</th>
<th>UFL (% by volume)</th>
<th>Vapor Density (Air = 1)</th>
<th>Air Required to Burn 1 ft(^3) of Gas (ft(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane</td>
<td>44.0</td>
<td>2500</td>
<td>842</td>
<td>2.1</td>
<td>9.5</td>
<td>1.57</td>
<td>24.0</td>
</tr>
</tbody>
</table>

For SI units, 1 Btu = 1.055 kJ, 1 ft\(^3\) = 0.028 m\(^3\), C° = \(\frac{5}{9}(°F - 32)\).

Figure A.6.2.1 Ignition Velocity Curves for Typical Flammable Gases.

For SI units: 1 ft/sec = 0.3 m/sec

A.6.2.3

For additional information, refer to NFPA 54, *National Fuel Gas Code*.

A.6.2.3.4

See A.5.4.1 for information on combustion air supply considerations.
A.6.2.4.1
The valve used for remote shutoff service should be identified. If the main incoming service valve is used for this purpose, it must be understood that the valve might be owned by the local utility, which could affect access to and service of the valve. Remotely located valves used for shutting down fuel distribution systems that serve a number of users or pieces of equipment should be regularly exercised (by opening and closing several times) to verify their ability to operate when needed. Lubricated plug valves should be maintained annually, including the installation of sealant and leak testing.

A.6.2.5.2

A.6.2.6.3
When the fuel train is opened for service, the risk of dirt entry exists. It is not required that existing piping be opened for the sole purpose of the addition of a filter or strainer. It is good practice to have the sediment trap located upstream of the filter. The intent of the sediment trap is to remove larger particulates, while the intent of the filter is to remove smaller particulates. The reverse arrangement will result in additional maintenance and might result in removal of the filter element from service.

A.6.2.7.3
Paragraph 6.2.7.3 covers venting of flammable and oxidizing gases only. Gases that are asphyxiants, toxic, or corrosive are outside the scope of this recommended practice, and other standards should be consulted for appropriate venting. Flammable gases and oxidizers should be vented to an approved location to prevent fire or explosion hazards. When gases are vented, the vent pipe should be located in accordance with the following:

(1) Gas should not impinge on equipment, support, building, windows, or materials because the gas could ignite and create a fire hazard.

(2) Gas should not impinge on personnel at work in the area or in the vicinity of the exit of the vent pipe because the gas could ignite and create a fire hazard.

(3) Gas should not be vented in the vicinity of air intakes, compressor inlets, or other devices that utilize ambient air.

The vent exit should be designed in accordance with the following:

(1) The pipe exit should not be subject to physical damage or foreign matter that could block the exit.

(2) The vent pipe should be sized to minimize the pressure drop associated with length, fitting, and elbows at the maximum vent flow rate.

(3) The vent piping should not have any shutoff valves in the line.

If the gas is to be vented inside the building, the following additional guidance is offered:

(1) If the gas is flammable and lighter than air, the flammable gases should be vented to a location where the gas is diluted below its LFL before coming in contact with sources of ignition.
(2) The gas should not re-enter the work area without extreme dilution.

A.6.2.7.4

Vent limiters are used to limit the escape of gas into the ambient atmosphere if a vented device (e.g., regulator, zero governor, pressure switch) requiring access to the atmosphere for operation has an internal component failure. Where a vent limiter is used, there might not be a need to vent the device to an approved location. Following are some general guidelines and principles on the use of vented devices incorporating vent limiters:

(1) The listing requirements for vent limiters are covered in ANSI Z21.18/CSA 6.3, *Standard for Gas Appliance Pressure Regulators*, for regulators and in UL 353, *Standard for Limit Controls*, for pressure switches and limit controls. ANSI Z21.18/CSA 6.3 requires a maximum allowable leakage rate of 2.5 ft3/hr (0.071 m3/hr) for natural gas and 1.0 ft3/hr (0.028 m3/hr) for LP-Gas at the device’s maximum rated pressure. UL 353 allows 1.0 ft3/hr (0.028 m3/hr) for natural gas and 1.53 ft3/hr (0.043 m3/hr) for LP-Gas at the device’s maximum rated pressure. Since a vent limiter can be rated less than the device itself and can be a field-installable device, a combination listed device and vent limiter should be used.

(2) Where a vent limiter is used, there should be adequate airflow through the room or enclosure in which the equipment is installed. In reality, conditions can be less ideal, and care should be exercised for the following reasons:

 (a) The relative density of the gas influences its ability to disperse in air. The higher the relative density, the more difficult it is for the gas to disperse (e.g., propane will disperse more slowly than natural gas).

 (b) Airflow patterns through a room or enclosure, especially in the vicinity of the gas leak, affect the ability of the air to dilute that gas. The greater the local air movement, the greater the ease with which the gas is able to disperse.

 (c) The vent limiter might not prevent the formation of a localized flammable air–gas concentration for the preceding reasons.

A.6.2.7.5

See A.6.2.7.4.

A.6.2.7.9

NFPA 87 does not address vents between safety shutoff valves, but they are sometimes installed.

A.6.2.8.3

Token relief valves only provide minimum pressure relief in cases where ambient temperatures increase the pressure inside the gas piping, which can occur during shutdown periods, or relieves a small increase of pressure due to high lockup pressures that occur during a shutdown.

A.6.2.10

In the design, fabrication, and utilization of mixture piping, it should be recognized that the air–fuel gas mixture might be in the flammable range.
A.6.2.10.2(A)

Two basic methods generally are used. One method uses a separate fire check at each burner, the other a fire check at each group of burners. The second method generally is more practical if a system consists of many closely spaced burners.

A.6.2.10.2(E)

Acceptable safety blowouts are available from some manufacturers of air–fuel mixing machines. They incorporate the following components and design features:

(1) Flame arrester
(2) Blowout disk
(3) Provision for automatically shutting off the supply of air–gas mixture to the burners in the event of a flashback passing through an automatic fire check

A.6.2.12.1

A burner is suitably ignited when combustion of the air–fuel mixture is established and stable at the discharge port(s) of the nozzle(s) or in the contiguous combustion tunnel.

A.6.3.1

In the design and use of oil-fired units, the following should be considered:

(1) Unlike fuel gases, data on many important physical and chemical characteristics are not available for fuel oil, which, being a complex mixture of hydrocarbons, is relatively unpredictable.

(2) Fuel oil has to be vaporized prior to combustion. Heat generated by the combustion commonly is utilized for this purpose, and oil remains in the vapor phase as long as sufficient temperature is present. Under these conditions, oil vapor can be treated as fuel gas.

