High ceilings

New RFP Open, Due October 14, for FPRF Project: Smoke Detector Spacing on High Ceilings – Phase II

The Fire Protection Research Foundation is seeking proposals to identify a project contractor for a new project aiming to develop guidance for the installation of smoke detectors on smooth ceilings over 10 ft (3 m) in height that can be used as the technical basis for any changes to applicable codes and standards. As background, there has been confusion in design and code enforcement communities on what to do when smoke detectors are installed on ceilings higher than 10 ft (3 m). While NFPA 72®, National Fire Alarm and Signaling Code®, contains a table that allows for reduction of spacing for heat detection, it does not address spacing considerations for smoke detection based on ceiling heights. A previous literature review and gap analysis study on smoke detectors in high ceiling spaces was published by the Research Foundation in 2017. The outcomes of this study indicated that there was limited context and significant knowledge gaps that preclude the formulation of scientifically justified prescriptive requirements regarding smoke detector spacing relative to ceiling height. This study outlined a path forward to better characterize smoke detector spacing in high ceilings, such as by establishing a performance metric for smoke detectors that can be applied to high ceilings. Since the fire protection industry still needs additional information on the impact of ceiling height and detector spacing on smoke detection performance, the Research Foundation has initiated a project to address this issue through a literature review, data collection, modeling, and validation testing effort. The overarching objective of this study is to develop prescriptive guidance on the spacing of smoke detectors on ceiling heights greater than 10 ft (3 m) and specify the height at which performance-based strategies should be leveraged.  The open RFP seeking a contractor for the “Smoke Detector Spacing on High Ceilings – Phase II” project is available here or on the Foundation’s website. Instructions on how to respond are included in the RFP. Please submit your proposals to Victoria Hutchison by October 14, 2022, at 5 p.m. ET.

“Research: the distance between an idea and its realization” – David Sarnoff, Pioneer of American radio and television

This was the quote used by Rodger Reiswig of JCI last week in his keynote to kick off the Detection portion of the 18th Annual SupDet program hosted by the Fire Protection Research Foundation in Atlanta, GA.  The Fire Protection Research Foundation hosts a technical conference held annually called “SupDet”, which focuses on specific research applications in the Suppression (hence “Sup”), and Detection (“Det”) industries. Mr. Reiswig continued to highlight the impact research has made in the in the fire protection industry. This year, the detection portion of the conference focused on research in several critical areas including detection and signaling for First Responders, Residential Spaces, Wildfire and Smart Technology Systems. Maria Marks, of Siemens, and Jason Webb, Potter Electric Signals, presented on Fire Prevention and Code Compliance in the Age of Information and Automation. As the Internet of Things and the Cloud continue to evolve, the Maria and Jason discussed the impact to life safety systems. Their passion was evident as they described the methods in which systems are being monitored, inspected, and tested, via unmanned equipment such as drones, and robots, as well as handheld devices such as tablets and smartphones. Maria and Jason further explained the benefits and concerns associated with such tasks and even went into how specific NFPA codes and standards (provided below) address automated inspection, testing, and maintenance. NFPA 13, Standard for the Installation of Sprinkler Systems NFPA 14, Standard for the Installation for Standpipe and Hose Systems NFPA 20, Standard for the Installation of Stationary Fire Pumps for Fire Protection NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems NFPA 72, National Fire Alarm and Signaling Code ® NFPA 915, Standard for Remote Inspections (proposed standard) If you missed SupDet, the slides from the presentations will be posted shortly on the SupDet website!

