4.1.10.2.1

A relief device that discharges to atmosphere, or pressure control device, shall be used on the discharge side of the pump when pumping into supply hose.

Statement of Problem and Substantiation for Public Input

Discharge relief valves that discharge to atmosphere are virtually unheard of in modern fire apparatus. All modern apparatus now have intake relief valves as required by 1901. Most intake valves and manifolds have adjustable relief valves. This should be revised, as it is not realistic to how supply hose is being used today.

Submitter Information Verification

Submitter Full Name: Paul Prevost
Organization: Clearwater Regional Fire Rescue services
Street Address:
City:
State:
Zip:
Submittal Date: Mon Nov 02 23:55:56 EST 2015

Committee Statement

Resolution: FR-3-NFPA 1962-2016
Statement: This change is made to accommodate recent technological advances in fire apparatus design which include pressure control devices other than those which relieve directly to atmosphere. The new annex material provides examples of mechanisms to provide fore pressure control.
4.1.10.2.3

The relief or pressure control device shall be capable of dumping enough water to atmosphere to prevent the pressure in the discharge hose from exceeding the service test pressure of the hose if the flow is shut off downstream of the device controlling the discharge pressure in accordance with NFPA1901 fire apparatus standards.

Statement of Problem and Substantiation for Public Input

Discharge to atmosphere relief valves are virtually unheard of in modern fire apparatus discharge plumbing. All modern fire apparatus have efficient pressure control systems as per NFPA 1901. Proper operation of apparatus when pumping supply hose precludes this requirement. Virtually all LDH hose appliances include intake relief valves that adequately address this pressure issue.

Submitter Information Verification

Submitter Full Name: Paul Prevost
Organization: Clearwater Regional Fire Rescu
Street Address:
City:
State:
Zip:
Submittal Date: Wed Nov 11 23:33:45 EST 2015

Committee Statement

Resolution: FR-4-NFPA 1962-2016
Statement: This change is made to accommodate recent technological advances in fire apparatus design which include pressure control devices other than those which relieve directly to atmosphere.
4.1.13*

After each use and before being placed in storage or back in service, the hose shall be drained, cleaned, dried (if not 100% Synthetic construction to prevent mildew), and inspected as specified in Sections 4.5 and 4.6.

Statement of Problem and Substantiation for Public Input

The need to dry each length of hose before being placed back in service, is not relevant to today's modern 100% synthetic fire hose. There is no need to dry rubber covered or coated 100% construction fire hose to prevent mildew damage to the fabric, synthetics cannot be damaged by mold or mildew. This is a requirement in a standard that is not happening in the real world today and should be removed.

Submitter Information Verification

Submitter Full Name: Paul Prevost
Organization: Clearwater Regional Fire Rescue
Street Address:
City:
State:
Zip:
Submittal Date: Sat Dec 12 18:18:10 EST 2015

Committee Statement

Resolution: There is still a need to dry all hose in order to prevent mildew, which can pose a threat to other equipment used by fire fighters. Technical substantiation for there not to be a need to dry synthetic fire hoses has not been provided.
Public Input No. 3-NFPA 1962-2015 [Section No. 4.2]

4.2.1 Occupant-Use Hose.

Occupant-use hose shall be inspected in accordance with Section 4.5 when it is placed in service.

4.2.2 In-service hose designed for occupant use only shall be removed and service tested as specified in Section 4.8 at intervals not exceeding 5 years after the date of manufacture and every 3 years thereafter.

4.2.3 When hose is taken out of service for testing, replacement hose shall be installed on the rack, on the reel, or in the storage area until the tested hose is returned to service.

4.2.4 In-service hose shall be unracked, unreeled, or unrolled and physically inspected as specified in Section 4.5 at least annually. The hose shall be reracked, rereeled, or rerolled so that any folds do not occur at the same position on the hose.

4.2.5 Damage Prevention.

4.2.5.1 Hose stored on racks or reels shall be protected from the weather and any local environmental condition potentially harmful to the hose.

4.2.5.2 Hose shall be protected from mechanical damage and exposure to heat.

4.2.5.3 Enclosures for occupant-use hose shall be constructed and the hose stored in accordance with NFPA 24, Standard for the Installation of Private Fire Service Mains and Their Appurtenances.

4.2.6 In areas where rodents can pose a problem, the hose shall be visually inspected more frequently for rodent damage.

4.2.7 After each use and before being placed back in service, the hose shall be inspected as specified in Section 4.5, service tested as specified in Section 4.8, and cleaned and dried as specified in Section 4.6.