(3) Unlike fuel gas, oil vapor condenses into liquid when the temperature falls too low and revaporizes whenever the temperature rises to an indeterminate point. Therefore, oil in a cold furnace can lead to a hazardous condition, because, unlike fuel gas, it cannot be purged. Oil can vaporize (to become a gas) when, or because, the furnace-operating temperature is reached.

(4) Unlike water, for example, there is no known established relationship between temperature and vapor pressure for fuel oil. For purposes of comparison, a gallon of fuel oil is equivalent to 140 ft\(^3\) (4.0 m\(^3\)) of natural gas; therefore, 1 oz (0.03 kg) equals approximately 1 ft\(^3\) (0.03 m\(^3\)).

Additional considerations that are beyond the scope of this recommended practice should be given to other combustible liquids not specified in 6.3.1.

A.6.3.3

For additional information, refer to NFPA 31, Standard for the Installation of Oil-Burning Equipment.

A.6.3.4.4

A long circulating loop, consisting of a supply leg, a back-pressure regulating valve, and a return line back to the storage tank, is a means of reducing air entrainment. Manual vent valves might be needed to bleed air from the high points of the oil supply piping.
A.6.3.4.6

The weight of fuel oil is always a consideration in vertical runs. When fuel oil is going up, pressure is lost. A gauge pressure of 100 psi (689 kPa) with a 100 ft (30.5 m) lift nets only a gauge pressure of 63 psi (434 kPa). When fuel oil is going down, pressure increases. A gauge pressure of 100 psi (689 kPa) with a 100 ft (30.5 m) drop nets a gauge pressure of 137 psi (945 kPa). This also occurs with fuel gas, but it usually is of no importance. However, it should never be overlooked with oils.

A.6.3.5.1(6)

Lubricated plug valves require lubrication with the proper lubricant to shut off tightly. The application and type of gas used can require frequent lubrication to maintain the ability of the valve to shut off tightly when needed.

A.6.3.5.4

Customarily, a filter or strainer is installed in the supply piping to protect the pump. However, this filter or strainer mesh usually is not sufficiently fine for burner and valve protection.

A.6.3.5.6

Under some conditions, pressure sensing on fuel oil lines downstream from feed pumps can lead to gauge failure when rapid pulsation exists. A failure of the gauge can result in fuel oil leakage. The gauge should be removed from service after initial burner start-up or after periodic burner checks. An alternative approach would be to protect the gauge during service with a pressure snubber.

A.6.3.7.1

The atomizing medium might be steam, compressed air, low pressure air, air–gas mixture, fuel gas, or other gases. Atomization also might be mechanical (mechanical atomizing tip or rotary cup).

A.6.3.9.1

A burner is suitably ignited when combustion of the air–fuel mixture is established and stable at the discharge port(s) of the nozzle(s) or in the contiguous combustion tunnel.

A.7.2.1

Commissioning could be required again following modification, reactivation, or relocation of the furnace.

A.7.2.5

It is recommended that all system settings and parameters be documented for future maintenance and operational needs.

A.7.2.6

A test involving discharge of an extinguishing agent in a sufficient amount to verify that the system is properly installed and functional is recommended. The discharge test can be simulated by an appropriate means. The discharge test can be omitted if damage to the equipment or surroundings would result.

A.7.2.8

Using inert gas that is heated can help vaporize water trapped within the system.
A.7.2.9

Addition of fluid should be at a low point of the piping. A small positive displacement pump is typically used to fill the fluid heater system.

A.7.2.10

Raising the temperature slowly helps prevent spalling during refractory dryout and curing, minimizes thermal stresses on the equipment, and prevents rapid vaporization of residual water in the piping.

A.7.2.12

The evacuation/purging, charging, and confirmation of the fuel or combustible gas supply in the piping upstream of the equipment isolation valve is governed by other codes, standards, and recommended practices. Examples are NFPA 54, National Fuel Gas Code, which requires charging to be stopped upon detection of combustible gas at the point of discharge, and NFPA 56, Standard for Fire and Explosion Prevention During Cleaning and Purging of Flammable Gas Piping Systems. Careful consideration should be given to the potential hazards that can be created in the surrounding area for any fuel or combustible gas discharge.

In NFPA 54, the term appliance shutoff valve is analogous to the term equipment isolation valve in NFPA 86 and 87.

A.7.3.1

The training program can include one or more of the following components:

1. Review of operating and maintenance information
2. Periodic formal instruction
3. Use of simulators
4. Field training
5. Other procedures
6. Comprehension testing

The following training topics should be considered for inclusion in the training program:

1. Process and equipment inspection testing
2. Combustion of fuel-air mixtures
3. Explosion hazards, including improper purge timing and purge flow, and safety ventilation
4. Sources of ignition, including autoignition (e.g., by incandescent surfaces)
5. Functions of controls, safety devices, and maintenance of proper set points
6. Handling and processing of hazardous materials
7. Management of process fluid level, flow, and temperature
8. Confined space entry procedures
9. Operating instructions (see 7.4.2)
A.7.3.4
Training should include recognition of upset conditions that could lead to dangerous conditions. Operator training should cover the relationships between firing rate, fluid flow rate, and fluid temperature increase, so that if a high fluid temperature is detected, the cause can be determined quickly.

A.7.4.3
See Annex B.

A.7.4.7
If a new operating envelope is desired, the equipment manufacturer and the fluid supplier should be contacted to establish new operating limits.

A.7.5.3
The fluid manufacturer should be consulted for help in determining where in the system to take samples. The samples should be sent to the supplier. Facilities with laboratories might be able to perform independent tests, provided a baseline sample is available for comparison purposes.

A.7.5.5
Tests involving the discharge of the extinguishing agent should be performed at a frequency recommended by the fire protection system manufacturer.

A.7.5.8
See, for example, the NBBPVI National Board Inspection Code.

A.7.5.11
In cases where minimal operating states (e.g., minimum fluid flow) must be established to prevent a hazardous condition, it is recommended that the precision of the set point be confirmed. Where precision is inadequate, the component should be either recalibrated or replaced. Frequency of this testing and calibration should be established based on the component’s mean time between failure (MTBF) data and the component manufacturer’s recommendations.

A.7.5.15
An example of a leak test procedure for safety shutoff valves on direct gas-fired ovens with a self-piloted burner and intermittent pilot follows.

Leak Test Procedure. With the oven burner(s) shut off, the main shutoff valve open, and the manual shutoff valve closed, proceed as follows:

1. Place the tube in test connection 1 and immerse it just below the surface of a container of water.
(2) Open the test connection valve. If bubbles appear, the valve is leaking; reference the manufacturer's instructions for corrective action. The auxiliary power supply to safety shutoff valve No. 1 should be energized, and the valve should be opened.