A Closer Look at Some Assembly Occupancy Requirements

The fire at a Thai nightclub in early August 2022 was all too familiar. It started during a live music performance killing 20 people and injuring 25. Many of the details emerging are eerily similar to The Station nightclub fire which claimed the lives of 100 people and injured 230 more in February of 2003. In both instances, flammable interior finish and blocked exits were believed to have played a role in the fast-spreading fires and high number of fatalities. The 2003 tragedy led to a number of changes to NFPA 101, Life Safety Code, while also reiterating the importance of interior finish and means of egress requirements for assembly occupancies. Interior finishes are the interior surfaces of a building that are generally secured in place like wall and ceiling coverings. They have proven to be a contributing factor in how quickly a fire spreads. To minimize the impact interior finish has on fire spread, Chapter 10 of the 2021 edition NFPA 101, Life Safety Code®, establishes basic requirements for interior wall, ceiling, and floor finishes. Chapter 10 outlines two testing options: 1) testing in accordance with NFPA 286, Standard Methods of Fire Tests for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth; or 2) testing in accordance with ASTM E84 or UL 723.  Paragraph 10.2.3.1.2 of the 2021 edition of NFPA 101, outlines acceptance criteria for materials tested in accordance with NFPA 286. The acceptance criteria includes: limitations on the spread of flames; peak heat release rate less than 800 kW; and for new installations the total smoke released throughout the test cannot exceed 1000 m2. Any material that meets the criteria outlined in 10.2.3.1.2 can be used wherever a Class A material is permitted. The alternative test method (ASTM E84 or UL 723) results in the material being grouped into a class. There are three classes- Class A, Class B, and Class C which are determined by a material’s flame spread index and smoke developed index. Class A materials will have the lowest flame spread index of the three classifications. The smoke developed index is the same range for all three classifications. For newly installed materials both the flame spread index and smoke developed index is considered, whereas for existing materials only flame spread index is considered. Occupancy chapters may further regulate interior finish beyond what is contained in Chapter 10. In both fires, acoustic material is believed to have been a major contributing factor in the rapid spread of fire. Assembly occupancies do further regulate interior finish. The requirements are the same for new and existing assembly occupancies. In general assembly areas with an occupant load of 300 or fewer, ceiling and wall materials must be Class A, B, or C. In general assembly areas with an occupant load of more than 300, and in corridors, and lobbies, interior wall and ceiling finishes must be Class A or B. In enclosed stairs interior finish materials must be Class A. One other contributing factor was the availability of exits. In both the fire in Thailand and at The Station nightclub, one of the doors to the outside was blocked for use by occupants to allow the band performing to have their own separate entrance/exit. One of the fundamental components of the Life Safety Code is the concept of free egress. Prohibiting people from entering the building via a door is one thing, but not allowing occupants to exit the building via the nearest door is unacceptable. Additionally, NFPA 101 prohibits the means of egress for assembly occupancies from going through hazardous areas such as kitchens, storerooms, closets, stages, and platforms. There are also requirements related to the size of a main entrance/exit, where one exists. History has shown that occupants tend to go out the way they came, even if there is an exit closer. The main entrance/exit provisions are intended to prevent crowd crush situations. In existing assembly occupancies, the main entrance/exit needs to be sized to accommodate at least one-half the total occupant load. For new assembly occupancies that are dance halls, discotheques, nightclubs, or that have festival seating, the main entrance/exits must be wide enough to accommodate two-thirds of the total occupant load. The main entrance/exit for all other new assembly occupancies must be sized to accommodate one-half the total occupant load. If the assembly occupancy is more than one level, then each level must have access to the main entrance/exit and that access must be sized to handle two-thirds (for new assembly occupancies) or one-half (for existing) of the occupant load of that level. The main entrance/exit requirements for certain types of new assembly occupancies was increased from one-half to two-thirds the total occupant load due to a crowd crush event during The Station nightclub fire. Another way the Life Safety Code strives to reduce the risk of crowd crush is by requiring trained crowd managers. All assembly occupancies, with the exception of certain ones used exclusively for religious worship, are required to have at least one trained crowd manager. Depending on the total occupant load, additional crowd managers may be required. Typically, there should be one crowd manager for every 250 occupants. Prior to the 2006 Edition, crowd managers were only required for assembly occupancies with occupant loads of more than 1000. After The Station nightclub fire, the Life Safety Code was changed to require at least one crowd manager for all assembly occupancies. Within 2 minutes of the fire starting at The Station nightclub, there was crowd crush at the main entrance/exit. This led to the main entrance/exit being almost completely impassable. The crowd manager’s responsibilities include understanding crowd management, understanding methods of evacuation, being familiar with the facility evacuation plan, being familiar with the emergency response procedures, and understanding procedures for reporting emergencies. While the cause of the recent fire at the Thai nightclub is still under investigation, The Station nightclub fire was caused by pyrotechnics. To reduce the risk of open flames or pyrotechnics starting a fire in an assembly occupancy they are prohibited unless certain conditions are met. In order for pyrotechnics to be used on stage before proximate audiences, precautions to prevent ignition of any combustible material, satisfactory to the authority having jurisdiction must be met and the use of the pyrotechnic device must comply with NFPA 1126, Standard for the Use of Pyrotechnics Before a Proximate Audience. As we have seen countless times, fires in assembly occupancies, and in particular nightclubs, can result in a high number of fatalities. By carefully considering the use of open flames and pyrotechnics we can eliminate potential ignition sources in these types of occupancies. Additionally, ensuring the interior finish requirements for assembly occupancies are met can help slow the spread of fire. Fires in an assembly occupancy have the added risk of leading to a crowd crush event. Compliance with the means of egress and crowd manager requirements will help reduce the risk of crowd crush events during emergency situations. 
House on fire with firefighters on the scene