4.2.8 Monthly inspection

4.2.8.1 Inspect valve and nozzle to assure it is closed.

4.2.8.2 Inspect hose to assure it is still on the rack.

There is no provision for monthly inspection.

Statement of Problem and Substantiation for Public Input

Monthly inspection would confirm the occupant hose is ready to be used.

There is no provision in the NFPA about this matter. Add section 4.2.8

Submitter Information Verification

Submitter Full Name: DAVE HOVINGTON
Organization: ATCO STRUCTURES AND LOGISTICS
Street Address:
City:
State:
Zip:
Submittal Date: Wed Jul 15 11:14:41 EDT 2015

Committee Statement

Resolution: This subject is already addressed in Table 6.1.1.2 of the 2014 edition of NFPA 25.
4.8 Service Testing Attack, Supply, Forestry, and Occupant-Use Hose

4.8.1 Hose manufactured prior to July 1987 to meet the requirements of the 1979 and previous editions of NFPA 1961, *Standard on Fire Hose*, shall be removed from service.

4.8.2 Hose manufactured during July 1987 or after that date to the 1987 or subsequent editions of NFPA 1961 shall be service tested as specified in Section 4.8.

4.8.2.1 Attack fire hose shall be service tested to a minimum of 300 psi (20.7 bar or 2070 kPa) or a pressure not to exceed the service test pressure marked on the hose.

4.8.2.2 Supply fire hose shall be service tested to a minimum of 200 psi (13.8 bar or 1380 kPa) or a pressure not to exceed the service test pressure marked on the hose.

4.8.2.3 Forestry fire hose shall be service tested to a minimum of 300 psi (20.7 bar or 2070 kPa) or a pressure not to exceed the service test pressure marked on the hose.

4.8.2.4 Occupant-use hose shall be tested to the service test pressure marked on the hose.

4.8.2.5 Proof pressure tests for hoses shall be conducted only at the point of manufacture or at a facility equipped to perform those tests.

4.8.2.6 Tests in the field shall not subject the hose to its proof test pressure.

4.8.3 After the correct service test pressure has been determined for each length of hose to be tested, the service test shall be conducted as specified in Section 4.8.4.

4.8.4.1 Each length of hose to be service tested shall be inspected as specified in Section 4.5.

4.8.4.2 Any length of hose that fails the inspection shall be removed from the service test area and repaired as necessary or condemned.

4.8.4.3 All lengths of hose in the same hose line shall be of the same service test pressure.

4.8.4.4 The total length of any hose line in the hose test layout to be service tested shall not exceed 300 ft (91 m).

4.8.4.5 The hose test layout shall be straight, without kinks or twists.

4.8.4.6 All 3 ½ in. (89 mm) and larger diameter hose shall be service tested while lying on a horizontal surface.
4.8.4.7
A test location shall be selected that allows connection of the hose testing apparatus (pressure source) to a water source.

4.8.4.8
A hose testing machine, a stationary pump, or a pump on a fire department apparatus shall be used as a pressure source.

4.8.4.8.1
If a hose testing machine is used, the procedure defined in 4.8.5 shall be used.

4.8.4.8.2
If a stationary pump or a pump on a fire department apparatus is used, the procedure defined in 4.8.6 shall be used.

4.8.4.9
At the conclusion of the test, the hose records specified in Section 4.11 shall be updated to indicate the results of the service test for each length of hose tested.

4.8.4.10
Any hose that fails the inspection defined in Section 4.5, bursts or leaks during the service test, or has couplings that leak or are otherwise found defective as defined in 7.1.3 shall be tagged as required in 4.11.1.6 or 4.11.3.6 and removed from service.

4.8.4.10.1
If the hose leaks or the hose jacket fails inspection, a distinguishing mark noting the location of the defect(s) shall be placed on the hose.

4.8.4.10.2
If the couplings fail or are defective, they shall be repaired or replaced.

4.8.4.10.3
If the hose cannot be repaired, the couplings shall be removed from both ends.

4.8.4.11
If the hose is repaired, or the couplings are repaired or replaced, the hose shall be service tested in accordance with Section 4.8 before being placed back in service.

4.8.4.12
After testing, all hose shall be thoroughly cleaned, drained, and dried as specified in Section 4.6 before being placed in service or in storage.

4.8.5
Service Test Using a Hose Testing Machine.

The procedure defined in this subsection shall be used when hose is service tested using a hose testing machine.