(3) Place the tube in test connection 2 and immerse it just below the surface of a container of water.

(4) Open the test connection valve. If bubbles appear, the valve is leaking. Reference the manufacturer’s instructions for corrective action.

The preceding procedure is predicated on the piping diagram shown in Figure A.7.5.15(a) and the wiring diagram shown in Figure A.7.5.15(b).

It is recognized that safety shutoff valves are not entirely leakfree. Valve seats can deteriorate over time and require periodic leak testing. Many variables are associated with the valve seat leak testing process, including gas piping and valve size, gas pressure and specific gravity, size of the burner chamber, length of downtime, and the many leakage rates published by recognized laboratories and other organizations.

Leakage rates are published for new valves and vary by manufacturer and the individual listings to which the manufacturer subscribes. It is not expected that valves in service can be held to published leakage rates, but rather that the leakage rates are comparable over a series of tests over time. Any significant deviation from the comparable leakage rates over time will indicate to the user that successive leakage tests can indicate unsafe conditions. These conditions should then be addressed by the user in a timely manner.

The location of the manual shutoff valve downstream of the safety shutoff valve affects the volume downstream of the safety shutoff valve and is an important factor in determining when to start counting bubbles during a safety shutoff valve seat leakage test. The greater the volume downstream of the safety shutoff valve, the longer it will take to fully charge the trapped volume in the pipe between the safety shutoff valve and the manual shutoff valve. This trapped volume needs to be fully charged before starting the leak test.

Care should be exercised during the safety shutoff valve seat leakage test, because flammable gases will be released into the local environment at some indeterminate pressure. Particular attention should be paid to lubricated plug valves if used as manual shutoff valves, in order to ensure that they have been properly serviced prior to the valve seat leakage test.

Examples, although not all-inclusive, of acceptable leakage rate methodologies that the user can employ can be found in the publications in Annex D.

Figure A.7.5.15(a) through Figure A.7.5.15(c) show examples of gas piping and wiring diagrams for leak testing.

The following example also is predicated on the piping diagram shown in Figure A.7.5.15(a) and the wiring diagram shown in Figure A.7.5.15(b).

With the burner(s) shut off, the equipment isolation valve open, and the manual shutoff valve located downstream of the second safety shutoff valve closed, proceed as follows:

(1) Connect the tube to leak test valve No. 1.
(2) Bleed trapped gas by opening leak test valve No. 1.

(3) Immerse the tube in water as shown in Figure A.7.5.15(c). If bubbles appear, the valve is leaking — reference the manufacturer's instructions for corrective action. Examples of acceptable leakage rates are given in Table A.7.5.15.

(4) Apply auxiliary power to safety shutoff valve No. 1. Close leak test valve No. 1. Connect the tube to leak test valve No. 2 and immerse it in water as shown in Figure A.7.5.15(c).

(5) Open leak test valve No. 2. If bubbles appear, the valve is leaking — reference the manufacturer's instructions for corrective action. Examples of acceptable leakage rates are given in Table A.7.5.15.

[86:A.7.4.9(1)–A.7.4.9(5)]

Figure A.7.5.15(a) Example of a Gas Piping Diagram for Leak Test. [86:Figure A.7.4.9(a)]

Figure A.7.5.15(b) Example of a Wiring Diagram for Leak Test. [86:Figure A.7.4.9(b)]

Figure A.7.5.15(c) Leak Test for a Safety Shutoff Valve. [86:Figure A.7.4.9(c)]
Table A.7.5.15 Acceptable Leakage Rates

<table>
<thead>
<tr>
<th>NPT Nomin. Size (in.)</th>
<th>DN Nomin. Size (mm)</th>
<th>UL 429, ANSI Z21.21/CSA</th>
<th>FM 7400</th>
<th>EN 161</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ft³/hr</td>
<td>mL/h</td>
<td>N</td>
</tr>
<tr>
<td>0.38</td>
<td>10</td>
<td>0.008 3</td>
<td>235</td>
<td>3.92</td>
</tr>
<tr>
<td>0.50</td>
<td>15</td>
<td>0.008 3</td>
<td>235</td>
<td>3.92</td>
</tr>
<tr>
<td>0.75</td>
<td>20</td>
<td>0.008 3</td>
<td>235</td>
<td>3.92</td>
</tr>
<tr>
<td>1.00</td>
<td>25</td>
<td>0.008 3</td>
<td>235</td>
<td>3.92</td>
</tr>
<tr>
<td>1.25</td>
<td>32</td>
<td>0.008 3</td>
<td>235</td>
<td>3.92</td>
</tr>
<tr>
<td>1.50</td>
<td>40</td>
<td>0.012 4</td>
<td>353</td>
<td>5.88</td>
</tr>
<tr>
<td>2.00</td>
<td>50</td>
<td>0.016 6</td>
<td>470</td>
<td>7.83</td>
</tr>
<tr>
<td>2.50</td>
<td>65</td>
<td>0.020 7</td>
<td>588</td>
<td>9.79</td>
</tr>
<tr>
<td>3.00</td>
<td>80</td>
<td>0.024 9</td>
<td>705</td>
<td>11.75</td>
</tr>
<tr>
<td>4.00</td>
<td>100</td>
<td>0.033 2</td>
<td>940</td>
<td>15.67</td>
</tr>
<tr>
<td>NPT Nomin. Size (in.)</td>
<td>DN Nomin. Size (mm)</td>
<td>UL 429, ANSI Z21.21/CSA</td>
<td>FM 7400</td>
<td>EN 161</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mL/mi</td>
<td>mL/h</td>
<td>mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ft³/hr</td>
<td>cc/hr</td>
<td>n</td>
</tr>
<tr>
<td>6.00</td>
<td>150</td>
<td>0.049</td>
<td>141</td>
<td>0</td>
</tr>
<tr>
<td>8.00</td>
<td>200</td>
<td>0.066</td>
<td>188</td>
<td>0</td>
</tr>
</tbody>
</table>

[A.7.5.17]

Lubricated plug valves require lubrication with the proper lubricant in order to shut off tightly. The application and type of gas used can require frequent lubrication to maintain the ability of the valve to shut off tightly when needed.

[A.7.5.22]

See A.6.2.7.3.

[A.7.7]

Examples of worker safety procedures and regulations can be found in ANSI Z117.1, *Safety Requirements for Confined Spaces; NIOSH Pocket Guide to Chemical Hazards*; Title 29, Code of Federal Regulations, and other references.