Research Foundation 40th anniversary webinar series recordings now available

The Fire Protection Research Foundation (FPRF), research affiliate of the National Fire Protection Association (NFPA®), conducted a two-day webinar series on August 24 and 25, 2022, celebrating its 40th anniversary this year. The webinar series covered research topic areas and themes that are aligned with research priorities of FPRF and the fire and life safety industry. This webinar series consisted of presentations by subject matter experts addressing the following themes: Day 1 program: Webinar recording Reduce Residential Fire Losses Fire Safety in the US since 1980 Cooking fires Impact of Medications on Older Adult Fall and Fire Risk Strategies for Community Resilience Wildland & Wildland Urban Interface Fires CAREDEX: Disaster Resilience in Aging Communities via a Secure Data Exchange Global Community Resilience Data Collection and Data Analytics to Inform Policy Global Fire data standardization Insurance Data – openIDL CRAIG 1300TM National Firefighter Cancer Registry Day 2 program: Webinar recording Hazards of New Materials and Systems Fire Safety Challenges of Green Buildings Energy Storage Systems Hazards of Modern Vehicles in Parking Structures Increase Effectiveness and Reliability of Safety Systems Impact of Research on NFPA 13 Impact of Research on NFPA 72 Effectiveness of fluorine free firefighting foams Fire Fighting Safety & Effectiveness Fire Service Contamination control & PPE Cleaning validation Firefighting foams: fire service roadmap Firefighter immersive learning training  If you missed attending this webinar series, the presentation recordings are now available to view on demand at www.nfpa.org/webinars. To learn more about the Research Foundation and our work over the last four decades, please visit: www.nfpa.org/fprf40.

First draft of NFPA 1970 proposes changes to firefighter PPE standard and will be open for review and Public Comment through January 4, 2023

In my continuing effort to keep interested parties apprised of the latest standards activity related to firefighting gear and conversations about the presence of PFOAs, the first draft of the upcoming edition of NFPA 1970, Standard on Protective Ensembles for Structural and Proximity Firefighting, Work Apparel and Open-Circuit Self-Contained Breathing Apparatus (SCBA) for Emergency Services, and Personal Alert Safety Systems (PASS) has been posted online and is now available for review and Public Comment through January 4, 2023. One of the proposed changes within the draft includes the elimination of the light degradation resistance test on the moisture barrier layer of jackets. It will be replaced by a multi-environmental conditioning procedure (9.1.22) that will be applied to composite test samples before certain tests. Some of the additional changes in the NFPA 1971 portion (protective ensembles) of NFPA 1970 include: Added new requirements for manufacturer indication of “PFAS FREE” gear. (6.1.7.6 & 6.4.13) Added new requirements for acceptable levels of specific restricted substances and added a test method to determine the presence and quantity of specific restricted substances. (7.1.14, 7.4.9, 7.7.6, 7.10.10, 7.13.7, 8.20, & 9.83) The Correlating Committee recommended to consider adding similar requirements for SCBA in Chapter 17 of NFPA 1970 (NFPA 1981 portion). Added requirements to test for ease of cleaning. (8.1.29, 8.4.17, 8.7.26, 8.10.19, 8.13.12, & 9.81) Added requirements to test for effectiveness of cleaning. (8.2.7 & 9.82) Added requirements to test for liquid repellency and penetration resistance of persistent contaminants. (8.2.8 & 9.84) Added requirements to test for leaching of material substances. (8.2.9 & 9.85) It’s important to note that these proposed changes and additions reflect the recommendations of the Technical and Correlating Committee on Hazardous Substances in the NFPA 1970 First Draft Report. As I outlined in a previous blog, NFPA does not create or dictate the provisions within our codes and standards. NFPA is the neutral facilitator of the standards development process; each standard is developed by balanced voluntary technical committees. It is an open and transparent process in which anyone (except NFPA staff) can review and provide input and comment. I strongly encourage everyone who has opinions, perspectives, and insights on these proposed changes to make sure their voices are heard by the committee. Comments will be accepted through January 4, 2023. Anyone who believes the first draft of the standard should be changed to address these and other topics is strongly encouraged to submit proposed changes (public comment) to the next edition of the standard. You do not have to be an NFPA member or on an NFPA Technical Committee to provide comment and propose additional changes.  Anyone (except NFPA staff) can propose a change to the standard by suggesting specific wording and providing a technical rationale through our online submission system, which is accessible at nfpa.org/1970next.  The deadline for Public Comment is January 4, 2023. In the following months, the Technical and Correlating Committees will consider all of the proposed changes received by the deadline and will develop a Second Draft of NFPA 1970.  NFPA anticipates that the Second Draft Reports will be posted for public review in the Fall of 2023. Throughout the process, the latest information on this standard can be found at nfpa.org/1970next.