WARNING: Because there is a potential for catastrophic failure during the service testing of fire hose, it is vital that safety precautions be taken to prevent exposure of anyone to this danger. Do not deviate from the procedures prescribed herein.

4.8.5.1
Hose Testing Machine Integrity.

The condition of the hose testing machine shall be thoroughly checked daily before each testing session and before the machine is used after being transported to a new testing site.

4.8.5.1.1
The hose testing machine shall be carefully examined for damaged components that might fail during the test.

4.8.5.1.2
If any damage is discovered, the hose testing machine shall not be used until the damaged component(s) is repaired or replaced.

4.8.5.1.3

A pressure leak integrity test shall be performed on the machine to determine whether the pressurized outlet side of the machine and its related components are leak-free.

4.8.5.1.3.1
The fire hose outlet connection(s) of the machine shall be capped or otherwise closed.

4.8.5.1.3.2
Pressure shall be applied through the machine using the integral pump to a level that is 10 percent higher than the highest service test pressure needed for the hose to be tested.

4.8.5.1.3.3
The pressure shall be held for 3 minutes with the pump turned off.

4.8.5.1.3.4
If leaks are detected, the testing machine shall not be used until the leaking component(s) is repaired or replaced.

4.8.5.1.4
The test gauge that is used to read the test pressure shall have been calibrated within the previous 12 months.

4.8.5.1.5
If the hose machine incorporates elevated outlets for water supply that are higher than the inflated diameter of the hose from the testing surface, a means to vent trapped air shall be provided between the hose and the outlet valve.

4.8.5.2 Conducting the Test.

4.8.5.2.1
The test layout shall be connected to the outlet side of the water supply valve on the hose testing machine.

4.8.5.2.2
A test cap with a bleeder valve shall be attached to the far end of each hose line in the test layout. If a test cap is not available, a nozzle with a nontwist shutoff shall be permitted to be used.

4.8.5.2.3
With the test cap valve or the nozzle open, the pressure shall be raised gradually to 45 psi ± 5 psi (3.1 bar ± 0.35 bar or 310 kPa ± 35 kPa).

4.8.5.2.4 *
After the hose test layout is full of water, all the air in each hose line shall be exhausted by raising the discharge end of each hose line above the highest point in the system.

WARNING: All air must be removed from the hose before the valve in the test cap or the nozzle is closed and the pressure raised. The development of test pressures introduces the potential for a serious accident if air remains in the system.

4.8.5.2.5
If the hose testing machine incorporates elevated outlets for water supply that are higher than the inflated diameter of the hose from the testing surface, air shall be vented next to the water input end.

4.8.5.2.6
The nozzle or test cap valve shall be closed slowly, and then the outlet water supply valve shall be closed.

4.8.5.2.7 *
The hose directly in back of the test cap or the nozzle shall be secured to avoid possible whipping or other uncontrolled reactions in the event of a hose burst.

4.8.5.2.8
With the hose at 45 psi ± 5 psi (3.1 bar ± 0.35 bar or 310 kPa ± 35 kPa), it shall be checked for leakage at each coupling and the couplings tightened with a spanner wrench where necessary.
4.8.5.2.9
Each hose shall then be marked around its full circumference at the end or back of each coupling or collar to determine, after the hose has been drained, if the coupling or collar has slipped during the test.

4.8.5.2.10
All personnel other than those persons required to perform the remainder of the procedure shall clear the area.

4.8.5.2.11
The pressure shall be raised slowly at a rate not greater than 15 psi (1 bar or 103 kPa) per second until the service test pressure is attained and then maintained, by pressure boosts if necessary, for the duration of the stabilization period.

4.8.5.2.12
The stabilization period shall be not less than 1 minute per 100 ft (30 m) of hose in the test layout.

4.8.5.2.13
After the stabilization period, the hose test layout shall hold the service test pressure for 3 minutes without further pressure boosts.

4.8.5.2.14
While the hose test layout is at the service test pressure, the hose shall be inspected for leaks.

4.8.5.2.14.1
If the inspecting personnel walk the test layout to inspect for leaks, they shall be at least 15 ft (4.5 m) to the left side of the nearest hose line in the test layout. The left side of the hose line shall be defined as that side that is to the left when facing the free end from the pressure source.

4.8.5.2.14.2
Personnel shall never stand in front of the free end of the hose, on the right side of the hose, or closer than 15 ft (4.5 m) on the left side of the hose, or straddle a hose in the test layout during the test.