[A.8.1.3]

For the protection of personnel and property, consideration should also be given to the supervision and monitoring of conditions in systems other than the heating system that could cause or that could lead to a potential hazard on any installation.

[A.8.2.9]

For some applications, additional manual action might be required to bring the process to a safe condition. The actions resulting from a manual emergency switch action take into account the individual system design and the hazards (e.g., mechanical, combustion system, process fluid, thermal fluid, etc.) associated with changing the existing state to another state and initiates actions to cause the system to revert to a safe condition.

[A.8.3]

Fluid heater controls that meet the performance-based requirements of ANSI/ISA 84.00.01, *Application of Safety Instrumented Systems for the Process Industries*, or IEC 61511, *Functional Safety: Safety Instrumented Systems for the Process Industry Sector*, can be considered equivalent. The determination of equivalency involves complete conformance to the safety life cycle, including risk analysis, safety integrity level selection, and safety integrity level verification, which should be submitted to the authority having jurisdiction.
A.8.3.1.4

This control circuit and its non-furnace-mounted or furnace-mounted control and safety components should be housed in a dusttight panel or cabinet, protected by partitions or secondary barriers, or separated by sufficient spacing from electrical controls employed in the higher voltage furnace power system. Related instruments might or might not be installed in the same control cabinet. The door providing access to this control enclosure might include means for mechanical interlock with the main disconnect device required in the furnace power supply circuit.

Temperatures within this control enclosure should be limited to 125°F (52°C) for suitable operation of plastic components, thermal elements, fuses, and various mechanisms that are employed in the control circuit.

A.8.4

One PLC approach to combustion interlocks on multiburner heating systems is as follows:

1. Interlocks relating to purge are done via the PLC.
2. Purge timer is implemented in the PLC.
3. Interlocks relating to combustion air and gas pressure are done via the PLC.
4. Gas valves for pilot and burner directly connected to combustion safeguard should conform to the recommendations of 8.7.2.
5. Operation of pilot and burner gas valves should be confirmed by the PLC.
6. A PLC can be set up as intermittent, interrupted, or constant pilot operation. With appropriate flame safeguard, it would be possible to provide an interrupted pilot with one flame sensor and one flame safeguard.

This recommended practice suggests that the signal from the safety device be directly transmitted to the safety PLC input. Once the safety PLC processes the signal, the resulting data can be used for any purpose.

A.8.5.1.2(1)

Sampling in more than one location could be necessary to adequately confirm the absence of combustible vapors or gas in the heating chambers and all the passages that contain the products of combustion.

A.8.5.1.2.1(2)

Consideration should be given to the proximity of operating burners when the common combustion chamber exception to repeating purges is utilized. Accumulation of localized vapors or atmospheres is possible even with an operating burner in a chamber, depending on the size of the chamber, the number of burners, and the proximity of operating burners to the accumulation. In addition to proximity, burner design and exposure of the flame can also impact the ability of the operating burner to mitigate vapor or gaseous accumulations.

A.8.5.2
When the purge is complete, there should be a limit to the time between the completed purge and the trial for ignition. Delay can result in the need for a repurge.

A.8.6.5

Interlocks for combustion air minimum pressure or flow can be provided by any of the following methods:

(1) A low-pressure switch that senses and monitors the combustion air source pressure. In industrial combustion applications with modulating flow control valves downstream of the combustion air blower, it is most common to interlock the constant combustion air source pressure on single-burner and multiburner systems to meet the recommendations of 8.6.3 and 8.6.5. Because the combustion airflow is proved during each purge cycle along with the combustion air source pressure, the most common convention is to prove the combustion air source pressure during burner operation following purge. In a multiburner system, the proof of combustion airflow during purge proves that any manual valves in the combustion air system are in an adequately open position. These manual air valves are provided for maintenance and combustion airflow balancing among burners in a temperature control zone. In combustion air supply systems that use either an inlet damper or a speed control, the combustion air pressure can fall below reliably repeatable levels with listed pressure switch interlocks at low fire. For these systems, the proof of minimum airflow can be a more reliable interlock.

(2) A differential pressure switch that senses the differential pressure across a fixed orifice in the combustion air system. In combustion air supply systems that use either an inlet damper or a speed control, the combustion air pressure can fall below reliably repeatable levels with listed pressure switch interlocks at low fire. For these systems, the proof of minimum airflow by use of a differential pressure switch across an orifice can be a more reliable interlock.

(3) An airflow switch. In combustion air supply systems that use either an inlet damper or a speed control, the combustion air pressure can fall below reliably repeatable levels with listed pressure switch interlocks at low fire. For these systems, the proof of minimum airflow by use of an airflow switch can be a more reliable interlock.

(4) A pressure switch on the inlet (suction) side of an induced draft (I.D.) fan. For heaters where airflow is induced by an I.D. fan, a pressure switch on the inlet of the I.D. fan can be used to prove that the minimum required suction pressure is available, which along with proof that air and stack dampers are not closed can be used as a minimum air flow interlock.

(5) For combustion systems that use high pressure gas/air to induce (inspirate) air locally at each burner or that use natural draft to induce air into the burners or combustion chamber, proof that air and stack dampers are not closed/open to at least a minimum position can be used to satisfy the intent of a low air flow interlock. It is not possible to monitor and prove the availability of combustion air for fluid heaters that use natural draft or air inspiriting burners.

A.8.6.6

Where compressed air is utilized, the maximum safe operating pressure can be exceeded.

A.8.7.1.2

See Figure A.8.7.1.2.
Paragraph 8.7.1.3 addresses conditions under which only one safety shutoff valve is too close to isolate a burner from its fuel gas supply. Figure A.8.7.1.3 provides a summary of 8.7.1.3 in the form of a decision tree. See 8.5.1.1.2 for guidance regarding conditions that are needed to allow that burner to be placed back in service. The requirements of 8.5.1.1.2 might not allow a burner shut off by closing a single safety shutoff valve to be placed back in service without repeating a pre-ignition purge.

The requirements of 8.7.1.3 do not preclude opening of the safety shutoff valve located upstream of the individual burners using single safety shutoff valves during the trial for ignition for the first burner being lighted.

Figure A.8.7.1.3 Safety Shutoff Decision Tree.
A.8.7.1.9

Backpressure can lift a valve from its seat, permitting combustion gases to enter the fuel system. Examples of situations that create backpressure conditions are leak testing, combustion chamber back pressure, and combustion air pressure during prepurge.

A.8.7.1.10

See A.6.2.7.3.

A.8.7.2

See Figure A.8.7.2.