Amazon Solar Shutdown Provides Opportunity for Praise and Reflection on Safe Solar Installations

According to recent reports from CNBC and other major news outlets, Amazon temporarily shut down all solar power generation at their North American facilities last year as they worked to investigate potential fire safety issues with these systems. While the details of what Amazon found in their investigations during the shutdown are unspecified and therefore can’t be expounded upon, knowing that Amazon recognized a compounding problem and made safety paramount by shutting down their solar generation at 47 North American sites should be commended. Although there was significant financial loss to Amazon by moving forward with the shutdown and launching the investigation, making the decision to do so aligned with the principles established by the NFPA Fire & Life Safety Ecosystem™—specifically, the company chose to make an Investment in Safety. The NFPA Fire & Life Safety Ecosystem is a framework that identifies the components that must work together to minimize risk and help prevent loss, injuries, and death from fire, electrical, and other hazards. There are eight key components in the Fire & Life Safety Ecosystem. These components are interdependent. When they work together, the Ecosystem protects everyone. If any component is missing or broken, the Ecosystem can collapse, often resulting in tragedy. Almost always we can trace the cause of fire and life safety tragedies back to the breakdown of one or more components. Aside from the aforementioned Investment in Safety, there are several other key areas of the Ecosystem that apply to safe solar installations. Codes, compliance, and skilled workers With a technology that is constantly changing like solar photovoltaic (PV) power, using the most current codes is critical for a safe installation. Within the Ecosystem, this would fall under the Development and Use of Current Codes component. As an example, NFPA 70,® National Electrical Code® (NEC®), covers the installation of PV systems in Article 690, including the array circuit(s), inverter(s), and controller(s) for such systems. Article 691 covers large-scale PV electric supply stations not under exclusive utility control, such as privately owned solar farms. Yet many areas of the country do not use the most current edition of the NEC, with some areas using editions dating back as far as 2008. That is a 15-year difference between the most current NEC and some of the oldest versions being used. As can be expected, there have been significant changes in product development and safe solar installation requirements over those years. For instance, rapid shutdown is a means of solar equipment reducing the potential for electric shock within 30 seconds of activation of shutdown, intended to raise the level of safety for firefighters that are responding to potential solar array fires. Rapid shutdown was introduced in the 2014 cycle of the NEC so anyone utilizing prior editions would not be providing this level of safety for first responders. This is a clear example of why it is so important to utilize the most current codes for solar installations in order to achieve maximum safety.   Fortunately, even for jurisdictions that are lagging behind in the use of the most recent codes, professionals can choose to take trainings on more recent editions. The NFPA 70, National Electrical Code (NEC) (2020) Online Training Series, for example, provides trainees with key information and interactive exercises on the 2020 edition of the NEC. With the 2023 NEC having just taken effect September 1, be on the lookout for forthcoming training based on that version of the NEC.   Another area of the Ecosystem that is necessary for a safe solar installations is Code Compliance. The only way to truly ensure a safe installation is by verifying it through effective code enforcement. Those tasked with inspecting solar installations for safety must consider everything involved while reviewing the systems. NEC requirements as well as manufacturer installation requirements are critical items that must be met. It is also important to remember that code compliance does not end with the initial installation of the system. Any time a solar installation gets updated or modified, it is just as important to have that system reviewed again for continued compliance with the necessary codes as it was to have it inspected in the first place. The individuals that perform the solar installation matter as well. The Ecosystem requires a Skilled Workforce in order to ensure safe installations. Those that are considered skilled are aware of the most current codes and know how to apply them to the installation. They have been trained to properly handle, install, and maintain the equipment that is involved. From an enforcement standpoint, the NEC takes skill a step further by requiring that only qualified persons perform the installation of solar equipment, associated wiring, and interconnections. By definition within the NEC, a qualified person has skills and knowledge related to the construction and operation of the electrical equipment and installations and has received safety training to recognize and avoid the hazards involved. One critical way a Skilled Workforce can be created is through training programs like the ones offered by NFPA. The Photovoltaic and Energy Storage Systems Online Training Series, for example, is a four-part online program that covers topics that can assist with design, installation, maintenance, and inspection requirements for PV and energy storage systems. The training educates users on relevant code requirements for PV systems and ESS not just within the NEC, but also within other leading codes including NFPA 1, Fire Code, NFPA 855, Standard for the Installation of Stationary Energy Storage Systems, NFPA 5000®, Building Construction and Safety Code®, and others. When it comes to safe installations of solar power it is critical that we play offense, instead of defense. Choosing to be proactive by ensuring safe installations that align with the NFPA Fire & Life Safety Ecosystem up front will prevent the need for reactive decisions to correct any potential problems down the line. In the United States alone, solar power capacity has grown from approximately 0.34 gigawatts in 2008 to an estimated 97.2 gigawatts today. With no slowing down in sight, it is critical that those involved in performing solar installations and maintenance are doing so with safety as an important and necessary part of the process. Learn more about all of NFPA’s resources on PV and energy storage systems at nfpa.org/ess.