4.8.5.2.15
If the hose test layout does not hold the service test pressure for the 3-minute duration, the service test shall be terminated.

4.8.5.2.15.1
The length(s) of hose that leaked shall have failed the test.

4.8.5.2.15.2
The test layout shall be drained and the defective hose removed from the test layout.

4.8.5.2.15.3
The service test shall be restarted beginning with the procedures required in 4.8.5.2.1.

4.8.5.2.16
After 3 minutes at the service test pressure, each test cap or nozzle shall be opened to drain the test layout.

4.8.5.2.17 Coupling Slippage.

4.8.5.2.17.1
The hose and any marks placed on the hose at the back of the couplings or at external collars shall be observed for coupling slippage after completion of the service test and after the hose has been drained.

4.8.5.2.17.2
If the hose assembly shows any sign of coupling slippage, the hose assembly shall have failed the test.

4.8.6 Service Test Using a Stationary Pump or a Pump on a Fire Department Apparatus.
The procedure given in 4.8.6.1 through 4.8.6.16.2 shall be used when hose is to be service-tested using a stationary pump or a pump on a fire department apparatus.

WARNING: Because there is a potential for catastrophic failure during the service testing of fire hose, it is vital that safety precautions be taken to prevent exposure of anyone to this danger. Do not deviate from the procedures prescribed herein.

4.8.6.1

The test gauge that is used to read the test pressure shall have been calibrated within the previous 12 months.

4.8.6.2

A hose test valve consisting of a fire department gate valve with a $\frac{3}{4}$ in. (6.4 mm) opening drilled through the gate and designed to withstand the service test pressures shall be used between the pump and the hose test layout.

4.8.6.3

The test layout shall be connected to the hose test valve.

4.8.6.3.1

If a pump on a fire apparatus is used, the hose test valve shall not be attached to any discharge outlet at or adjacent to the pump operator's position.

4.8.6.3.2

The hose test valve end of the hose line shall be secured with a belt tie-in or rope hose tool at a point 10 in. to 15 in. (250 mm to 400 mm) from the coupling.

4.8.6.4

A test cap with a bleeder valve shall be attached to the far end of each hose line in the test layout. If a test cap is not available, a nozzle with a nontwist shutoff shall be permitted to be used.

4.8.6.5

With the hose test valve open and the test cap valve or nozzle open, the pressure shall be gradually raised to 45 psi ± 5 psi (3.1 bar ± 0.35 bar or 310 kPa ± 35 kPa).

4.8.6.6

After the hose test layout is full of water, all air in each hose line shall be exhausted by raising the discharge end of each hose line above the highest point in the system.

WARNING: All air must be removed from the hose before the valve in the test cap or the nozzle is closed and the pressure raised. The development of test pressures introduces the potential for a serious accident if air remains in the system.

4.8.6.7

The nozzle or test cap valve shall be closed slowly, and then the hose test valve shall be closed.

4.8.6.8

The hose directly in back of the test cap or the nozzle shall be secured to avoid possible whipping or other uncontrolled reactions in the event a hose bursts.

4.8.6.9

With the hose at 45 psi ± 5 psi (3.1 bar ± 0.35 bar or 310 kPa ± 35 kPa), it shall be checked for leakage at each coupling and the couplings tightened with a spanner wrench where necessary.

4.8.6.10

Each hose shall then be marked around its full circumference at the end or back of each coupling or collar to determine, after the hose has been drained, if the coupling or collar has slipped during the test.

4.8.6.11

All personnel other than those persons required to perform the remainder of the procedure shall clear the area.
4.8.6.12
The pressure shall be raised slowly at a rate not greater than 15 psi (1 bar or 103 kPa) per second until the service test pressure is attained and then maintained for 3 minutes.

4.8.6.13
While the test layout is at the service test pressure, the hose shall be inspected for leaks.

4.8.6.13.1
If the inspecting personnel walk the test layout to inspect for leaks, they shall be at least 15 ft (4.5 m) from either side of the nearest hose line in the test layout.

4.8.6.13.2
Personnel shall never stand in front of the free end of the hose, stand closer than 15 ft (4.5 m) on either side of the hose, or straddle a hose in the test layout during the test.