Figure A.8.7.2 Typical Piping Arrangement Showing Fuel Gas Safety Shutoff Valves.
A.8.7.2.2
An additional safety shutoff valve located to be common to the heating system and that is proved closed and interlocked with the pre-ignition purge circuit can be used to meet the recommendations of 8.7.2.2.

A.8.7.3.3
An additional safety shutoff valve that is located so as to be common to the heating system and that is proved closed and interlocked with the pre-ignition purge circuit can be used to meet the recommendations of 8.7.3.2.
A.8.9.2

Ultraviolet detectors can fail in such a manner that the loss of flame is not detected. When these detectors are placed in continuous service, failures can be detected by use of a self-checking ultraviolet detector or by periodic testing of the detector for proper operation.

Flame detectors (scanners) with combustion safeguards that continuously operate beyond the maximum interval recommended by the combustion safeguard and flame detector manufacturer’s instructions would not be compliant.

A.8.9.2(3)

The term self-piloted burner is defined in NFPA 86, Standard for Ovens and Furnaces, 3.3.5.14.

A.8.11

Some liquid fuel can become too viscous for proper atomization at low temperatures. Some liquid fuels can congeal if their temperature falls below their pour point. Some liquid fuels can vaporize at higher temperatures and negatively affect burner stability.

A.8.12.1

The fact that oil or gas is considered a standby fuel should not reduce the safety requirements for that fuel.

A.8.15

The fluid should be protected with an additional temperature limit interlock to prevent excess fluid temperatures.

A.8.15.4

Temperature-sensing components, such as thermocouple and extension wires, that are not rated for the environment are at greater risk of short-circuiting.

A.8.17.1.1

Abnormal conditions that could occur and require automatic or manual de-energization of affected circuits are as follows:

(1) A system fault (short circuit) not cleared by normally provided branch-circuit protection (see NFPA 70, National Electrical Code)

(2) The occurrence of excess temperature in a portion of the furnace that has not been abated by normal temperature-controlling devices

(3) A failure of any normal operating controls where such failure can contribute to unsafe conditions

(4) A loss of electric power that can contribute to unsafe conditions

A.8.17.1.5

The permitted use in 8.17.1.5 could necessitate the derating of some components listed by manufacturers for other types of industrial service and motor control and as shown in Table A.8.17.1.5.
Table A.8.17.1.5 Heater Ratings

<table>
<thead>
<tr>
<th>Control Device</th>
<th>Resistance-Type Heating Devices</th>
<th>Infrared Lamp and Quartz Tube Heaters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating (% actual load)</td>
<td>Permissible Current (% rating)</td>
</tr>
<tr>
<td>Fusible safety switch (% rating of fuse employed)</td>
<td>125</td>
<td>80</td>
</tr>
<tr>
<td>Individually enclosed circuit breaker</td>
<td>125</td>
<td>80</td>
</tr>
<tr>
<td>Circuit breakers in enclosed panelboards</td>
<td>133</td>
<td>75</td>
</tr>
<tr>
<td>Magnetic contactors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–30 amperes</td>
<td>111</td>
<td>90</td>
</tr>
<tr>
<td>30–100 amperes</td>
<td>111</td>
<td>90</td>
</tr>
<tr>
<td>150–600 amperes</td>
<td>111</td>
<td>90</td>
</tr>
</tbody>
</table>

Note: This table applies to maximum load or open ratings for safety switches, circuit breakers, and industrial controls approved under current National Electrical Manufacturers Association (NEMA) standards.

A.8.17.2

The excess temperature set point should be set no higher than the maximum element temperature specified by the element manufacturer. The fluid should be protected with an additional temperature limit controller to prevent excess fluid temperatures.

A.8.17.2.5

Temperature-sensing components, such as thermocouple and extension wires, that are not rated for the environment are at greater risk of short-circuiting.

A.8.17.2.6

The sensing element should be positioned where the difference between the temperature control sensor and the excess temperature limit sensor is minimized. The temperature-sensing element of the excess temperature limit interlock should be located where it will sense the excess temperature condition that will cause the first damage to the heating element.

A.9.1

Class F heaters have fluid inside the tubes with essentially constant fluid flow rate and where the outlet temperature of the fluid is controlled by modulation of the heat input rate to the outside of the tubes. A fluid bypass loop should be considered to achieve variable flow to the user.

Class F fluid heaters present the following two major hazards:
(1) Uncontrolled release of the fluid, which can be caused by tube cracking or rupture, or pump seal failure, which can result in fire or explosion.

(2) Release and accumulation of combustible fuel gas or liquid, followed by ignition and explosion.

A.9.1.1
Balanced flow is typically achieved by the piping geometry or fixed flow restrictions. If fluid flow rates fall below the designed minimum flow rate, fluid overheating and subsequent degradation can occur. Some heater designs have one flow rate for tubes in the radiant section and another flow rate for tubes in the convective section.

If balancing trim valves are used, the flow through each pass should be monitored and interlocked into the combustion safety circuitry. Manual balancing trim valves should also have provisions to lock the valve to prevent inadvertent adjustment of the valve.

A.9.1.3
The maximum bulk fluid temperature is typically measured at the outlet of the heater.

A.9.1.6
Three-way valves or an automatic process equipment bypass can be used to maintain the minimum flow through the heater.

A.9.2.1.1
Air-cooled or water-cooled pumps with mechanical seals, canned motor pumps, seal-less pumps, and pumps that are magnetically coupled are examples of pumps that are used. If magnetically coupled pumps are used, over-temperature protection of the pump coupling location should be provided. Packing-based seals are prone to leakage and are not recommended. Face type mechanical seals are preferred over other designs. The pump material selection should take into account the possible thermal shock experienced under fire suppression scenarios. The mechanical seal may be protected by any one of a variety of standard seal flush, quench and cooling plans.

A.9.2.1.2
The pump manufacturer, the mechanical seal manufacturer, the fluid manufacturer, or other experienced resources should be consulted to provide recommendations on the appropriate pump for the application.

A.9.2.1.5
Loss of cooling can cause seal failure and a subsequent fire hazard.

A.9.2.1.6
Misalignment can cause seal failure and a subsequent fire hazard.

A.9.2.1.7
The alignment of the pump can change during the transition from cold to operating temperatures.
Examples of devices to protect pumps can be drip legs, strainers, filters, and screens.

A.9.2.2

If the fluid being relieved is combustible, measures should be taken to prevent ignition of the vapors or aerosols from the vent. Additional guidance can be found in NFPA 30, *Flammable and Combustible Liquids Code*.

A.9.2.2.2.1

Containment vessels for liquids approved locations can include drain tanks, fill tanks, supplemental storage tanks, knock-out drums and catch tanks.