A Better Understanding of NFPA 70E: Setting Up an Electrical Safety Program (Part 6 - Inspections)

NFPA 70E®, Standard for Electrical Safety in the Workplace® has requirements for what should be included in an electrical safety program (ESP) but does not provide details. The requirement in Section 110.5(B) to inspect electrical equipment is one where it is the employer’s responsibility to fill in the gaps. A properly documented ESP does not exist until that has been accomplished. The policies and procedures in your ESP are what employees must be trained to follow. The ESP must address the inspection of newly installed or modified equipment. Does your ESP have a way to assign this responsibility? A newly hired, residential electrician may not be the appropriate inspector for a smelting facility. The local electrical inspector often does not inspect equipment that falls under NFPA 70E. Equipment is installed, maintained, repaired, and replaced by an employee or an outside contractor. The responsible person will need to not only determine that an installation meets the applicable manufacturer requirements but also those of applicable standards. This is not limited to electrical standards since things like improperly installed pressure systems in electrical equipment may affect safety. What are the ESP policies and procedures for these inspections? An ESP that requires that equipment be verified as complying with the NEC is not enough. Electrical system and equipment compliance with the NEC is often only determined during building construction. The NEC does not address maintenance nor is internal electrical circuits part of the NEC. However, technicians maintaining motor control equipment must know the applicable NEC requirements. A contracted HVAC technician may be required to provide documentation that their work complies with applicable standards and codes, as well as the facilities requirements. Is their work inspected by a facility employee? Who is authorized to inspect repairs on custom production line equipment? It might not be desirable for the employee performing the work to also perform the inspection. The ESP must address not only these issues but also the training of the employee conducting inspections. The ESP might permit some types of electrical work to be completed without additional inspection. Do employees know which specific equipment is permitted to be energized before or without the additional inspection? A contractor may not follow the same safety protocol. Perhaps, it is not the equipment but the task that directs an inspection before energization. The ESP must address how to document all of this and what is to happen with the results. A requirement for the inspector to evaluate alternate installation methods may provide a means to mitigate hazards or repeated exposures. However, this most likely will not happen without a statement to do so in the ESP.  Proper installation, repair, and modification of electrical equipment play a major role in protecting every employee from electrical hazards. Inspection to determine that fact is a requirement in NFPA 70E. NFPA 70E is a safe work practice standard that is not appropriate to be used as the procedure for equipment inspection. It is critical to train an employee on inspection policies and procedures contained in the documented ESP.
1 2 ... 104

Latest Articles