4.8.6.14
If, during the test, a section of hose is leaking or a section bursts, the service test shall be terminated.

4.8.6.14.1
The length(s) of hose that leaked or burst shall have failed the test.

4.8.6.14.2
The test layout shall be drained and the defective hose removed from the test layout.

4.8.6.14.3
The service test shall be restarted beginning with the procedures required in 4.8.6.3.

4.8.6.15
After 3 minutes at the service test pressure, the pump shall be shut down, the hose test valve opened, the pressure allowed to equalize with the source, the pump discharge gates closed, and each test cap valve or nozzle opened to drain the test layout.

4.8.6.16 Coupling Slippage.

4.8.6.16.1
The hose and any marks placed on the hose at the back of the couplings or at external collars shall be observed for coupling slippage after completion of the service test and after the hose has been drained.

4.8.6.16.2
If the hose assembly shows any sign of coupling slippage, the hose assembly shall have failed the test.

Statement of Problem and Substantiation for Public Input

Someone looking for the requirements for service testing occupant-use fire hose would not assume by the way the section title is currently written that the information would be located within that section - specifically in 4.8.2.4. Adding "Occupant-Use" to the section title more clearly describes the section's content. Additionally, adding "Occupant-Use" to the end of the section title properly aligns the sequence of the hose types listed in the title with the sequence in which the information is found within sections 4.8.2.1 - 4.8.2.4.

Submitter Information Verification

Submitter Full Name: Thomas Farruggia
Organization: Illinois Fire Safety Company
Affiliation: National Association of Fire Equipment Distributors
Street Address:
City:
State:
Zip:
<table>
<thead>
<tr>
<th>Submittal Date:</th>
<th>Thu Jan 07 11:48:29 EST 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committee Statement</td>
<td></td>
</tr>
<tr>
<td>Resolution:</td>
<td>FR-8-NFPA 1962-2016</td>
</tr>
<tr>
<td>Statement:</td>
<td>Adding “Occupant-Use” to the section title more clearly describes the section's content.</td>
</tr>
</tbody>
</table>
Public Input No. 12-NFPA 1962-2015 [New Section after 4.8.1]

NFPA 1962

4.8.2 Lightweight attack used for purposes other than buildings higher than 6-stories shall be removed from service.

Substantiation

Lightweight single jacketed fire attack hose was originally designed to reduce the physical burden on firefighters when being carried in high-rise buildings. This hose construction does not offer the same level of protection as double-jacketed fire attack hose and should not be used to attack fires in buildings under six stories. The premise is that 6 stories is a reasonable amount to expect a firefighter to carry a heavier hose.

All lightweight hose should immediately be marked in large bold letter with the words LIGHTWEIGHT HOSE every 18 feet.

NFPA 1962 5.5.1 (6)

Specific criteria provided for attack hose

Ability to pass significantly more rigorous thermal performance test than that set forth in NFPA 1961

a) Conductive Heat Resistance Test - Effective 3/26/18. All fire attack hose will be required to meet the same test standard as PPE footwear NFPA 1971 - 2013 Section 8.8

b) Flame resistance test (1971 - 2013, Section 8.5) Effective 3/26/2018. All fire attack hose will be required to undergo flame resistance test 4 as in (1971-2013,Section 8.5) replacing references to boot with fire attack hose. Then undergo hydrostatic pressure test.

c) Radiant Heat Resistance Test 1 (1971 - 2013, Section 8.9)

d) Thread Melting Test (1971 - 2013, Section 8.11)

All tests to be conducted with lines charged and uncharged, in a horizontal position.

All Thermal Assault Tests shall be burst/ failure timed, verified, and accurately reported whether or not the hose is deemed safe for use as fire attack hose. Each fire attack hose shall be clearly marked in large bold letter with hose failure/burst time for each test.

Manufacturers shall report and clearly mark all fire attack hose, Thermal Assault Improved beginning 3/26/2018 and clearly print on hose results of each test.

Substantiation

As reported by researchers at WPI, fire attack hose is exposed to the same operational environment and conditions as firefighters personnel protective footwear. PPE has undergone significant improvements and has much more rigorous test and compliance standards (standards already exist see above).

Corresponding improvements must be made to create, Reliable fire attack hose. Thermal advancements and technologies must be adapted to fire attack hose to enable hose to meet the same standard as PPE or firefighter safety is dangerously compromised.

All safety equipment must be designed to work effectively in the same environment. As equipment is improved notification of higher expectation shall always be presented to complementry equipment NFPA Committees. Coordination of improved compliance demands, standards and expectasions shall be disseminated accross all related equipment Committees. Manufacturers shall immediately begin corresponding development to the improved counterpart. Significant improvements shall be demanded timely - within two years of notification.