A.9.2.2.5

Secondary containment of effluent containment vessel should be considered if the fluid is flammable (see NFPA 30), hazardous toxic, or corrosive liquids are outside the scope of this standard, and other standards can be consulted for appropriate venting.

A.9.2.3.2

Gate and ball valves can be used for isolation purposes, and globe or wafer-style butterfly valves can be used for throttling purposes. Care should be exercised in selection of valve packing materials to avoid leaks and a possible fire or emission hazard. Valves with bellows sealed stems may be selected if the fluid in the system is particularly prone to leakage, has a high vapor pressure, has a low flash point, or may present any other life-safety hazard if it is allowed to leak into the environment.

A.9.2.4.2

Expansion tanks are typically fabricated from carbon and stainless steel.

A.9.2.4.3

The operating temperature, the expansion coefficient of the fluid, and the system volume are used to calculate the volume of the expansion tank. Some vapor space should remain in the tank when the system is at operating temperature. If the tank operates at atmospheric pressure and is located outdoors, an inert gas blanket should be considered to minimize moisture ingress into the system. For very large systems, where expansion tanks are elevated and working volume is very large exceeds 1000 gal (3785 L), a secondary, ground-level catch/storage tank and refill pumps can be used to take up excess expansion volume.

A.9.2.4.4

In addition to the low-level interlock, on large volume systems, it is good practice to use dynamic leak detection (rate of change monitoring) on expansion tanks. Dynamic leak detection is encouraged because it will detect abnormal fluid loss over time whereas a low level switch is a single set point and often located just above tank empty. In some situations, expansion tanks can be several thousand gallons in capacity. Therefore, if only low-level monitoring is provided, several thousand gallons could escape the system before the alarm is sounded. With dynamic leak detection, alarm notification of the falling oil level will be made much sooner.

A.9.2.4.8
Nitrogen is typically used as the inert blanket. Other gases, such as carbon dioxide, can be used. In the oil and gas industry, it is common to use flammable gases. If flammable gases are used, other precautions can be required. *It is not advisable to pressurize the expansion tank with compressed air, as fluid oxidative degradation will likely occur.*

A.9.2.4.9

Consideration should be given to pressure surges that can occur during process upsets that can expose the expansion tank to pressures greater than 15 psi (100 kPa). An example of a common process upset is the rapid pressure rise due to water flashing to steam. For this reason, many users specify expansion tanks that meet the requirements of ASME *Boiler and Pressure Vessel Code*, Section VIII Division 1.

A.9.2.4.10

A blanket gas low-pressure interlock should be considered where low blanket gas pressure can create a fluid heater system hazard.

A.9.2.4.11

See A.9.2.4.10.

A.9.3.1.1

Detecting only flow/no flow conditions is not adequate. A pressure switch at the pump discharge and a pump rotation switch are examples of proving devices that are not recommended to prove minimum flow because unexpected blockages in the heater tubes will not be detected by these devices.

Orifice plate(s) located at the outlet of a fluid heater and used with differential pressure interlock(s) are a reliable way of proving the minimum flow. If pressure drop across the heater is used, additional interlocks and precautions should be considered.

A.10.1

Class G heaters have fluid inside the tubes with modulated fluid flow rate (e.g., by process demand) and where the outlet temperature of the fluid is controlled by modulation of the heat input rate to the outside of the tubes.

Class G fluid heaters present the following two major hazards:

(1) Uncontrolled release of the fluid, which can cause tube cracking or rupture, pump seal failure, which can result in fire or explosion

(2) Release and accumulation of combustible fuel gas or liquid, followed by ignition and explosion

A.10.1.1.1

Balanced flow is typically achieved by the piping geometry or fixed flow restrictions. If fluid flow rates fall below the designed minimum flow rate, fluid overheating and subsequent degradation can occur. Some heater designs have one flow rate for tubes in the radiant section and another flow rate for tubes in the convective section.
If balancing trim valves are used, the flow through each pass should be monitored and interlocked into the combustion safety circuitry. Manual balancing trim valves should also have provisions to lock the valve to prevent inadvertent adjustment of the valve.

A.10.1.3
The maximum bulk fluid temperature is typically measured at the outlet of the heater.

A.10.1.7
The fluid flow control device should have mechanical stops or equivalent provisions to prevent the flow from dropping below the minimum design flow. Variable speed pumping systems should provide a minimum motor speed limit to prevent flow less than the minimum required level in both automatic and manual operation.

A.10.2.1.1
Air-cooled or water-cooled pumps with mechanical seals, canned motor pumps, seal-less pumps, and pumps that are magnetically coupled are examples of pumps that are used. If magnetically coupled pumps are used, over-temperature protection of the pump coupling location should be provided. Packing-based seals are prone to leakage and are not recommended. The pump material selection should take into account the possible thermal shock experienced under fire suppression scenarios.

A.10.2.1.2
The fluid manufacturer and the heater manufacturer should be consulted to provide recommendations on the appropriate pump for the application.

A.10.2.1.5
Loss of cooling can cause seal failure and a subsequent fire hazard.

A.10.2.1.6
Misalignment can cause seal failure and a subsequent fire hazard.

A.10.2.1.7
The alignment of the pump can change during the transition from cold to operating temperatures.

A.10.2.1.9
Examples of devices to protect pumps can be drip legs, strainers, filters, and screens.

A.10.2.2
If the fluid being relieved is combustible, measures should be taken to prevent ignition of the vapors or aerosols from the vent. Additional guidance can be found in NFPA 30, *Flammable and Combustible Liquids Code*.

A.10.2.2.1
Containment vessels for liquids include drain tanks, fill tanks, supplemental storage tanks, and catch tanks.
Secondary containment of effluent containment vessel should be considered if the fluid is flammable or hazardous.

A.10.2.3.2
Gate and ball valves can be used for isolation purposes, and globe or wafer-style butterfly valves can be used for throttling purposes.

A.10.2.4.2
Expansion tanks are typically fabricated from carbon and stainless steel.

A.10.2.4.3
The operating temperature, the expansion coefficient of the fluid, and the system volume are used to calculate the volume of the expansion tank. Some vapor space should remain in the tank when the system is at operating temperature. If the tank operates at atmospheric pressure and is located outdoors, an inert gas blanket should be considered to minimize moisture ingress into the system. For very large systems, where expansion tanks are elevated and working volume exceeds 1000 gallons, a secondary, ground-level catch/storage tank and refill pumps can be used to take up excess expansion volume.

A.10.2.4.4
In addition to the low-level interlock, on large-volume systems, it is good practice to use dynamic leak detection (rate of change monitoring) on expansion tanks. Dynamic leak detection is encouraged because it will detect abnormal fluid loss over time whereas a low-level switch is a single set point and often located just above tank empty. In some situations, expansion tanks can be several thousand gallons in capacity. Therefore, if only low-level monitoring is provided, several thousand gallons could escape the system before the alarm is sounded. With dynamic leak detection, alarm notification of the falling oil level will be made much sooner.

A.10.2.4.8
Nitrogen is typically used as the inert blanket. Other gases, such as carbon dioxide, can be used. In the oil and gas industry, it is common to use flammable gases. If flammable gases are used, other precautions can be required.

A.10.2.4.9
Consideration should be given to pressure surges that can occur during process upsets that can expose the expansion tank to pressures greater than 15 psi. An example of a common process upset is the rapid pressure rise due to water flashing to steam. For this reason, many users specify expansion tanks that meet the requirements of ASME Boiler and Pressure Vessel Code, Section VIII Division 1.

A.10.2.4.10
A blanket gas low-pressure interlock should be considered where low blanket gas pressure can create a fluid heater system hazard.

A.10.2.4.11
See A.10.2.4.10.
A.10.3.1.1

Detecting only flow/no flow conditions is not adequate. A pressure switch at the pump discharge and a pump rotation switch are examples of proving devices that are not recommended to prove minimum flow as unexpected blockages in the heater tubes will not be detected by these devices.

Orifice plate(s) located at the outlet of a fluid heater and used with differential pressure interlock(s) are a reliable way of proving the minimum flow. If pressure drop across the heater is used, additional interlocks and precautions should be considered.

A.11.1

Class H heaters have heat source (combustion or electricity) inside the tube(s) with fluid surrounding the tube.

Class H fluid heaters present the following two major hazards:

1. Uncontrolled release of the fluid, which can cause tube cracking or rupture, or pump seal failure, which can result in fire or explosion

2. Release and accumulation of combustible fuel gas or liquid, followed by ignition and explosion

A.11.1.1.1

Balanced flow is typically achieved by the piping geometry or fixed flow restrictions. If fluid flow rates fall below the designed minimum flow rate, fluid overheating and subsequent degradation can occur.

If balancing trim valves are used, the flow through each pass should be monitored and interlocked into the combustion safety circuitry. Manual balancing trim valves should also have provisions to lock the valve to prevent inadvertent adjustment of the valve.

A.11.1.3

The maximum bulk fluid temperature is typically measured at the outlet of the heater.

A.11.1.7

Three-way valves or an automatic process equipment bypass can be used to maintain the minimum flow through the heater.

A.11.2.1.1

Air-cooled or water-cooled pumps with mechanical seals, canned motor pumps, seal-less pumps, and pumps that are magnetically coupled are examples of pumps that are used. If magnetically coupled pumps are used, over-temperature protection of the pump coupling location should be provided. Packing-based seals are prone to leakage and are not recommended. The pump material selection should take into account the possible thermal shock experienced under fire suppression scenarios.

A.11.2.1.2

The fluid manufacturer and the heater manufacturer should be consulted to provide recommendations on the appropriate pump for the application.

A.11.2.1.5
Loss of cooling can cause seal failure and a subsequent fire hazard.

A.11.2.1.6

Misalignment can cause seal failure and a subsequent fire hazard.

A.11.2.1.7

The alignment of the pump can change during the transition from cold to operating temperatures.

A.11.2.1.9

Examples of devices to protect pumps can be drip legs, strainers, filters, and screens.

A.11.2.2

If the fluid being relieved is combustible, measures should be taken to prevent ignition of the vapors or aerosols from the vent. Additional guidance can be found in NFPA 30, *Flammable and Combustible Liquids Code*.

A.11.2.2.2.1

Containment vessels for liquids include drain tanks, fill tanks, supplemental storage tanks, and catch tanks.

A.11.2.2.2.5

Secondary containment of effluent containment vessel should be considered if the fluid is flammable or hazardous.

A.11.2.3.2

Gate and ball valves can be used for isolation purposes, and globe or wafer-style butterfly valves can be used for throttling purposes.

A.11.2.4.2

Expansion tanks are typically fabricated from carbon and stainless steel.

A.11.2.4.3

The operating temperature, the expansion coefficient of the fluid, and the system volume are used to calculate the volume of the expansion tank. Some vapor space should remain in the tank when the system is at operating temperature. If the tank operates at atmospheric pressure and is located outdoors, an inert gas blanket should be considered to minimize moisture ingress into the system. For very large systems, where expansion tanks are elevated and working volume exceeds 1000 gallons, a secondary, ground-level catch/storage tank and refill pumps can be used to take up excess expansion volume.

A.11.2.4.4

In addition to the low-level interlock, on large-volume systems, it is good practice to use dynamic leak detection (rate of change monitoring) on expansion tanks. Dynamic leak detection is encouraged because it will detect abnormal fluid loss over time whereas a low-level switch is a single set point and often located just above tank empty. In some situations, expansion tanks can be several thousand gallons in capacity. Therefore, if only low-level monitoring is provided, several
thousand gallons could escape the system before the alarm is sounded. With dynamic leak detection, alarm notification of the falling oil level will be made much sooner.

A.11.2.4.8
Nitrogen is typically used as the inert blanket. Other gases, such as carbon dioxide, can be used. In the oil and gas industry, it is common to use flammable gases. If flammable gases are used, other precautions can be required.

A.11.2.4.9
Consideration should be given to pressure surges that can occur during process upsets that can expose the expansion tank to pressures greater than 15 psi. An example of a common process upset is the rapid pressure rise due to water flashing to steam. For this reason, many users specify expansion tanks that meet the requirements of ASME *Boiler and Pressure Vessel Code*, Section VIII Division 1.

A.11.2.4.10
A blanket gas low-pressure interlock should be considered where low blanket gas pressure can create a fluid heater system hazard.

A.11.2.4.11
See A.11.2.4.10.

A.11.3.1.1
Detecting only flow/no flow conditions is not adequate. A pressure switch at the pump discharge and a pump rotation switch are examples of proving devices that are not recommended to prove minimum flow as unexpected blockages in the heater tubes will not be detected by these devices.

Orifice plate(s) located at the outlet of a fluid heater and used with differential pressure interlock(s) are a reliable way of proving the minimum flow. If pressure drop across the heater is used, additional interlocks and precautions should be considered.

A.12.1
This recommended practice addresses the fire protection needs of fluid heaters and related equipment. Fire protection needs external to this equipment are beyond the scope of this recommended practice.