Until such time as fire attack hose is fire proof it is vital for the fire service to be made aware of conditions under which hose can reasonably be expected to be reliable. It is not appropriate or ethical to withhold this vital information.

Statement of Problem and Substantiation for Public Input

Lightweight hose is designed to reduce the physical burden on firefighters when being carried in high-rise buildings. This hose construction does not offer the same level of protection as double-jacketed hose. Lightweight hose
should not be used in buildings under 6-stories. The premise of 6-stories is a reasonable amount expected for a firefighter to carry something heavy.

Submitter Information Verification

Submitter Full Name: Kathy Crosby
Organization: [Mother of Fallen Firefighter Michael Kennedy LLOD]
Street Address:
City:
State:
Zip:
Submittal Date: Wed Dec 30 15:25:46 EST 2015

Committee Statement

Resolution: CI-5-NFPA 1962-2016
Statement: The committee is aware that the fire resistance of attack hose is a source of concern and is looking forward to the Fire Protection Research Foundation Workshop on Fire Hose scheduled for May 2016 to provide us with additional technical information to address Public Input Number 12.
4.8.1

Hose manufactured prior to July 1987, 1993 to meet the requirements of the 1979, 1992 and previous editions of NFPA 1961, Standard on Fire Hose, shall be removed from service.

Statement of Problem and Substantiation for Public Input

This change is consistent with the 26 years of age selected by the committee for the last edition of the standard in 2013, requiring the retirement of hose built before 1987 to the 1983 edition of the 1961 standard. This would make any hose 25 years old at the release of the next edition of 1962 in 2018. Even for a well maintained hose, I think 25 years is a reasonable service life.

Submitter Information Verification

Submitter Full Name: Paul Prevost
Organization: Clearwater Regional Fire Rescue
Street Address:
City:
State:
Zip:
Submittal Date: Mon Dec 14 00:07:27 EST 2015

Committee Statement

Resolution: CI-6-NFPA 1962-2016
Statement: A significant change to NFPA 1961 was made in 1987 which is why 1987 is cited in the standard. This change was not intended to indicate a mandatory retirement date after 25 years. No technical substantiation has been provided to indicate that a mandatory retirement age of 25 years is necessary. A task group has been formed and may request research be conducted by the Fire Protection Research Foundation to investigate this subject.
Hose manufactured during July 1987, 1993, or after that date to the 1987, 1992, or subsequent editions of NFPA 1961 shall be service tested as specified in Section 4.8.

Statement of Problem and Substantiation for Public Input

This is consistent with the 2013 edition of the standard which outlined testing for hoses less than 26 years (after 1987). When this next edition comes out 1993 will be hoses of 25 years of age built to the 1992 edition of the 1961 standard.

Submitter Information Verification

Submitter Full Name: Paul Prevost
Organization: Clearwater Regional Fire Rescu
Street Address:
City:
State:
Zip:
Submittal Date: Mon Dec 14 00:23:52 EST 2015

Committee Statement

Resolution: CI-7-NFPA 1962-2016
Statement: A significant change to NFPA 1961 was made in 1987 which is why 1987 is cited in the standard. This change was not intended to indicate a mandatory retirement date after 25 years. No technical substantiation has been provided to indicate that a mandatory retirement age of 25 years is necessary. A task group has been formed and may request research be conducted by the Fire Protection Research Foundation to investigate this subject.
Public Input No. 1-NFPA 1962-2015 [Chapter D]

Annex D Informational References

D.1 Referenced Publications.

The documents or portions thereof listed in this annex are referenced within the informational sections of this standard and are not part of the requirements of this document unless also listed in Chapter 2 for other reasons.

D.1.1 NFPA Publications.

National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

D.1.2 Other Publications.

D.1.2.1 ASTM, IEEE Publications.

ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

D.1.2.2 UL Publications.

Underwriters Laboratories Inc., 333 Pfingsten Road, Northbrook, IL 60062-2096.

D.1.2.3 Other Publications.

D.2 Informational References. (Reserved)

D.3 References for Extracts in Informational Sections. (Reserved)

Statement of Problem and Substantiation for Public Input

Updated SDO name, address, standard name, number and edition.

Submitter Information Verification

Submitter Full Name: Aaron Adamczyk
Organization: [Not Specified]
Street Address:
City:
State:
Zip:
Submittal Date: Sun Jun 14 21:20:16 EDT 2015

Committee Statement

Statement: Updated referenced edition years in accordance with the NFPA Manual of Style.