Fire extinguishing systems and methods should be designed in accordance with fire protection engineering principles and applicable standards.

Hazards associated with combustible or high temperature fluid migration to other areas through open or incompletely sealed floors should be considered.

Fixed fire protection for the equipment can consist of sprinklers, water spray, carbon dioxide, foam, dry chemical, water mist, or steam extinguishing systems. The extent of the protection depends on the construction, arrangement, and location of the fluid heater or related equipment as well as the materials being processed.
Hydrogen and other flammable gas fires normally are not extinguished until the supply of gas has been shut off because of the danger of re-ignition or explosion. Re-ignition can occur if a hot surface adjacent to the flame is not cooled with water or by other means. Personnel should be cautioned that hydrogen flames are invisible and do not radiate heat.

A.12.1.1

Where automatic fire protection systems are installed, alarming and actuation can be based on one or more of the following criteria:

1. High values from differential flow detectors comparing fluid flowing into and out of the heater
2. Low fluid level in the expansion tank (Note: This function can be used only if the expansion tank level is not automatically corrected with a pumped resupply of fluid from the storage tank.)
3. High values from flue gas combustibles analyzer
4. Increase in opacity of smoke exiting the heater
5. High flue gas temperature
6. Increase in carbon monoxide in flue gas
7. Decrease in oxygen in flue gas

A.12.1.4

Fire resistance duration, corrosion resistance, and weathering resistance should be considered when fireproofing is applied to heater structural members.

A.12.2.1

Sprinkler protection alone cannot ensure that a fire involving a fluid release will not cause catastrophic heater or building damage.
A.12.1

This recommended practice addresses the fire protection needs of fluid heaters and related equipment. Fire protection needs external to this equipment are beyond the scope of this recommended practice. Fire extinguishing systems and methods should be designed in accordance with fire protection engineering principles and applicable standards. Hazards associated with combustible or high temperature fluid migration to other areas through open or incompletely sealed floors should be considered.

Fixed fire protection for the equipment can consist of sprinklers, water spray, carbon dioxide, foam, dry chemical, water mist, or steam extinguishing systems. The extent of the protection depends on the construction, arrangement, and location of the fluid heater or related equipment as well as the materials being processed.

Hydrogen and other flammable gas fires normally are not extinguished until the supply of gas has been shut off because of the danger of re-ignition or explosion. Re-ignition can occur if a hot surface adjacent to the flame is not cooled with water or by other means. Personnel should be cautioned that hydrogen flames are invisible and do not radiate heat.

A.12.1.1

Where automatic fire protection systems are installed, alarming and actuation can be based on one or more of the following criteria:

1. High values from differential flow detectors comparing fluid flowing into and out of the heater
2. Low fluid level in the expansion tank (Note: This function can be used only if the expansion tank level is not automatically corrected with a pumped resupply of fluid from the storage tank.)
3. High values from flue gas combustibles analyzer
4. Increase in opacity of smoke exiting the heater
5. High flue gas temperature
6. Increase in carbon monoxide in flue gas
7. Decrease in oxygen in flue gas

A.12.2.1

Sprinkler protection alone cannot ensure that a fire involving a fluid release will not cause catastrophic heater or building damage.

Additional Proposed Changes

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>87-15_Word_Annex_A.docx</td>
<td>Deletions from Annex material for Chapter 9</td>
<td></td>
</tr>
<tr>
<td>87-15-Word_Ch09.docx</td>
<td>Revisions to Annex material for Chapter 9 are embedded between revisions to the mandatory text for Chapter 9</td>
<td></td>
</tr>
</tbody>
</table>

Statement of Problem and Substantiation for Public Input

In addition to the changes related to converting the document into a standard, the Task Group on Heater Types also incorporated changes into the Chapter 9 attachment related to consolidating fluid heater safeguards that were identical across types F, G, and H. As such, the Task Group has proposed eliminating Chapters 10 and 11 and renaming Chapter 9 simply "Heaters". In making this change, the Task Group also modified several sections of Annex Material for clarity.

Related Public Inputs for This Document

<table>
<thead>
<tr>
<th>Related Input</th>
<th>Relationship</th>
</tr>
</thead>
</table>

Submitter Information Verification
Public Input No. 3-NFPA 87-2015 [Section No. D.1.2]

D.1.2 Other Publications.

D.1.2.1 ANSI Publications.
American National Standards Institute, Inc., 25 West 43rd Street, 4th Floor, New York, NY 10036.

D.1.2.2 ASME Publications.

D.1.2.3 BS, EN Publications.
European Committee for Standardization, 36, rue de Stassart CEN-CENELEC Management Centre, Avenue Matrix 17, B-1050 1000, Brussels, Belgium.

D.1.2.4 FM Publications.
FM Global, 1301 Atwood, 270 Central Avenue, P.O. Box 7500, Johnston, RI 02919.

D.1.2.5 IEC Publications.
International Electrical Commission, 3 rue de Varembé, P.O. Box 131, CH - 1211, Geneva 20, Switzerland.

D.1.2.6 NBBI Publications.
National Board of Boiler and Pressure Vessel Inspectors, 1055 Crupper Avenue, Columbus, OH 43229.

D.1.2.7 NIOSH Publications.
National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 3033.

D.1.2.8 UL Publications.
Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.

D.1.2.9 U.S. Government Publications.

Statement of Problem and Substantiation for Public Input

Referenced current SDO names, addresses, standard names, numbers, and editions.
<table>
<thead>
<tr>
<th>Related Public Inputs for This Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Input</td>
</tr>
<tr>
<td>Public Input No. 2-NFPA 87-2015</td>
</tr>
<tr>
<td>[Section No. 2.3]</td>
</tr>
<tr>
<td>Public Input No. 1-NFPA 87-2015</td>
</tr>
<tr>
<td>[Global Input]</td>
</tr>
<tr>
<td>Relationship</td>
</tr>
<tr>
<td>Referenced current SDO names, addresses, standard names, numbers, and editions.</td>
</tr>
</tbody>
</table>

Submitter Information Verification

- **Submitter Full Name**: Aaron Adamczyk
- **Organization**: [Not Specified]
- **Street Address**:
- **City**:
- **State**:
- **Zip**:
- **Submittal Date**: Sun Feb 08 01:11:16 EST 2015
D.1.2.8 UL Publications.
Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.

Statement of Problem and Substantiation for Public Input

Proposed changes reflect updated editions of UL Standards

Submitter Information Verification

Submitter Full Name: RONALD FARR
Organization: UL LLC
Street Address:
City:
State:
Zip:
Submittal Date: Wed Jul 01 13:27:49 EDT 2015